

Research project "Innovative cement based materials and concrete with high calcium fly ashes" co-financed by the European Union from the European Regional Development Fund

Michal A. Glinicki

Determination of Thermal Properties of Unconventional Concrete During Hardening

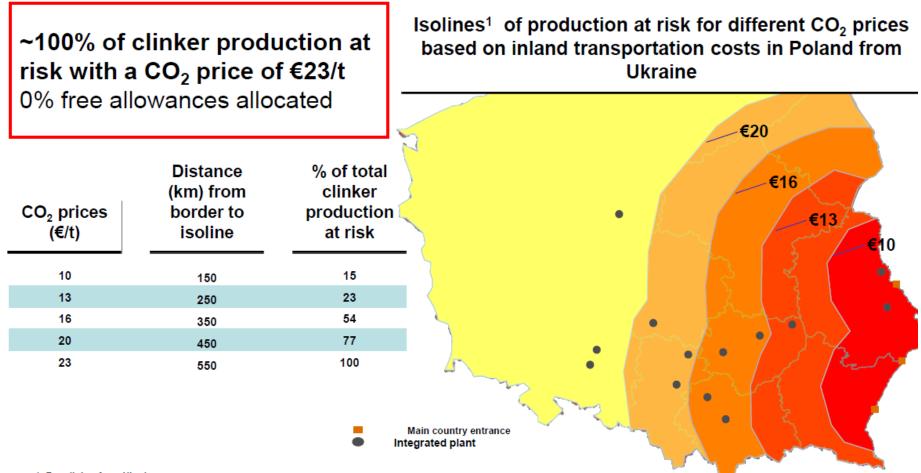
Institute of Fundamental Technological Research Polish Academy of Sciences Warsaw, Poland

Anna Maria Workshop, Nov. 7-9, 2012

Outline of presentation

- 1. Introduction/motivation
- 2. Objectives of investigation
- 3. Model formulation and IHTP solution (TMC software)
- 4. Experimental data input (1D)
- 5. Verification in 2D
- 6. Predicted and measured temperature in large blocks
- 7. Conclusions

CO₂ emission in cement industry in Poland


- Average emission from 251 European cement plants :
 868 kg CO₂/ton clinker, average biomass content in fuel 6,7%
- Actual emission in cement industry in Poland:
 823 kg CO₂/ton clinker

Empirical benchmark (Directive 2003/87/EC) from 10% of the best low emission cement plants in Europe: 766 kg CO₂/ton clinker (biomass factor >25%)

Advantages: low electricity consumption; high fuel substitution (45%); high clinker substitution (CF = 0.77)

Threat = European Union Emissions Trading System (EU ETS) \rightarrow lack of about 4.5 million ton of CO₂ allowances annualy

Clinker production at risk in Poland due to high price of carbon emissions in EU ETS

1. For clinker from Ukraine

Note: Clinker production by plant estimated as average being a confidential information; Distance from the plant in Ukraine to main entrances is 50 km Source: Cembureau; Polish Cement Association

The thermal properties of concrete, whether the concrete is massive or in thin sections, are the properties that are most ignored and the least understood by the general concrete engineering and construction industry ...

Stephen B.Tatro

in: Significance of tests and properties of concrete and concrete making materials, J.F.Lamond and J.H.Pielert, eds., ASTM STP 169D, 2006

OBJECTIVES OF INVESTIGATION

- □ to develop numerical tools for determination of transient temperature field in concrete during hardening
- □ to establish the range of possible applications of concrete containing new blended cements

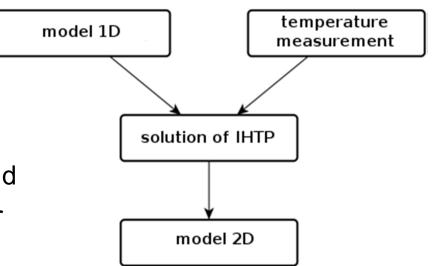
Heat transfer equation to describe the transient temperature field in hardening concrete

$$c\rho\frac{\partial T}{\partial t} - \frac{\partial}{\partial x}\left(k_x\frac{\partial T}{\partial x}\right) - \frac{\partial}{\partial y}\left(k_y\frac{\partial T}{\partial y}\right) - \frac{\partial}{\partial z}\left(k_z\frac{\partial T}{\partial z}\right) = Q$$

where: T – temperature, t – time, x, y, z space coordinates, ρ – density, c – heat capacity, k_x, k_y, k_z thermal conductivity in direction x, y, z respectively. Q - internal heat source

the coefficients are time, space and temperature dependent

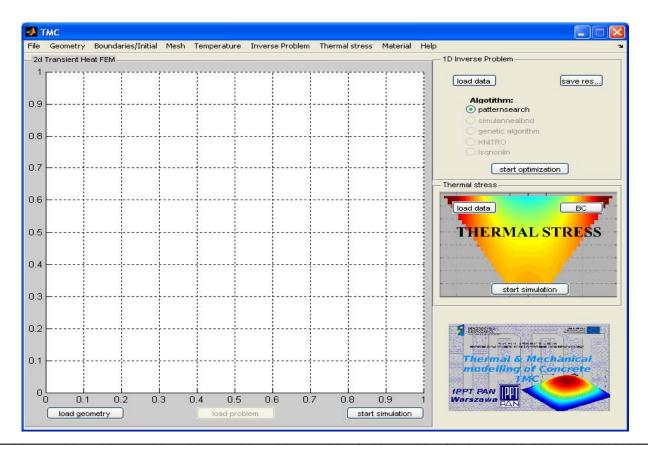
Solution of heat transfer equation:


\rightarrow direct solution

requires fine identification of material parameters, fails when less known (unconventional) components are used

\rightarrow inverse solution

 one dimensional heat flow equation
 the temperature field is estimated on the basis of temperature measurement in several points in one dimensional mold
 solution of the optimization problem for


- solution of the optimization problem for given initial and boundary conditions

Thermal & Mechanical modelling of Concrete

Solution of inverse heat transfer problem

functions *k*, *c* and Q are parameterized:

$$k_{x} = k_{y} = k_{z} = k(t_{e}) = \begin{cases} a_{k}t_{e} + b_{k}, & 0 \le t_{e} < 72h \\ 72a_{k} + b_{k}, & t_{e} \ge 72h \end{cases} \qquad Q = Q(t, t_{e}) = \frac{t_{e}}{t} \sum_{i=1}^{n} q_{i} N_{i}(t_{e})$$

$$c = c(t_{e}) = \begin{cases} a_{c}t_{e} + b_{c}, & 0 \le t_{e} < 72h \\ 72a_{c} + b_{c}, & t_{e} \ge 72h \end{cases}$$
is the equivalent time:
$$t_{e} = \int_{0}^{t} \beta(T)dt' = \int_{0}^{t} exp\left(\frac{E}{R}\left(\frac{1}{293} - \frac{1}{273 + T}\right)\right)dt'$$

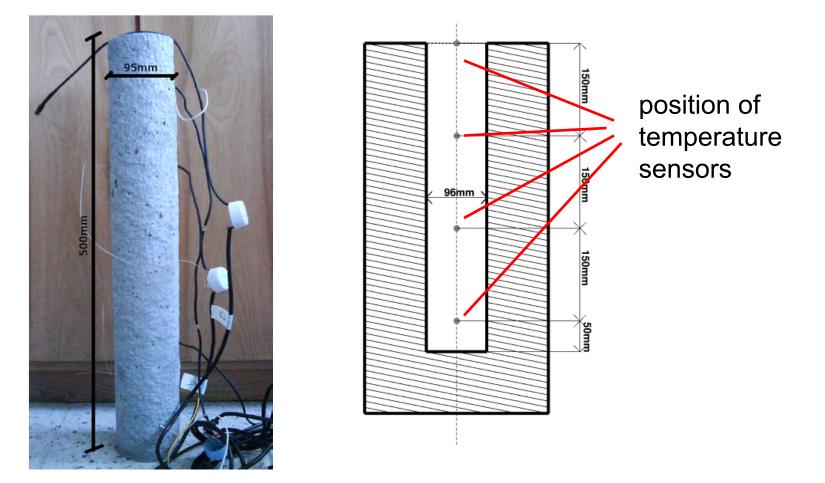
E is the activation energy and *R* is the universal gas constant N_i are linear shape functions for a one dimensional finite element a_k , b_k , a_c , b_{c_i} , q_i are unknown coefficients to be determined

 t_e

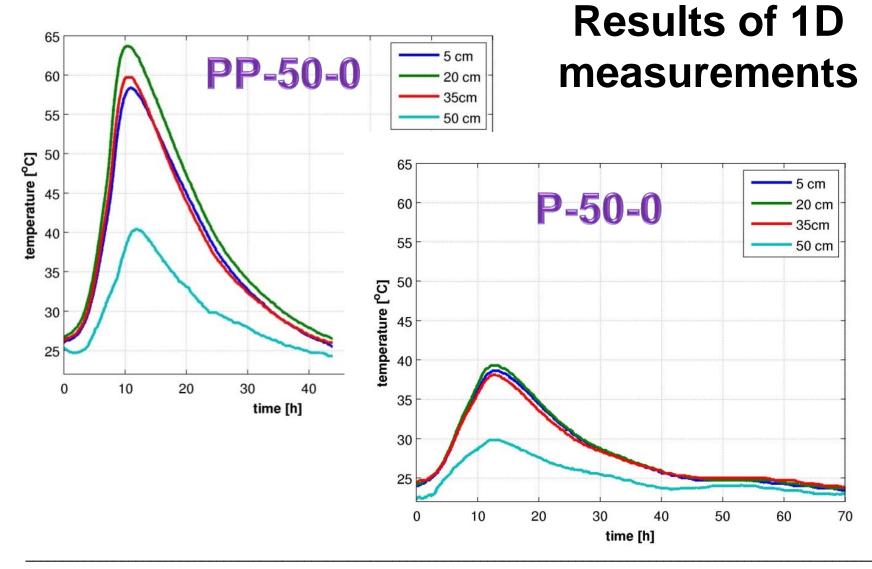
the calculated temperature T^n is compared with the measured temperature T^e to define the objective function to be minimized:

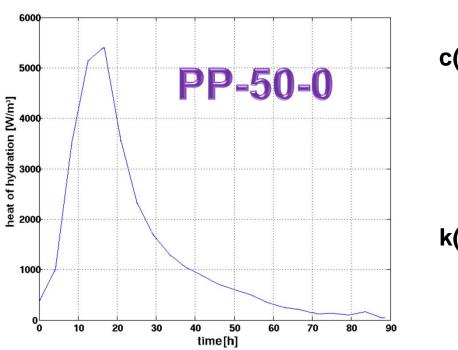
$$E(a) = (T^{e} - T^{n})^{T}(T^{e} - T^{n}) + \gamma \sum_{p=1}^{p} a_{p}^{2}$$

where γ is a regularization parameter, a_p unknown parameters $(a_p = \{a_k, b_k, a_c, b_c, q_i\}), P$ is a number of unknown parameters.


the objective function E is minimized by non-gradient direct search algorithm

to avoid non-uniqueness of solution the IHTP is solved twice


Experimental data input: one dimensional mould



Results of inverse heat transfer solution in 1D

c(t _e)	a _c [J/kgKh]	b _c [J/kgK]	Mixture	
	0.0578	915.77	PP-50-0	
	0.1928	910.1	P-50-0	
	0.0729	912.1	P-50-60 WS	

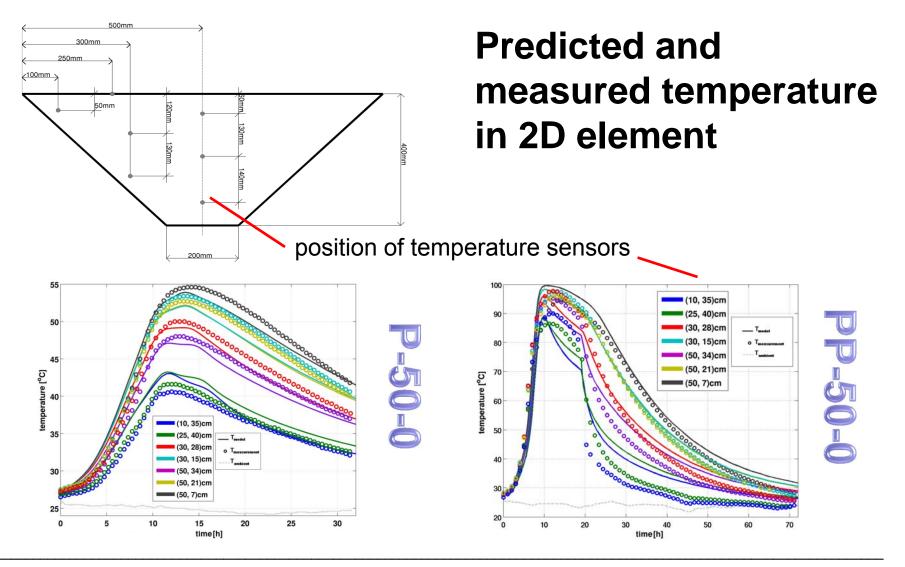
	a _k [W/mKh]	b _k [W/mK]	Mixture	
(t _e)	-0.0021	1.628	PP-50-0	
	-0.0037	1.592	P-50-0	
	-0.0018	1.398	P-50-60 WS	

VERIFICATION 2D calculations and measurements

Trapeziodal shape element

Thermally isolated mould (except the upper surface)

Set of temperature sensors positioned in the mould

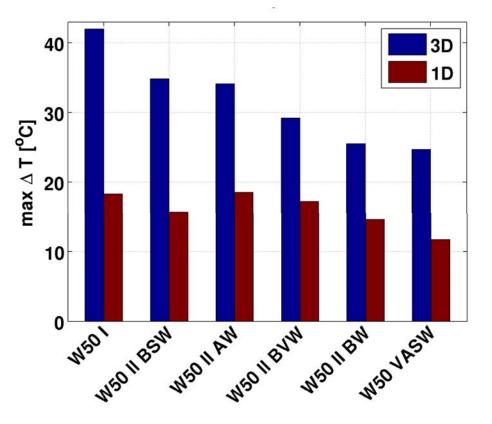


Predicted and measured temperature in large concrete blocks

Thermally isolated mould (~0.8 m³) Set of positioned temperature sensors



Temperature field in concrete block



Effect of cement composition on temperature field in concrete block

Composition of new blended cements

Cement type	Clinke r	HCF A	Fly ash	Slag	Gypsum
CEM I	94.5	-	-	-	5.5
CEM II/A-W	80.9	14.3	1	I	4.8
CEM II/B-W	67.4	28.9	1	I	3.7
CEM II/B-M (V-W)	66.6	14.3	14.3	I	4.8
CEM II/B-M (S-W)	66.6	14.3	-	14.3	4.8
CEM V/A (S-W)	47.9	23.9	-	23.9	4.2

CONCLUSIONS

- Thermal properties of hardening concrete were effectively determined using unconventional approachthe inverse heat transfer problem solution using 1D temperature measurements and optimization by nongradient direct search algorithm
- Determination of transient temperature field in hardening concrete is possible for unknown mix composition

ACKNOWLEDGEMENT

The collaboration with Grzegorz Knor, Mariusz Dąbrowski, Andrzej Ossowski, and Zbigniew Ranachowski is gratefully acknowledged.