Correlating glassy phase composition and spatial distribution in fly ash with reactivity in geopolymer cements

Maria Juenger and Katy (Gustashaw) Aughenbaugh The University of Texas at Austin

What?

Fly ash phase characterization for efficient proportioning of geopolymer cements.

Geopolymer Proportioning

	Literature	Big Brown Raw	Coleto Creek	Centralia	Belews Creek
M ₂ O/SiO ₂	0.2-0.48	0.51	0.57	0.51	0.48
SiO ₂ /Al ₂ O ₃	3.3-4.5	4.59	3.96	5.61	3.09
H ₂ O/M ₂ O	10-25	6.35	6.21	6.07	6.21
M ₂ O/Al ₂ O ₃	0.8-1.6	1.42	1.37	1.70	0.89

(where M is an alkali cation)

Khale, D. and Chaudhary, R. (2007). "Mechanism of geopolymerization and factors influencing its development: a review." *Journal of Materials Science*, 42, 729–746.

Predicting Geopolymer Strength

	Big Brown Raw	Coleto Creek Centralia		Belews Creek	
Al ₂ O ₃	18.43	20.98	16.36	30.50	
SiO ₂	48.36	48.15	54.06	55.81	
CaO	14.14	12.77	11.16	1.19	
K ₂ O	1.14	1.20	1.86	2.26	
Na ₂ O	0.64	1.53	1.18	0.28	
MgO	2.16	3.42	4.14	0.72	

Predicting Geopolymer Strength

	Bell River	Big Brown Raw	Atikokan	Centralia	Limestone (LEGS)	
Al ₂ O ₃	17.04	18.43	21.58	16.36	17.80	
SiO ₂	33.16	48.36	47.66	54.06	54.14	
CaO	27.06	14.14	12.30	11.16	10.70	
Fe ₂ O ₃	4.91	30 —			_	
K ₂ O	0.78	a)			- 4000	
MgO	5.06	Š ²⁵		×	- 3500 🛶	LEGS
Na ₂ O	4.20	1 20 –			3000	-Atikokan
SO ₃	2.87				- 2500	Controlio
TiO ₂	1.11	S 13			- 2000 🛎 🥌	Centralia
_		01 683			1500 -×	Boral Class C
		άμ 5 –			- 1000	Bell River
		CO			- 500 🛶	Big Brown
		0 +	10	20	+ 0 30	

time (days)

Characterizing ashes

- Subtract crystalline phases
- HF acid method to measure reactive silica⁺

⁺ Fernández-Jiménez, A., and Palomo, A. (2003), "Characterisation of fly ashes: potential reactivity as alkaline cements." *Fuel*, 82, 2259-2265.

^{*} Alkalis are $Na_2O + K_2O$

Multispectral Image Analysis (MSIA)

Research, 40, 146–156.

Image Analysis- Color

What do we see?

What do we see?

• Ca in small particles

A

Si

Image analysis- phase dispersion

• The elements present in small amounts are interesting

What do we see?

• Na widespread in stronger materials

A

Na

Si

Ongoing work

- Quantify the observations
- Dissolution study
 - Expose fly ash to caustic solutions for up to 28 days for re-examination by XRD and SEM-MSIA
- Additional activating solutions
 - NaOH + waterglass
 - КОН
 - NaOH + Ca (lime)

Questions?

Acknowledgements

- NSF grant CMMI 0926627
 - Paul Stutzman, NIST
- Leslie Hollis and Rachel Cano, undergraduate researchers extraordinaire

Laser PSD

Characterize fly ash: XRD

