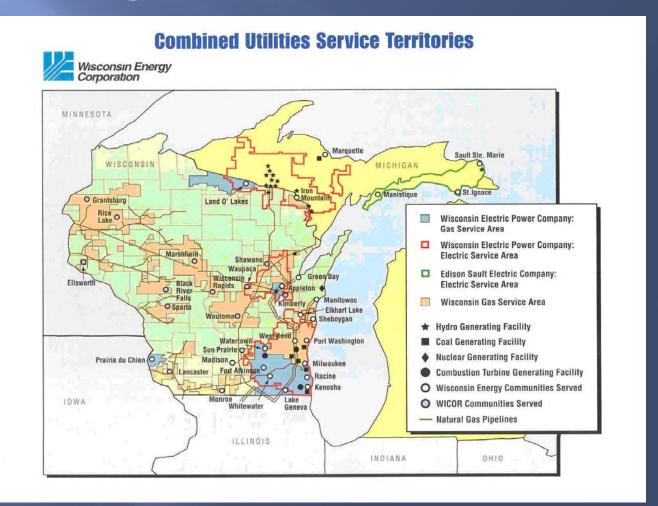
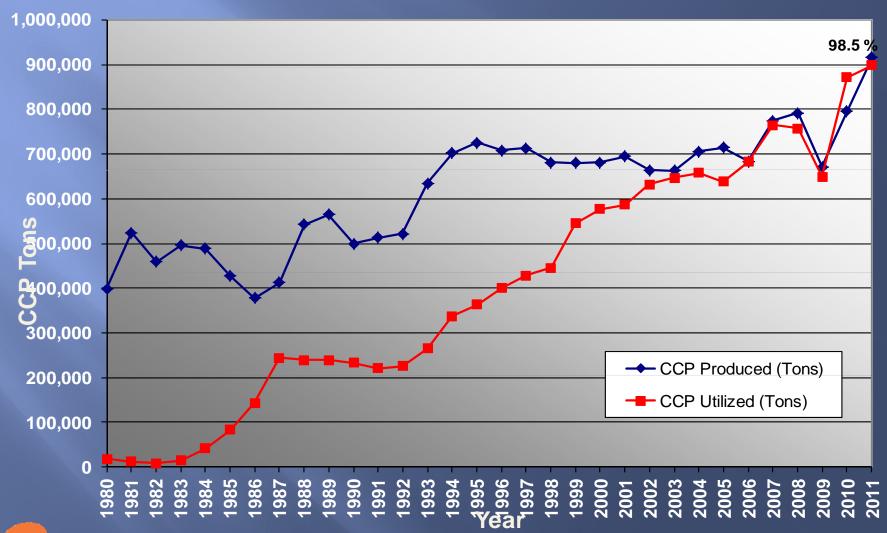
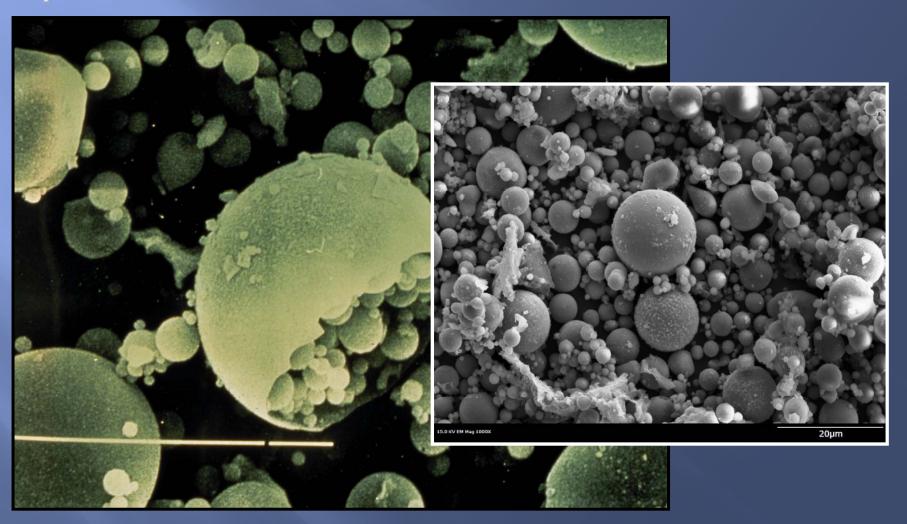
EcoPad High Recycled Content In-situ Mixed Roller Compacted Concrete


Art Covi – We Energies Coal Combustion Products Team

Anna Maria Workshop XIII Unconventional Concrete, Nov 2012

We Energies


Serving over 1,000,000 Customers in Wisconsin & Michigan


CCP Utilization at We Energies

CCP Production & Utilization

Fly Ash for Construction

Fine Aggregate: Bottom Ash "Sand"

Power Plant Production

Ash Recovery from Landfill

MFSC EcoPad Installation We Energies Service Center

EcoPad Concrete Process

- → Grade and compact sub-grade
- ✦ Place 3" fine aggregate (Bottom Ash)
- Place 5" coarse aggregate (Recycled Concrete)
- → Pulverize & mix aggregates

EcoPad Concrete Process

- → Place 50/50 fly ash & portland cement
- → Pulverize full mix, add water as needed (optimum 9% to 13%)
- Grade and compact with vibratory sheepsfoot roller
- Light grade and compact with smooth roller
- → Water surface, seal & cure

Place Bottom Ash Base Grade and Compact Paving Base

Bottom Ash Engineering Properties: Moisture-Density

Sample ID: M11085

Material Description: Black Bottom Ash

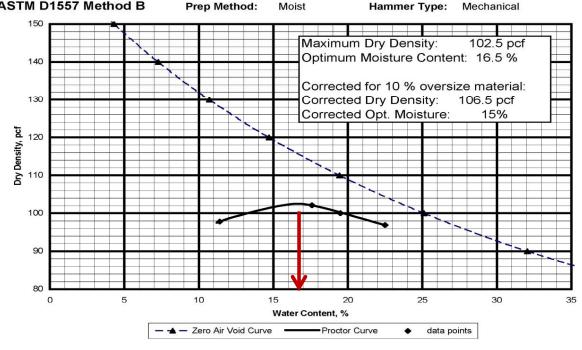
Sample Source:

Proposed Use: Engineered Fill

ASTM D4718, D2217, D422, D4318, C136/117 Reference Standards:

Material Properties

Natural Moisture: Sample Date: % > 3/4" sieve: 1 9/13/11 **Liquid Limit:** % > 3/8" sieve: 2 Sampled By: client Plasticity Index: % > #4 sieve: 10 **Test Date:** 9/14/11 Specific Gravity: 2.68 % < **#200** sieve: 12 Tested By: SH/JR (estimated) Reviewed By: DA


ASTM D1557 Method B

Moist

Hammer Type:

QA / QC

Mechanical

Place Bottom Ash & Recycled Concrete Aggregates

Grade and Shape

Pulverize & Mix Bottom Ash & Recycled Concrete Aggregates

Grade & Shape Mixed Aggregates

Transfer Fly Ash / Portland Cement Pneumatic Tanker Truck to Spreader Truck

Place Fly Ash / Portland Cement

Apply Mixed Binders, or Spread by Lifts

Use Controlled Spreader

Pulverize Full Mix

Fly Ash, Bottom Ash, Recycled Concrete

Add Water as Needed, 9% to 13% Optimum

Compact by Sheepsfoot Vibratory Roller

Grade & Shape Fully Mixed Concrete

Match Specified Grades & Slopes

Smooth Finish Roller, Non-Vibratory

Surface Water

As Needed (Weather) Light Application, Low Velocity May apply plastic cover.

Heavy Point Loads & Trucking Traffic

Exposed Aggregate, Weathers to Solid Surface

Final Appearance

Exposed Aggregate Surface, Rustic & Utilitarian Control Joints, if Needed.....for Esthetics

Coring and Strength Tests MFSC

3,000 psi to 4,200 psi Avg 3,500 psi

Company Projects:

DOMTAR Biomass Power Plant

Fuel Storage Bldg EcoPad, using Fly Ash & Recycled Materials Fly Ash in Concrete for Foundations and Structures

Work Sequence

EcoPad Installation

Similar Construction Methods

Encapsulated or ???

Soil Stabilization

Increase the structural capacity of sub-grades or poor soils using cementitious fly ash

Full Depth Reclamation

Cold In-Place Recycled Pavement

Better road bases using fly ash binder for recycling asphalt or concrete pavements, alternative to conventional dig/haul/fill approach.

Full Depth Reclamation Typical Process

- Initial pavement pulverization
- Grading
- Fly ash binder addition: 5% to 15%
- Repulverization / mixing
- Add water: optimum typically 6% to 9%
- Reshaping and compacting
- New HMA or concrete wearing surface

Mix Design:

Fly Ash - Class C	0.3 Tons /CY	Application Rate: 133 lbs/SY
Portland Cement	(Pre-Mixed) 50% / 50%	or 2.5 inch lift (loose)
Bottom Ash	0.6 Tons/CY	3 inch lift
Recycled Concrete	1.0 Tons/CY	5 inch lift
Water	9% to 13%	In-Situ, Add as Needed

Costs for Roller Compacted, In-Situ Mixed EcoPad Concrete

Cost Range for 8" EcoPad:
 Approx. \$2.00/SF to \$3.00/SF (Excluding Base)
Project Size:
 Should be > 30,000 SF....
Larger Scale Increases Savings

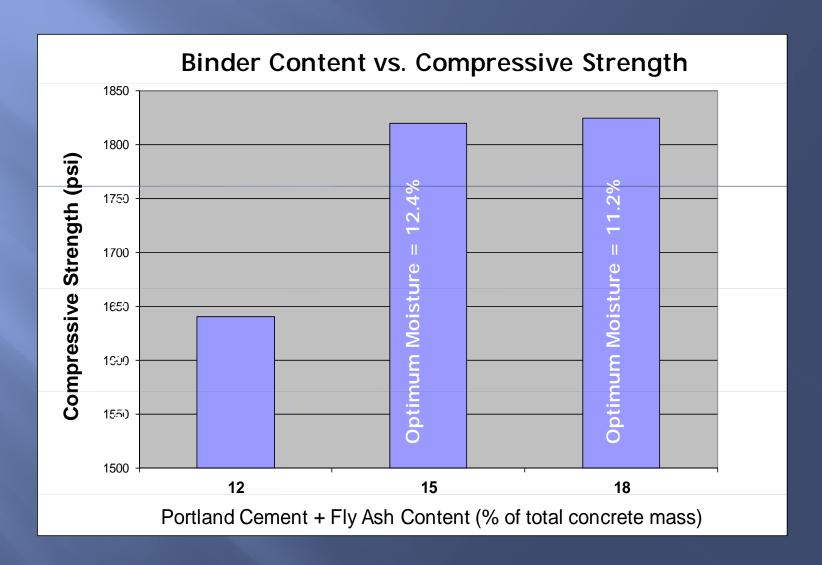
Cost Variables:

Cost of Ash, Recycled Concrete,
Bottom Ash Transportation / Mobilization
Amount of Binder and Mix Design
Availability of Pre-Blended Binder
(Can be Blended On Site)
Slab Thickness
8 inch Nominal, 12 inch Practical Max

EcoPad Performance

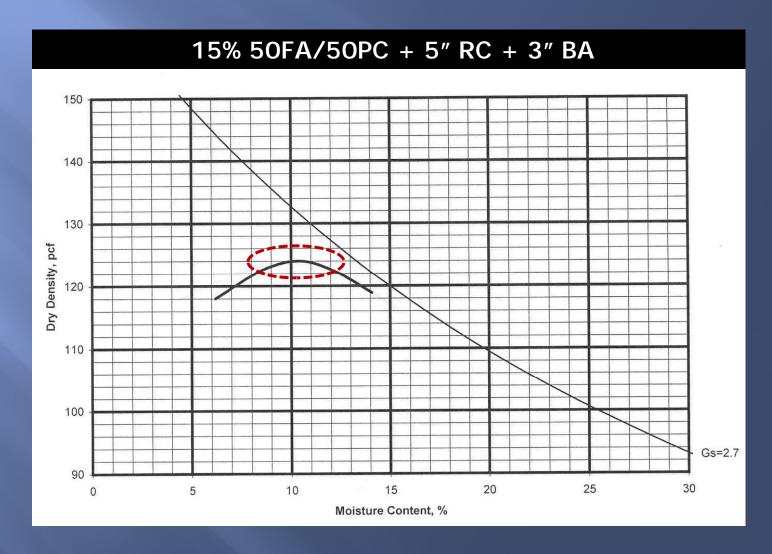
Pleasant Prairie Power Plant EcoPad - 2006

Cementitious Materials


Chemical Data	Class C Fly Ash	Portland Cement Type I / II
SiO ₂ %	40.3	20.7
Al ₂ O ₃ %	18.9	4.8
Fe ₂ O ₃ %	5.2	2.7
SiO ₂₊ Al ₂ O ₃₊ Fe ₂ O ₃ %	64.5	28.2
CaO %	21.6	65.4
MgO %	3.8	2.5
SO ₃ %	1.9	2.4
LOI %	0.4	1.6
Na ₂ O %	1.8	
K ₂ O %	1.2	
Available Alkalis (as equivalent Na ₂ O%)	1.3	0.5

Cementitious Materials

Physical Data	Class C Fly Ash	Portland Cement
Fineness, retained on #325 sieve%	13.6	5.3
Specific Gravity	2.52	3.15
Strength Activity Index		
7 day (% of control)	106	



Optimal Binder Performance

Moisture - Density Relationship for EcoPad

Moisture - Strength Relationship for EcoPad

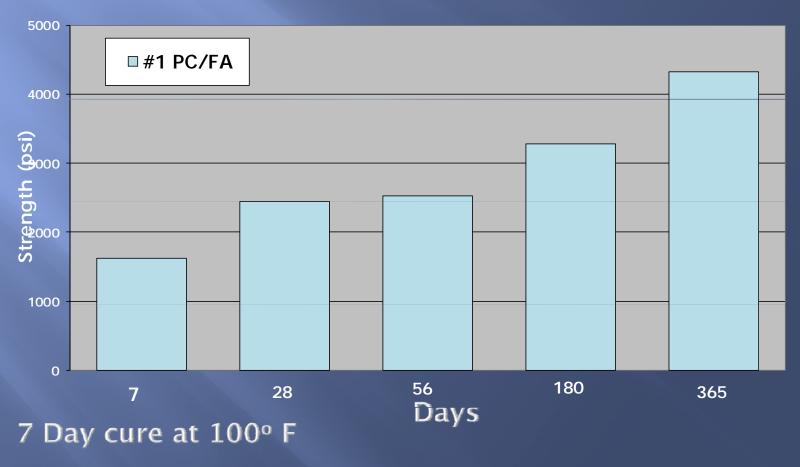
15% 50FA/50PC + 5" RC + 3" BA

Compressive Strength (psi at 7 days)

Field Testing QA /QC

Molded Cylinders for Compressive Strength (Standard Proctor)

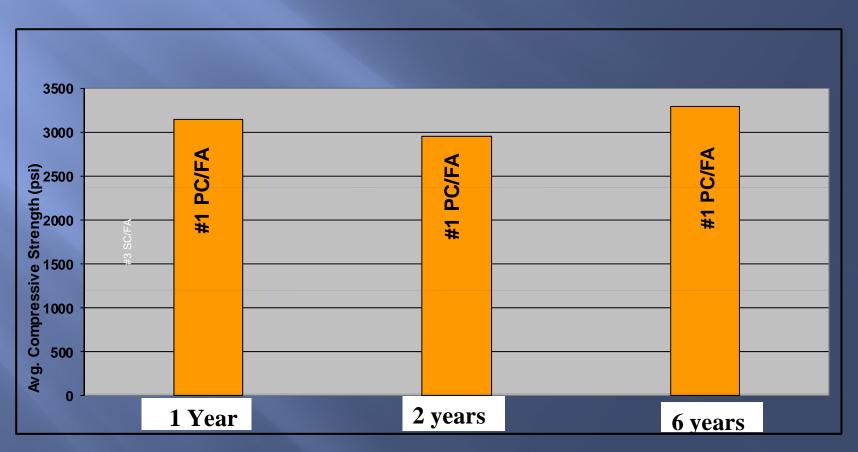
Field QA /QC



Molding Cylinders for Compressive Strength (Standard Proctor Equipment)

EcoPad Compressive Strength

(Field Molded Samples, Air Dried)



Core Sampling at 1 Year

P4 EcoPad Compressive Strength (Core Samples, Air Dried)

P4 EcoPad After 1 Year of Service

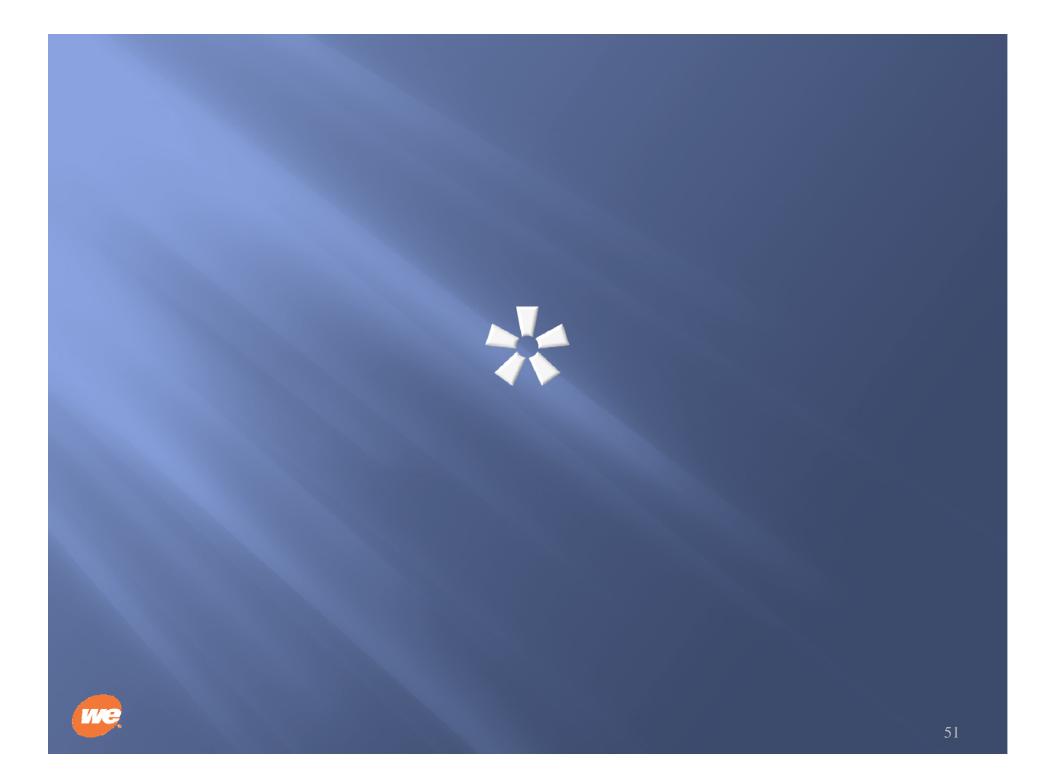
Benefits of In-Situ Mixed Concrete EcoPad

Reduced Construction Costs
Expedited Schedule
Impervious, Durable Surface
Resource Conservation
Co-Utilize Byproducts / Recycling:
Bottom Ash
Recycled Concrete
(Foundry Sand, Ground Slag, etc.)
Use Local or On-Site Materials

Applications for Concrete EcoPads:

Working Spaces:

Stockyards –
Durable, Weather Resistant, Cost Effective for Large Spaces
Equipment Laydown Areas –
Heavy Bearing Capacity, Excellent Traction


Linear Projects:

Plant Haul Roads & Service Roads – Fast Installation, High Capacity & Low Maintenance Rustic Park Roads –

Low Cost, Fast Installation and Natural Appearance Ecological and Sustainable "Green Advantage"

Anywhere a Low Cost, Durable Surface is Needed.

