

75 Years of experience with high Model dosed blast furnace slag cement TNO | Inc

Mario de Rooij

TNO | Innovation for Life

10-12 November 2010, Holmes Beach, FL, USA

TNO in brief

The Netherlands Organization for Applied Scientific Research

- Owner: Dutch Government
- <u>Mission:</u>

TNO connects people and knowledge to create innovations that boost the sustainable competitiveness of industry and well-being of society

- 4,400 people
- 576 M€turn over in 2009; ± 30 % through government funding
- Active in 7 areas:
 - Safety, security and defense
 - Healthy living
 - Industrial innovation
 - Energy
 - Mobility
 - Built Environment
 - Information society

Content

Slag as product

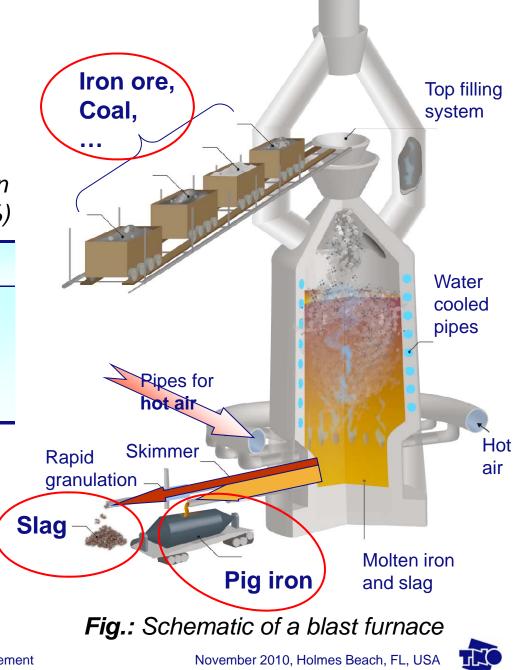
- No waste product, but quality control tool
- Long history
- Standard for slag

Slag as binder material

Properties of slag based concrete

 Low heat of hydration, strength development, freeze-thaw, resistance against chloride and ASR

Sales and use


Conclusions

What is slag? The production process

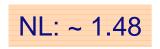
Table: Composition range of maincomponents in slag(mass %)

Component	Europe	NL
CaO	30 – 45	~ 37
SiO ₂	30 – 44	~ 33
AI_2O_3	5 – 16	~ 15
MgO	4 – 17	~ 11

Production: 100 ton pig iron results in 20 – 25 ton slag

4 75 Years of experience with high dosed blast furnace slag cement

Slag: Not a waste product!


But a quality control tool

Quality demand to produce **steel**: Low sulfur content in pig iron (< 0.035%)

- Achieved by moving sulfur to the slag
 - Controlled by chemical composition of slag

$$Alkalinity = \frac{CaO + MgO}{SiO_2}$$

- Slag solidifies sooner than iron
 - Solidification in blast furnace ruins process
 - Controlling liquidus temperature of slag
 - Liquidus temperature depends on CaO, MgO, Al₂O₃ and SiO₂
 - Same components as first point, but work in opposite direction

• Blast furnace process is controlled via above two points

5 75 Years of experience with high dosed blast furnace slag cement

Distinctive blue colour of slag cement

- A main purpose of slag is to remove sulfur (S) from iron
- In cement reaction the S reacts with present Fe and Mg to form FeS₂ and MgS, both blue coloured products
- Upon reaction with oxygen reaction continuous to form FeSO₄ and MgSO₄, which are both colourless

November 2010, Holmes Beach, FL, USA

6

History line

From slag to binder

- 384 322 BC Aristotle first notes on making and using slag
- **1728** Patent of John Payne (UK); cast slag to produce blocks to build chimneys
- 1737 Bélidor (France) suggest using slag aggregates in 'concrete'
- 1824 Patent Portland cement by Joseph Aspdin

<u>Germany:</u>

- 1853 'Discovery' of latent hydraulic action of slag by a German blast furnace process operator (water cooling)
- 1862 Emil Langen has first results to activate slag
- **1888** Opening of first blast furnace cement works
- 1901 Request for cement standard with up to 30% slag
- 1907 Request for cement standard with up to 85% slag
- 1909 Cement standard with up to 30% slag
- 1917 Cement standard with up to 85% slag
- **1917** Blast furnace-cement has equal performance to Portland cement

Slag history in the Netherlands

From slag to binder

• 1921 - 1929 Noordersluis IJmuiden using German blast furnace cement

		Typical Mix Design				
	Constituents	Lock head		Chamber walls and floors		
Northern		Liters	Ratio (V/V)	Liters	Ratio (V/V)	
Northern	OPC (CEM I)	225	1			
Northern 400 x 50 m	Tras (pozzolanic)	56	1⁄4			
	GGBFS (CEM III)			240	1 1/8	
	Fine sand	193	0,85	193	0,9	
	Coarse sand	387	1,7	387	1,8	
1 Statistical Statistics	Gravel	700	3,1	700	3,3	
	Water	??	??	??	??	

Slag history in the Netherlands *From slag to binder*

- 1921 1929 Noordersluis IJmuiden using German blast furnace cement
- 1924 Production of steel in Netherlands using blast furnace
- 1931 Production of first blast furnace slag cement in Netherlands
 IJmuiden (CEMIJ)
- 1966 Opening of blast furnace slag cement plant Rozenburg (ROBUR)
- 1970s Blast furnace slag > 50% of cement market in Netherland
- 1996 Introduction CEM III/A 52,5 for faster strength development

European standard for slag: EN 15167 (2006)

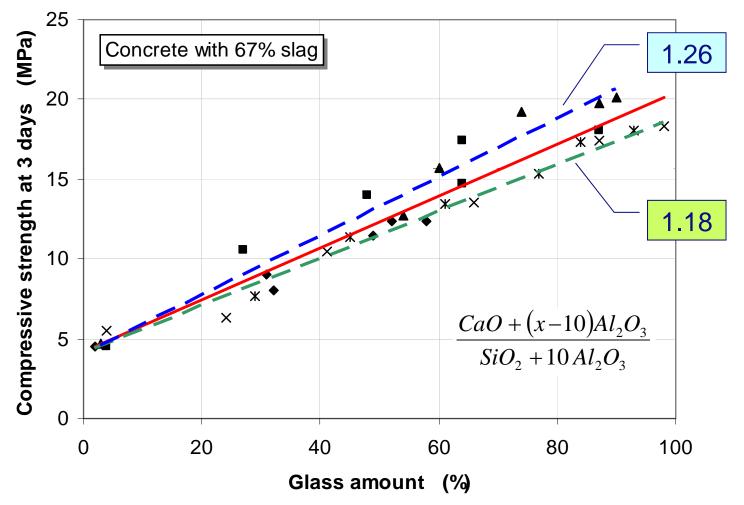
'Ground granulated blast furnace slag for use in concrete, mortar and grout'

Main requirements:

Table: Chemical requ	irements slag	_	Table: Physica
Component	Requirement		Component
$CaO + MgO + SiO_2$	≥ 2/3		Blaine
$(CaO + MgO)/SiO_2$	≥ 1.0		Start binding
MgO	≤ 18 % (m/m)		
Sulfide	\leq 2.0 % (m/m)		
Sulfate	\leq 2.5 % (m/m)		Activity coeffic
LOI	\leq 3.0 % (m/m)		 7 days
Moisture content	≤ 1.0 % (m/m)	1	• 28 days

Table: Physical requirements slag

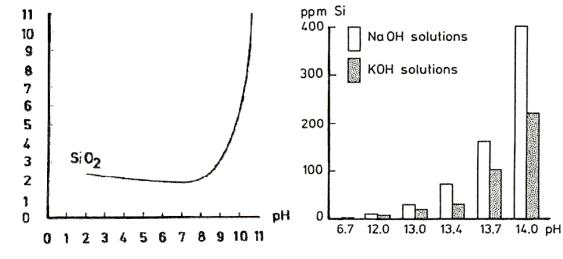
Component	Requirement
Blaine Start binding	≥ 275 m²/kg ≤ Twice of ref cement
Activity coefficient * • 7 days • 28 days	≥ 45 % ≥ 70 %


* Activity coefficient based on 50% ref cement and 50% slag

12

Effect of glass phase

on strength development (Dölber, 1961)

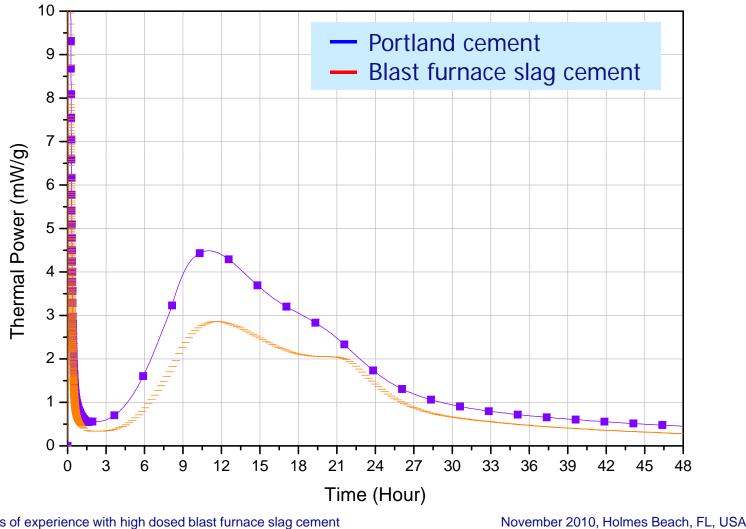

Activation of slag reaction

Two principle routes

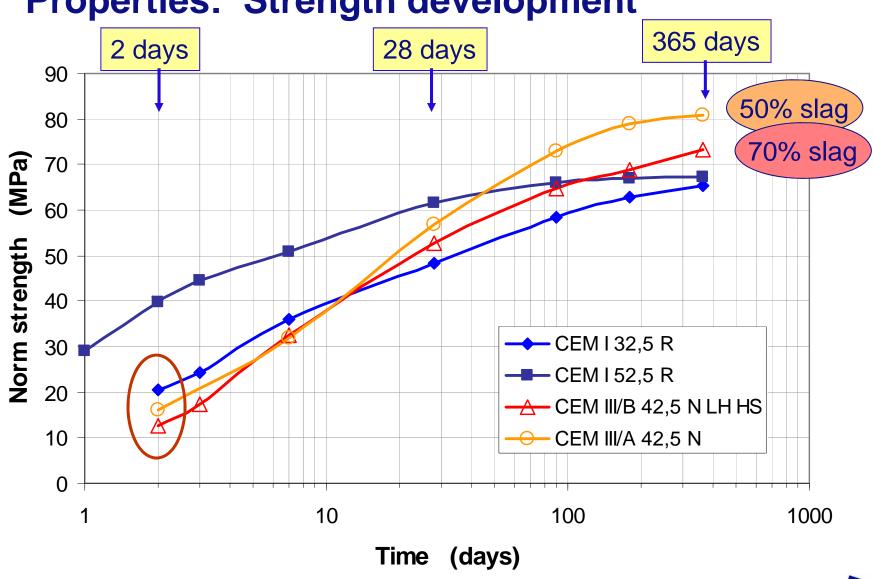
Milimoles per liter

Increase pH

 Dependency on dissolution of the glass phase


Sulphate

- Reaction of sulphate with aluminum fraction to form needle structures like ettringite;
- Build up structure quickly

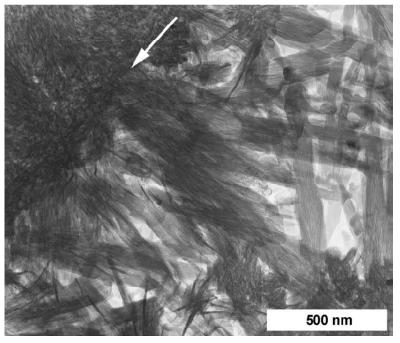

Properties: 'Heat of hydration'

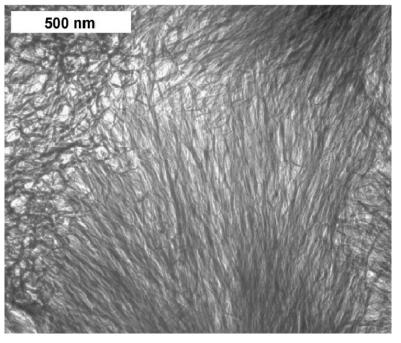
Compared to Portland cement low heat of hydration

15 75 Years of experience with high dosed blast furnace slag cement

Properties: 'Strength development'

16 75 Years of experience with high dosed blast furnace slag cement


November 2010, Holmes Beach, FL, USA

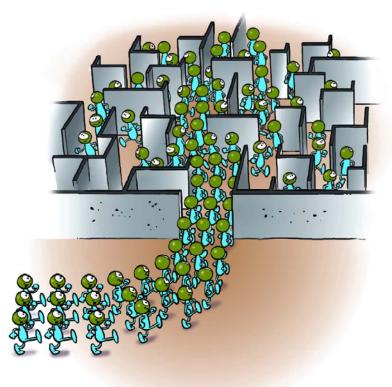

A different hardened cement structure

Portland matrix is less dense than slag matrix

Portland

Blast furnace slag

8 year old C_3S paste; w/c = 0.5


17 75 Years of experience with high dosed blast furnace slag cement *Pictures credits: I.G. Richardson*

1 year old blast furnace slag 70%; w/c = 0.5

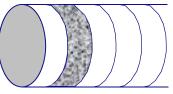
Dense matrix results in

High durability of slag cement

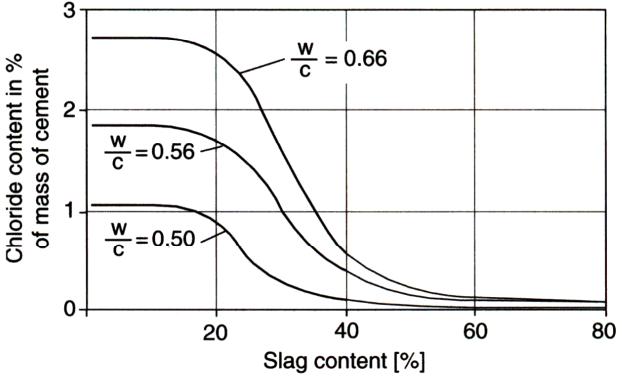
CEM I (Portland cement)

CEM III (Blast furnace slag cement)

18 75 Years of experience with high dosed blast furnace slag cement

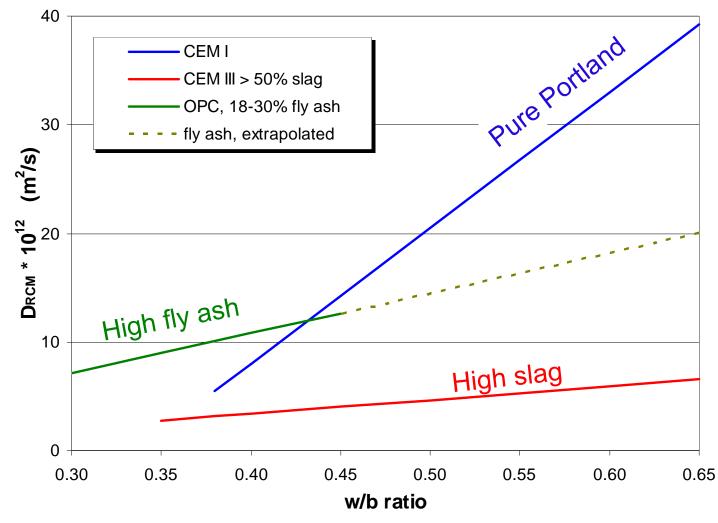

November 2010, Holmes Beach, FL, USA

Matrix


Chloride

Slag effect on chloride ingress

- Concrete sample kept 1 year in 3 M NaCl bath
- Next analyzed the slice at 20-40 mm depth
- Plot total chloride content


Slice of a core

Graph from durability performance doc.

Based on rapid chloride migration data (RCM)

TI

November 2010, Holmes Beach, FL, USA

20 75 Years of experience with high dosed blast furnace slag cement

Very good ASR resistance

• The dense microstructure is complement with:

- A reduced pore size
- Reduced mobility of the alkalis

Using slag reduces the total alkalis in the system

- There are less alkalis to start with (compared to Portland cement)
- Creates a lower pH
- Causes a slower dissolution rate of silica

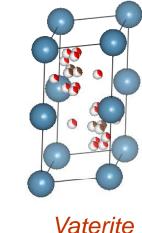
Slag consumes alkalis in the hydration process

- Making them unavailable for the alkali silica reaction
- Dutch Department of Transportation / Army corps of engineers (RWS)

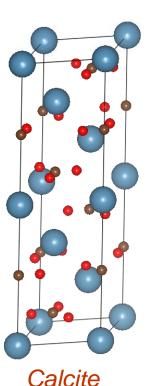
 demands use of CEM III/B in all important structures.

Spalling of slag concrete (freeze/thaw)

Seems related to carbonation of slag concrete


Calcium source:

- Portland cement \rightarrow reaction with Ca(OH)₂ (volume expansion)
- <u>Slag</u> cement → reaction with Ca from C-S-H


(volume <u>reduction</u>)

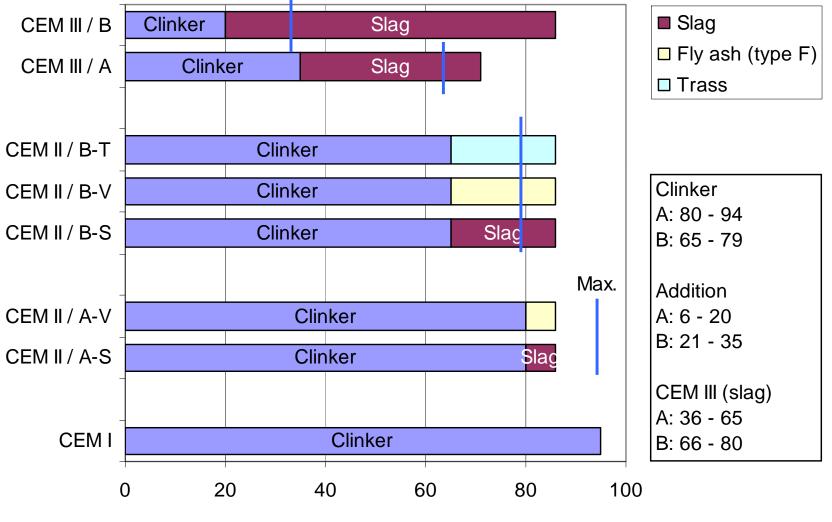
CaCO₃ product formed:

Metastable forms: Aragonite

Stable form:

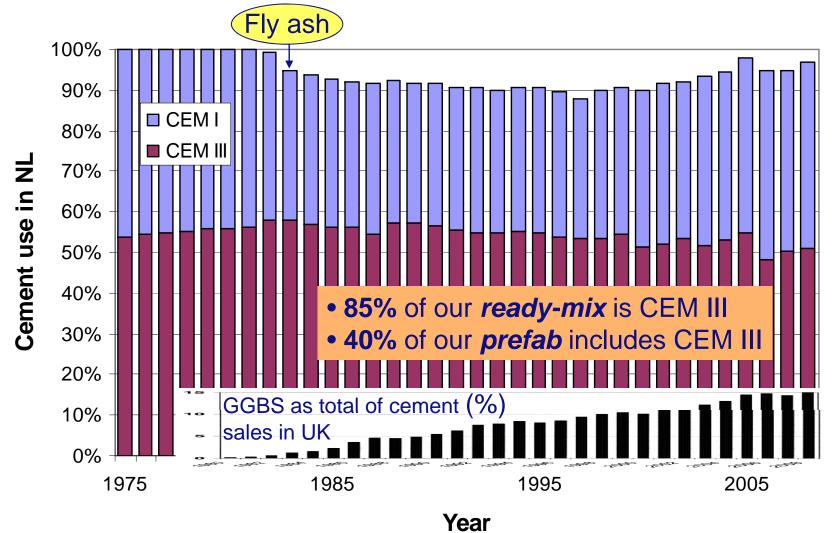
In (Dutch) practice

Much less damage than in freeze/thaw tests



Slag in the cement code: EN 197-1 (2000)

Composition ranges of constituents



23 75 Years of experience with high dosed blast furnace slag cement

November 2010, Holmes Beach, FL, USA

November 2010, Holmes Beach, FL, USA

Conclusions

High dosed slag cement

- Don't consider it a <u>waste</u> product
 - Selling a product \rightarrow quality control

Properties

- Low heat of hydration
- Early strength is much better than generally percieved
- Creates very dense concrete microstructure
- Good durability resistance

Sales and practice show

- It is used over many decades
- In large quantities
- With great success

