THE USE OF IMPURE CLAYS AS SUPPLEMENTARY CEMENTITIOUS MATERIALS

Maria Juenger

Sarah Taylor-Lange

The University of Texas at Austin

Kyle Riding

Kansas State University

Calcined Clays

- Metakaolin is a commercially available supplementary cementitious material
- But pure kaolinite is expensive and has other high-end uses

Metakaolin

High Reactivity Metakaolin The White Alternative to Silica Fume

Manufactured For:

- · High Strength & High Performance Concrete
- · Grouts, Mortars, Blended Cement Products
- Architectural Precast & Decorative Concrete
- Stone / Brick Veneer & GFRC

www.metakaolin.com

Other clay minerals

- Most "real" or "impure" clays are combinations of:
 - Clay minerals such as:
 - Kaolinite
 - Illite
 - Montmorillonite/smectite
 - Palygorskite
 - And crystalline phases like:
 - Quartz
 - Calcite
 - Feldspars
 - Anatase
 - SiO₂+Al₂O₃+Fe₂O₃ > 70%

Challenges with impure clays as SCMs

- 1. Increased water demand
 - High specific surface area of materials
 - Expansive clay minerals

- 2. Low pozzolanicity
 - High crystallinity

Allard et al., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume 277, 15 April 2012, Pages 112–120.

Important factors affecting clay performance

- Water demand related to:
 - Surface area (BET)
 - Calcination

FIG. 1.

W/C: Water/(cement+clay) ratio of the mortars (flow=100%), and BET specific surface area of the used clays (nitrogen absorption). Connection lines between data points do not have physical meaning.

Abbreviations in all the Figs: K = kaolinite, I = illite, C = Ca-montmorillonite, N = Na-montmorillonite, M = mixed layer mica/smectite and S = sepiolite. Numbers beside these letters indicate the calcination temperature rounded down to the nearest hundred degrees (°C), e.g. K5 = kaolin calcined above 500°C. 0 indicates clay without calcination.

He et al. Cem. Con. Res. 1995.

Important factors affecting clay performance

- Reactivity
 - Calcination temperature: Crystallinity/degree of dehydroxylation
 - Clay mineral type
- He et al. (Cem Conc Res 1995) determined optimal calcination temperatures:
 - Ca/Na-montmorillonite 830°C, kaolinite 650°C, and mixed layer clay 960°C
 - All increased the compressive strength over neat cement mortars at 28 days cured at 40C.
- Habert et al. (Appl Clay Sci 2009) listed optimal calcination temperatures as:
 - Montmorillonite 800°C, kaolinte 700 °C for kaolinite, palygorskite 750°C, illite 850°C
 - Stressed that while dehydroxylation is desired, re-crystallization should be avoided
 - Clay mineral doesn't matter nearly as much as degree of crystallinity
- Tironi et al. (Const Build Mat 2012): more disordered the kaolinite structure prior to calcination, the greater the pozzolanic reactivity
- He et al. (Appl Clay Sci 2000): calcined sepiolite and illite less reactive
 - Confirmed by Fernandez et al. (Cem Conc Res 2011) for illite

Filler effect

R. Fernandez et al. / Cement and Concrete Research 41 (2011) 113-122

Fig. 13. Compressive strength and degree of hydration at 28 days of calcined-clay-cement mortars.

Increasing the reactivity of calcined clays

- Acid treatment: 6 M HCl resulted in a high surface area amorphous silica in metakaolin (Belver et al., 2002)
- Iron Oxide: Lowered the refractoriness (i.e. thermal resistance) of calcined kaolinite (Kuechler, 1926)
- Iron Oxide: Increased the pozzolanic activity of *surkhi* (a finely powdered burnt clay) (Srinivasan, 1956)
- Zinc Oxide: Changed reactivity of kaolinite measured by lime reactivity tests (Chatterji et al., 1960)

Reactivity of Calcined Model Clays

Effects of ZnO addition on Hydration

Effects of ZnO addition on hydration

Co-calcination

Added separately

Compressive Strength

Summary and Conclusions

- Impure clays are plentiful and have an appropriate oxide composition for use as SCMs for portland cement concrete
- Challenges with these materials involve high water demand and low reactivity
- Both challenges can be addressed through calcination
- Reactivity is related to crystallinity and this can be addressed through chemical treatments in addition to calcination
- ZnO shows some promise of altering the reactivity of clays