DEVELOPING NON-EXPANSIVE CALCIUM SULFOALUMINATE CEMENTS FOR ORDINARY CONCRETE APPLICATIONS

Maria Juenger

University of Texas at Austin

Craig Hargis

University of California, Berkeley

Irvin Chen

Calera

Anna Maria Workshop XII

Concrete for the 21st Century

Nov 9 - 11, 2011 Holmes Beach, Florida

CSA as an OPC Alternative

Calcium sulfoaluminate cements (and related products) are used for repair and specialty applications.

CSA cement can easily <u>replace</u> portland cement in concrete if the following are approximately equal:

- Setting and mechanical property development
- Dimensional stability
- Durability
- Cost

Designed Phase Assemblages

Target Compositions

	#1	#2	#3	
	(HS)*	(MS)	(<i>LS</i>)	
$C_4 A_3 \hat{S}$	€ 60	40	20	
C_2S	_20	40	60	
$C_4 AF$	10	10	10	
CŜ	10	10	10	

Made in a laboratory muffle furnace with reagent grade materials

Materials proportioned using Bogue-type equations

2-cycle heating with intermediate grinding; max. temperature = 1250°C

*HS, MS, LS = High, Medium and Low Sulfoaluminate content

Actual Phase Assemblages

Phase composition determined by Rietveld quantitative x-ray diffraction

	#1 (HS)		#2 (MS)		#3 (LS)	
	Target	Actual	Target	Actual	Target	Actual
$C_4 A_3 \hat{S}$	60	65	40	42	20	15
$C_2 S$	20	22	40	45	60	71
$C_4 AF$	10	3	10	6	10	7
CŜ	10	9	10	7	10	7
$C\hat{S}H_2^*$	23	25	19	15	10	8

 $*C\hat{S}H_2$ added after clinkering

- •Target is stoichiometric based on complete reaction
- •Actual is based on results of isothermal calorimetry testing with different amounts of gypsum

Proportioning Gypsum

Hydration Rate

Isothermal calorimetry of pastes with optimum gypsum added w/c=0.45 23°C

Compressive Strength

Compression of mortar cubes (50mm x 50mm) ASTM C 109

Optimum gypsum added to clinkers

Expansion in Water

Paste prisms (w/c=0.45) Demolded at 24 hours and placed in water at 23°C

Optimum gypsum added to clinkers

Second Phase of Study

CSA with high C₄A₃Ŝ is highly reactive, with good potential for high strength. Can detrimental expansion be avoided?

The cost of raw materials for CSA is high, can this be lowered by using waste materials without compromising properties?

Controlling Expansion

Lower gypsum addition reduces expansion

Reducing particle size (through sieving) reduces expansion

Clinkers from natural and waste raw materials

•Clinkers made from limestone, bauxite, fly ash (C), fluidized bed ash (F), and flue gas desulfurization sludge.

•Alkalis in the raw materials accelerated the hydration reactions and expansion, so 1% citric acid was used as a retarder.

Conclusions

- CSA phases can be proportioned to achieve performance similar to OPC in terms of:
 - Reaction rate/setting time
 - Compressive strength development
 - Expansion in water
- CSA can be made from a combination of natural and waste materials to lower cost without sacrificing performance
- Long term durability was not examined in this study, but must be performed before use
- <u>Acknowledgements</u>
- U.S. National Science Foundation (Grant No. CMMI 0448983)
- Portland Cement Association (Project No. F08-07)
- Clarissa Ferraris