

Calcium Aluminate Cements Revisited

Recent Advances in Understanding Conversion, Testing Protocols and Future Use

Dr. Jason H. Ideker

Assistant Professor and Kearney Faculty Scholar

Matthew P. Adams

Graduate Research Assistant

10 November, 2011

Introduction

Compared to ordinary portland cement (OPC) concrete, calcium aluminate cement (CAC) concrete is a considerably understudied material

- Early-age volume change
- Durability
- Conversion

CAC Scientific Network – established by Kerneos Aluminate Technologies (formerly Lafarge Aluminates) in 2004

- The University of Texas at Austin (2004)
 Early-age behavior, volume change, durability
- Ecole Polytechnique Federale de Lausanne (2006) Microstructural development
- University of New Brunswick (2007)
 Durability (corrosion, salt scaling, freeze/thaw, alkali-silica reaction)
- University of Laval (2005-2011)
 Testing strategies, rheology
- Oregon State University (2008)
 Early-age volume change, conversion testing

History

1900s – sulfate attack of portland cement concrete in South of France

1908 – Patent for calcium aluminate cement granted to Jules Bied

WWI – used for gun emplacements

1945-1973 – Post WWII reconstruction, rapid hardening properties

1973-1974 - Failures force removal of CAC from UK building regulations

1997 - Concrete Society Report

Present

continued use in building chemistry and refractory applications

Renewed interest as a

- rapid repair material
- alternative binder with lower CO₂ footprint
- durability

CAC Hydration and Chemistry *Conversion*

Figure - Courtesy of K. Scrivener

SEM Images of CAC Microconcrete (BSE)

Scale Bar – 300 μm

High strength, low degree of hydration, low porosity

Scale Bar – 300 μm

38 C isothermal cure, 8 days old, fully converted

Lower strength, high degree of hydration, higher porosity

SEM Images of CAC Paste (BSE)

70 C isothermal cure, T_{off} + 8 hrs High degree of hydration, high degree of porosity

SEM Images: C. Gosselin

70 C realistic ramping, $T_{\rm off}$ + 8 hrs

Discrete porosity, metastable phase development may limit porosity

Rigid Cracking Frame and Free Deformation Frame Results 20 C CAC, OPC

Rigid Cracking Frame and Free Deformation Frame Results 38 C CAC and OPC

Interim Summary - Early Age Properties

Rigid Cracking Frame Stress

Highly temperature dependent

CAC – early-age volume behavior vastly different than OPC Some benefits (expansion)

Some challenges (shrinkage)

CAC Research and Testing at OSU

- Working with CACs since 2008 (Ciment Fondu, GCX, CAC+SCMs)
 - Early-age volume change: chemical shrinkage, autogenous deformation
 - Strength of mortar cubes
 - Minor durability testing ASR related
 - Development of a standardized lab procedure for predicting conversion
- Conversion testing since August 2011 Ciment Fondu
 - 24 hr cure in ambient, 24 hr cure in highly insulated box
 - 50C submersion at 24 hr for all cylinders monitor strength
 - 38C submersion at 24 hr for all cylinders monitor strength
 - 38C direct submersion QC check

CAC - Curing Regimes

POWERED BY ORANGE

Ambient

- Mixtures of metastable and stable hydrates
- Curing concrete cylinders roughly around 23 °C
- May be typical of smaller elements in the field

Self-heating

- *Direct* formation of stable hydrates
- Temperatures seen in larger elements and/or hot-weather concreting

Isothermal (38 °C)

- Increased conversion rate from metastable to stable hydrates
- Lab evaluation protocol for high and low strength determination

Semi-Adiabatic Curing Box

Montogmery Data

November 21, 2011

Uregun State

Accelerated Conversion Testing - CAC

POWERED BY ORANGE

Equipment Used

Eirich Concrete Mixer and Control Panel

Temperature Controlled Curing Bath

Temperature and Humidity Controlled Mixing Room

Cylinder End Grinder and Compression **Testing Machine**

Temperature Data Logger

Oregon State

Accelerated Conversion Testing - CAC

Inexpensive Laboratory Water BathsPassive heating coils

- Must be monitored regularly
- •Temperature easily affected by ambient temperature

Heavily Insulated Curing Box

- •12" of dense styrofoam surround 16 100x200 mm cylinders
- Placed immediately after casting
- Cured for 24 hours

Accelerated Conversion Testing – Preliminary Results

Cylinders (100 mm x 200 mm): 24 Hours of Ambient Curing or 24 Hours of Insulated Box Curing followed by submersion at 50 C

CAC - Ciment Fondu Mixture Design: Mix 1

Cement: 400 (kg/m³) Water: 160 (kg/m³)

w/cm: 0.4

Stone: 950 (kg/m³)(MC - 1.4%, AC - 2.6%) Sand: 740 (kg/m³) (MC - 3.6%, AC - 3.1%) Super: Opt 203, 1% by mass cement

Accelerated Conversion Testing – Preliminary Results

Mixture 3: Compressive strength: 100 x 200 mm cylinders Submerged in 38° C Water Bath Directly After Casting

CAC - Ciment Fondu Mixture Design:

Mixture 3

Cement: 400 (kg/m³) Water: 160 (kg/m³)

w/cm: 0.4

Stone: 900 (kg/m³)(MC - 2.4%, AC - 2.6%) Sand: 645 (kg/m³) (MC - 3.8%, AC - 3.1%) Super: Opt 203, 1% by mass cement

Interim Summary – Conversion Testing

Overall both 50C and 38C submersion provide rapid conversion of cylinders cured in ambient temperatures

After ambient cure

38C – conversion at about 6 days

50C – conversion at about 2 days

Values converge to uniform value for converted strength in both tests

Immediate submersion at 38C confirms roughly 100 hours to conversion

Highest temperature in insulated box - ~90C

Highest temperature in ambient cured cylinders - ~50C

Conclusions and Future Work

Early-age volume change

- Vastly different behavior than portland cement
- Highly temperature dependent

Early-age volume change

- Continued characterization of autogenous deformation, chemical and drying shrinkage, thermal influences
- Realistic time/temperature histories
- Making the link between laboratory and field (Bentivegna Dissertation UT Austin)

Conversion Testing

- Immediate high temperature curing not applicable due to microstructural changes
- Curing at 38 C immediately gives good predictor of converted test, not field compatible
- Ambient curing for 24 hours followed by submersion at high temp give also good predictions of converted strength
 - 38 C (6 days to conversion)
 - 50 C (2 days to conversion)

Conversion Testing

- Varying material parameters (w/cm, cement content, aggregate type)
 - pure CAC systems to start
 - more complex systems after initial test developed, verified
- Propose as new ASTM Standard

Thank you!

http://web.engr.oregonstate.edu/~idekerj/ http://gbml.oregonstate.edu/

