Sustainable Concrete Construction

more than CO₂ reduction in cement

Per Fidjestol Elkem AS Silicon Materials

Scope

- Sustainability discussions have a tendency to gravitate towards CO₂ release during cement and concrete production and means to reduce this.
- The concept of more sustainable construction obviously is more complex than this. E.g.
 - Raw material resources,
 - LCA and
 - LCCA.

2

- Reduce embodied energy
- Reduce water use
- Increase the use of recycled material
- Reduce materials to landfill
- Reduce use of non-recycled material

Basic

- Sustainability concerns:
- availability of materials, testing of alternate supplementary cementing materials, binder optimization and the minimization of concrete consumption as a means to save resources and minimize environmental impact.

Raw Materials

- Concrete needs:
 - Cement
 - Aggregates
 - Addition and admixtures
 - Water

4

• So what are the concerns?

Cement - Availability of raw materials

- Calcium and silica apparently abundant!
- Not so necessarily
- Issues
 - Quality
 - Location/transport
 - Environmental issues including landscape protection

Consequences for cement production

- As good, original, sources get exhausted, transport gets into the picture
 - New sources can be diffucult to exploit for location, environment etc
- Citizen pressures can force closure of plants
- Ditto hinder new plants

6

- On a medium timescale, availability of raw materials, in particular limestone will be increasingly challenging
 - E.g. India: half the charted limestone reserves are in natural preserves
 - Even in Scandinavia, limestone supply is becoming an issue

21.11.2011

Aggregates

- A pressing problem in many localities
- Key issue is natural aggregates (mainly sand)
 - Quality

7

- Strength
- Reactivity
- Environmental
 - Landscape protection
 - Particle pollution of water
 - Citizen's protests
 - Example: RMC producer in Mumbai: Previously 2 km to go; now 130 km to go for sand

21.11.2011

Coarse aggregates less of a problem

The CO₂ challenge

- Current main approach
 - Dilution of binder using mainly SCM's and/or fillers
 - How sustainable is that approach?

Need

9

- A change in attitude to concrete structures and their design
 - Use high strength to minimize concrete volume
 - Ensure flexible-use structures with long service life
 - Targets; Authorities, owners and designers!
 - Carrot and stick?
- For concrete materials
 - Develop use of manufactured sand
 - Develop alternate sources of large-volume SCM
 - Accelerate and focus development of binders with less CO₂, (geopolymers?)
 - Develop optimized mixes; ternary/quaternary etc

Ensure flexible-use structures with long service life

 Abysmal quality and short service lives cause a significant part of present day demand for new concrete

Example: China

Visiting an Institute in Nanjing, 4 year old concrete building, through cracks in the stairwell outside wall

In Shenyang; at the University, a few year old structures: Outdoor columns cracked at corners, large wall panels had "beautiful" D-cracking

Statement by senior Chinese: Residential construction often has service life of only 5-10 years

Authorities, owners and designers!

- Carrot and stick?
 - Premium for sustainable design i.e.
 - High strength, long service life
 - Refuse building permits for other structures
 - Or
 - Fees depending on estimated service life

• Or

• ????

11

Develop use of manufactured sand

- Natural sand is running out
- "Machine sand" is used today, but often cause huge challenges
- Equipment, procedures, guidance needed

Develop alternate sources of large-volume SCM

- Issue
 - Germany has started investigations into "other" forms of low CO₂ cements; triggered by economic crisis in 2008
 - Energy need down power plants closed less fly ash
 - Specified material could not be had
 - Demand for steel down furnaces closed
 - Specified slag cement unavailable
 - Looking into the future:
 - Slag unavailable (production moved to Asia)
 - Less and less fly ash available
 - Move to renewable energy sources
 - Detrimental production routines in power plants (Mercury etc)

21.11.2011

13

Alternative to by-product SCM's

- We are talking + 15 years horizon
- Totally different cement chemistries
- Natural pozzolans
- Ash from "other" processes
- ????????

Particle size distributions

Natural pozzolans

- Calcined (and milled)
 - Metakaolin
 - Marl
 -
 - 4-500 kg CO₂/ton
- Milled only
 - Santorini earth
 - Trass
 - Perlite

MW-Perlite: TEM

17

people -

creating value

Crystalline and amorphous phases intermixed on a nanoscale

Milled Perlite Typical particle size distribution (?)

Chloride profiles – Perlite SCM

Diffusion coefficients, Perlite SCM

ASR: ASTM C1567 – Perlite SCM

Ash/waste from "other" processes

- Rice Husk Ash
- Bagasse ash
-
- Municipal waste
- Bioenergy power plants
- Ground waste glass

Documentation effort needed for all these

21.11.2011

Rice Husk Ash and Microsilica - Strength

ASTM C1202

Developing people creating value

Coulomb

24

Other SCM's

- Availability?
 - Flyash is available in huge volumes, comparable to clinker consumption
 - RHA only maximum 5 mio tons
 - Natural pozzolans?
 - Global reserves
 - Location
 - Milling
 - Deposit volume

Perlite, app 8 billion tons 1000 tons

Greece	300 000
Turkey	5 700 000
USA	200 000
Other	
countries	1 500 000

Accelerate and focus development of binders with less CO₂, (geopolymers?)

- A long development and documentation process
- Technology
- Stable quality
- Long term performance
 - General
 - Structural
 - Durability
- Until then.....

Sure steps to remove CO₂:

Sure steps to remove CO₂:

Sure steps to remove CO₂:

• Exercise done for local structure near University of Agder

	45 Mpa SD	100 Mpa SD	45 Mpa BD	100 Mpa BD
Total cost [MNOK]	5.8	6.6	5.2	5.0
Total CO ₂ emissions [tonnes]	532	354	380	242
Service life [yrs.] (Life 365 default situation	53	206+	53	206+

SD: Standard beam/slab deck BD: Bubbledeck flat deck

Short term

- Use high strength, optimized (ternary) mix
 - Saves raw materials
 - Reduces emissions
- Long term/Urgent R&D needs
 - Alternate SCM's
 - Ensure fly ash useful
 - New binders with proven performance

