Recent Advances and Field Applications Using Alternative Cementitious Binders

Brian H. Green, Robert D. Moser, Christopher M. Moore U. S. Army Engineer Research and Development Center

Jon Belkowitz, Intelligent Concrete

Unconventional Concrete Anna Maria Workshop XIII November 7-9, 2012 Holmes Beach, Florida

ERLUC Engineer Research and Development Center

US Army Corps of Engineers BUILDING STRONG®

Outline

- Problems from Dust Production
- Dust, Corrosion, and Soil Stabilization
- Location of Test Area
- Local Materials
- Chemically-Bound Soil Technologies for Soil Stabilization
- Test Road Sections
- What's Going On...
- Summary and Questions

Dust Production in Army Training Areas

- Unsurfaced roads and landing zones are major problems in arid terrain
- Dust introduces abrasives into the vehicle systems and clogs air filters
- Dust control agents are frequently inorganic salts (chloride-containing) that can produce additional corrosion problems
- Conventional paving is not practical in many locations

Pohakuloa Training Area (PTA) Test Site

- Serious dust problem at site
- Abrasive, corrosive dust
- Moderate traffic
- Soil is largely volcanic glass that is reactive in an alkaliactivated geopolymer
- Cementation should be more durable than dust palliatives

BUILDING STRONG_®

Soils at PTA Test Site

SEM Micrograph of Soil

- Alumino/siliceous aggregates with limited crystallinity
- Amenable to formation of chemically-bound geopolymer
- Sharp edges, and corners
- Wide range of particle sizes

5

Alkali-Activated Geopolymer: An Alternative

- Alkali-activated geopolymers are special cements formed by mixing a concentrated alkaline solution with a finelydivided reactive aluminosilicate (sometimes with Ca too)
- Alkali-activated geopolymeric cements are strong, fast-setting, inexpensive, and very versatile
- Manufactured from glassy silicates like slag, fly ash, metakaolin, and volcanic ash
- Can use waste alkalis from manufacturing operations
- No portland cement is involved!

Soil solidified with alkaliactivated mixture using slag

Why Use an Alkali-Activated Alternative?

- Fast: mixture sets in hours and gets ultimate strength in days
- Easy to Obtain Materials: suitable raw materials are available almost everywhere (eg, fly ash, slag)
- Economical: uses waste/local materials or low-fired clay soils
- Versatile: basic chemistry adapts from a wide variety of glassy aluminosilicates
- Variation of natural weathering process that occurs in volcanic ash deposits

Previous Usage Worldwide

- Widely used in Australia
- Marketed by Blue Circle Cement Company and Boral Cement
- Used in over 100 projects of 10,000 to 150,000 m² (2.5 to 37 acres)
- Reported to use Na-rich kiln dust, slag, and activator such as lime
- Broad range of compositions

Boral Roadment® application

Current Geopolymer Formulation

- Alkali Rich Glassy Aluminosilicate Aggregates
 - From local PTA volcanic soil
- Slag (ASTM C989) Approx 6 wt%
 - Source: foundry located in Southern California
- Fly Ash (Direct from Coal Plant) Approx 6 wt%
 - Plant located on the island of Oahu
 - Chemical composition close to Class F (not F or C)
- Hydrate Lime (ASTM C977) Approx 6 wt%
- Sodium Carbonate (Soda Ash) Approx 6wt%
- Water: w/cm of approx 0.17

Geopolymerization Reactions

Exchange Reaction

Initial: Na₂CO₃ + Ca(OH)₂
 Final: NaOH and CaCO₃

Geopolymerization Rxn: Aggregates

- NaOH breaks down reactive surface of aggregates
- Forms A-S-H gel phase

Geopolymerization Rxn: Supplementary Cementing Materials

Alkalis down fly ash and slag
For C-A-S-H gel phase

Batch Mixing in Laboratory

Blend Until Balling Occurs

Add Activator Solution

Blend Dry Components

Mixture Components

BUILDING STRONG_®

Consolidation Methods

- Best performance observed when mixture is rollercompacted to consolidate
- Roller Compacted
 Method Pros:
 - Decreased Manpower
 - Faster Placement Times
 - Method Similar to Soil Compaction
 - Does Not Require Specialized Skill Set

- Roller Compacted Method Cons:
 - Does Not Produce the Highest Quality Surface
 - Density Depends on Compacted Effort
 - Somewhat Requires
 Continuous Placement

BUILDING STRONG®

Trial Batching at Univ. of Hawaii and ERDC

University of Hawaii test sections:

• Trial batching at ERDC Concrete & Materials Branch:

BUILDING STRONG®

Resulting Microstructure

- Alkali attacks edges and corners of coarse volcanic aggregates
- Fines can react completely
- C-A-S gel phase acts as binder similar to C-S-H in Portland cement systems
- Secondary minerals (zeolites) also contribute to cementation

Resulting Microstructure

 Hardened chemically-bound soil microstructure similar to hardened Portland cement concrete

Polished Cross Section of Hardened Chemically-Bound Soil

Current Mixture:

- ~6.4 MPa (927 psi) at 7 days
- ~12.4 MPa (1800 psi) at 28 days
- Highest compressive strengths when >135 pcf unit weight achieved during field compaction

From the Lab to the Field...

 Placement of chemically-bound soil mixture in the field using roller-compacted method:

 \rightarrow

8" to 10" RCCBS Pavement on 2% Grade (Crown)

24' Lane Width

4

2" to 4" Crushed Sub-Grade, Native Material

Bed Rock, In-situ Material, Lightly Compacted

Cross section of roller-compacted placement of chemically bound soil

Stats on PTA trial placement:

- Two 12ft lanes
- 6in compacted
- 8-10in placed
- 0.5mi in length

What's Happened!

- Placement at the PTA test site
- Photos from the field provided by Chris Moore and Samuel Craig (US Army ERDC – CMB)

What's Happened...

- Placement at the PTA test site
- Issues with high winds
- Iterative process to optimize placement

On-site equip. for placement

On-site batch plant

Spreading for roller-compaction

Summary and Conclusions

- Control of abrasive dust is a serious corrosion and equipment maintenance issue
- Alkali-activated geopolymerization is being investigated using glassy volcanic soils
- Reports in the literature support feasibility along with experience from Australian manufacturers
- ERDC has developed initial mixture designs and procedures for field placement
- Successful placement of test section at PTA site using chemically-bound soil stabilization technology

Future Directions

- Temporary storage pads for government facilities
 - Upcoming project in Charleston, SC to construct parking slabs for storage of MRAPs returning to US
 - Working with Intelligent Concrete to produce alternative cementitious material mixture proportions using the "less reactive soil" from local SC area
 - Include the use of nanoparticles to activate the system

Acknowledgements

 The authors wish to recognize the participants at ERDC that worked on this project:

Philip G. Malone, David M. Bailey, Peter G. Bly, and Sean W. Morefield

Melvin C. Sykes

Paul G. Allison

Samuel L. Craig

Charles A. Weiss, Jr.

Acknowledgements

- The authors wish to recognize the Sponsors of the DoD Corrosion Prevention and Control Program:
 - Office of Under Secretary of Defense, Office of Corrosion Policy and Oversight (Director, Mr. Dan Dunmire).
 - Deputy Assistant Secretary of the Army Acquisition Policy and Logistics (Army Corrosion Control Prevention Executive, Mr. Wimpy D. Pybus).
 - Assistant Chief of Staff for Installation Management (Mr. David Purcell).
 - Headquarters, U.S. Army Installation Management Command (Mr. Paul Volkman).
 - Technical content previously approved for release by Director, Geotechnical and Structures Laboratory, US Army ERDC

Thank You!

Please contact for more info or copy of presentation:

Brian.H.Green@usace.army.mil

Robert.D.Moser@usace.army.mil

Christopher.Moore@usace.army.mil

