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Mother of pearl (99% CaCO,) has
flexural strength of 100 MPa — an
order of magnitude higher than chalk

/’/,

Structure of mother of pearl

Image; © John T, Wong/Monsoon/Photolibrary/Corbis 3




Types of nanoparticles

[1 Nanoclay

[]1 Limestone nanoparticles

[1 Nanosilica

[] Titanium dioxide nanopatrticles

[1 Nanofibers: Carbon nanotubes (CNTSs)

Can nanoparticles enhance properties and
performance through nanomodification?
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Self-consolidating concrete (SCC)

Highly flowable concrete that resists
segregation and develops its
mechanical properties without vibration

QuickTime™ and a
Cinepak decompressor
are needed to see this picture.

— Take advantage of the high consolidating properties R .

iCourtesi: Treiieri




SCC and Formwork Pressure

Mock Up Test (2007, Dante Galeota, and et al.)
Research in collaboration with Université de

Sherbrooke and CTL 7




Current Situation

aQ ACI 347: presumed lateral pressure should equal the
hydrostatic pressure until the effect of formwork pressure is
understood

Q Studies have shown that SCC can have pressure less than
hydrostatic-2 due to structural rebuilding

1. A. Assaad, et. al, Cement and Concrete Research, v.35, 2005
2 P. Billberg, et. al, Concrete International, v.27 (10), 2005

3, Y. Vanhove, et.al, Magazine of Concrete Research, vol. 56, 2004.




e During mixing, particles break up into much smaller needle
structures Mbele
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Simulation Range: Real scale column heights from
~3 m to 20 m, and any casting rates

Pressure Sensors
(capacity: 50psi = 344kPa)

Lab formwork
D=1b¢tm
H=30cm




Clay effect on formwork pressure
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Quantitative measure of clay effect

Methods of investigation:

Filtration test

filter

Tack test

Shar rheology

Floc size determination




FBRM: A Way to Measure Floc Size

Focus Beam Reflectance Measurement (FBRM):
Gives information about Floc size = indirect indication of flocculation
- in situ/in-line information about the evolution and size of particle

- scans highly focused laser beam across suspension and measure time duration
of back scattered light
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Floc size evolution
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13.5 40rpm flOOrpm
E  1ag |
Nt
c
5 12.5
— 12.0
:
O GED ¢ aEb ° - e a
6 11.5 XXX XXX PZ_SepiO
S 11.0
5}
= 10.5

10.0 .

0 1000 2000 3000 4000 5000 6000

P2 : Plain Paste Time (sec)
P2-VMA: Paste with a cellulose-based viscosity-modifying agent
P2-Meta: Paste with metakaolinite clay (calcined, purified kaolinite) 14




Tack test

 Properties measured by tack test include:

— Adhesion strength

» Flow resistance and intrinsic cohesion (internal strength) at rest

— Cohesion strength

« Static property relating to intermolecular and capillary forces
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Kaci et al. 2010
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Tack test: Results

Effect of clay:
— Cement paste (w/c = 0.43)
— 1% nanoclay

Adhesion strength
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Nanoparticles in high-volume fly

ash (HVFA) cement systems

» HVFA cementitious materials:
» Eco-friendly

» Advantages:
+* High flowability
** Low cement content
+* Low hydration heat
s Strength gain in the later age
s Improvement in durability
¢ Low costs

» Disadvantages:
¢ Low early age strength gain




Rate of hydration 20
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Rate of heat development: Jig/h
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Sato and Beaudoin 2011

» Effect of size
» 50% fly ash cement paste

» 10, 20% addition of micro- vs nanoparticles
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Ultrasonication

Sample

5 Kr,

/ Ice bath

i

s

‘Lj |

+ water
+ superplasticizer




Setting time
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Rate of hydration
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» Effect of dispersion
» Cement paste (w/c =0.4)
» 5% addition of sonicated vs blended nanoparticles
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» Effect of dispersion
» 30% fly ash cement paste (w/c = 0.43)
» 5% addition of sonicated vs blended nanoparticles




Outline

m\lanoclays in Flocculation Study
%\IanoCaCO3 in HVFA Cement Systems
] Nanosilica

J Photocatalytic Cement-Based Materials

(] Carbon Nanotubes as Reinforcement and Sensors

24




Results of Compression Test

~ Degradation
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Nanoindentation Test Results

Elastic Modulus of Plain Cement Paste (CP) vs
CP modified with nanosilica
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Calcium Leaching Study of Cement

Pastes Modified with Nanosilica

1 labeiny
e Nanosilica fill up the gaps in cement
CSIC Unidad Asociada

paste microstructure and provide
denser microstructure

e Reduce the impact of calcium
leaching on cement paste.

Osteoporosis

“Silica Nanoparticle Addition to Control the Calcium-Leaching in Cement-Based Materials,” ). ). Gaitero*, Y. Sdez de
Ibarra, E. Erkizia, and I. Campillo; Physica Status Solidi (a) 203, No. 6, 1313-1318 (2006)




Traditional Electrochemical
Chloride Extraction

_|_

4— Reinforcement

o: Chloride lon

Kupwade Patil. K, Gordon. K, Xu. K, Moral O, Cardenas. H and Lee. L .Corrosion mitigation in concrete beams using
electrokinetic nanoparticle treatment,. Excellence in Concrete Construction through Innovation, September 2008,
London, UK, pp.365-371. 28




Pozzolanic Nanoparticle

Silica particle core

\

2nm Alumino Particles
(Source of positive charge)

24 nm
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ASTM G109 Beams Under Long-term

Testing Simulating Bridge Deck Laden with Road Salt

Unprotected: Severely
Cracked

Nanoparticle Protected

Bridge Deck Specimens After a year of Salt Testing

Kupwade Patil, K and Cardenas H, .Corrosion mitigation in concrete using electrokinetic injection of reactive
composite nanoparticles,.Proc. 53rd International SAMPE
symposium, May 2008, Long Beach, CA. 30
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Italians discover a smog-eating cement

By Elisabetta Poveledo

VENICE: When the American archi-
tect Richard Meier was asked to create
a church in Rome to commemorate the
2,000th anniversary of Christianity, he
designed an imposing white concrete
structure dominated by three soaring
“sails.”

The project’s main technical spon-
sor got to work on a cement that would

enhance Meier’'s trademark white
sculptural forms, It came up with a ma-
terial that essentially cleans itself, min-
imizing the need for maintenance.
What the sponsor, Italcementi Group,
did not know at the time was that the
new material — which contained ti-
tanium dioxide, a compound used as a
white pigment — had another peculiar-
ity. It “eats” surrounding smog.
Extensive testing, sponsored in part

Taipei Liao
A new material used in the Dives in Misericordia church in Rome, designed by the
US. architect Richard Meier, contains a compound that “eats” surrounding smog.

by a European Union research project
into “smart” antipollution materials,
has since determined that construction
products containing titanium dioxide
help to destroy air pollutants found in
car exhaust and heating emissions, sci-
entists say.

Several companies are now develop-
ing “smog-eating” products that can be
used not just for the facades of buildings,
but also in paint, plaster, and paving ma-
terials for roads. The new environment-
friendly substances are quietly being
tried out in buildings, squares and high-
ways in Europe as well as Japan.

Hailed by some scientists as a break-
through, the process is still being eval-
uated by others. The question, said
Melanie Sattler, professor of civil and
environmental engineering at the Uni-
versity of Texas in Arlington, is
“whether coatings on buildings would
be able to treat enough of the atmo-
spheric air to make a difference.”

Italcementi began developing its
product after Meier got his assignment
to build the Dives in Misericordia
church in 1996 and asked for help.

Titanium dioxide had been used in
self-cleaning coatings before because
of its photocatalytic properties: sun-
light touching the compound triggers a
chemical reaction that accelerates nat-
ural oxidation.

Upon testing its new cement,

SMOG, Continued on Page 4

http://www.italcementigroup.com/NR/rdonlyres/A8A7F53C-BAOE-4429-A07C-8C22D45DC18D/0/Herald Tribune 231106.pdf

http://www.concretedecor.net
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Self-cleaning (Lotus effect)
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Surface
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TiO, nanoparticles

Rate of hydration reaction of ordinary Portland
cement and TiO, blended cements
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Carbon Nanotubes (CNTs)

« A CNT is a sheet of graphite rolled up into a tube structure and
can be described as:

— Single walled (SWNT)

* A single sheet has been rolled up with diameter close to
1nm

— Multi walled (MWNT)

A number of sheets have been rolled up with diameter
ranges from 10-80nm

\
I

1nm

10-80 nm

36




SEM images of poorly dispersed CNTs forming bundles in 18h cement paste

a7




ACBM Dispersion Method

Goal — Effective Dispersion of MWCNTSs in Aqueous Surfactant
Solution:

eUltrasonic energy by sonication

eSurface treatment with commercially available surfactant

QuickTime™ and a
YUV420 codec decompressor
are needed to see this picture.

38




Use of Surfactant (SFC)

Without Dispersion

Konsta-Gdoutos et al, Cement and Concrete Composites, 2010 DlsperS|on with Sonlcatlon+Surfac§ant

Konsta-Gdoutos et al, Cement and Concrete Research, 2010




Nanoindentation Test Results

Elastic Modulus of Plain Cement Paste (CP) vs
CP reinforced with MWCNTSs

0.4
Low Stiffness  High Stiffness CH
Porous Phase C-S-H C-S-H (Ca(OH),)
0.3 < > < > < > < >
- : -II-CP w/c=0.5 |
= | —#—CP+0.08Wt% Short MWCNTSs
o 0.2 A | i |
(0] 1 1 1
QO I : I
o I
s
0 . r . :
Lo o L0 o LO o Lo o L0 o
] — i N (a\| ™ o™ < <t Lo
© o o 0 o 0 o 0 o 0
— — N N ™ ™ < <

Elastic Modulus (GPa)

Shah et al, NICOM3, Springer, 2009




Fracture Properties of Cement Paste

Reinforced with CNTs
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Autogenous Shrinkage
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Conductivity
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Development of “smart” cement based F\@ sy

materials using CNTs

Goal: Develop stress and strain sensing materials used for
structural health monitoring

How?: Using Carbon nanotubes

* CNTs exhibit electromechanical properties. When subject to stress their
electrical properties change analogous to the stress level indicating a
linear and reversible piezoresistive response

a) 0
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Conclusion

Nanoparticles:

\_

Nanoclay
NanoCaCO,
Nanosilica
NanoTiO,
CNTs

/

Nanomodification
——

/Potential benefit to\

properties:
Rheology
Hydration kinetics
Mechanical
C-S-H madification
Durability
Shrinkage
Photocatalysis
Conductivity
Piezoresistivity

. /




New (Old?) Materials!

Damascus sabers contain carbon nanotubes, as
well as nanoscale wires of cementite, giving them a
moiré pattern (from Nov. 28 article in NY Times,
photo taken by Tina Fineberg)

e Nanotubes over 400 years old!

[Reibold et. al, 2006]




Thank you!
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