Low-Clinker Cements: Bridging the Gap with Limestone

Michael Thomas
University of New Brunswick

Kevin Cail and Laurent Barcelo
Lafarge North America

Cement production accounts for approximately 7% to 8% of CO_2 globally (Mehta, 1998) ...

... and approximately 2.8% of CO₂ emissions in Canada (Neitzert, 1997)

Calcination: $CaCO_3 \rightarrow CaO + CO_2 \uparrow \text{ (gas)}$

40%

Energy: $C + O_2 \rightarrow CO_2 \uparrow \text{ (gas)}$

www.cement.ca

Portland Limestone Cement (PLC) Manufacture

CSA ASOUT OUT TYPES OF T				yaraa		CITICITE	Blended PLC – 2010 Amendment
	Portland cement type	Blended cement t	hydraulic ype*	Portland-limestone cement type†‡		Name§	
	GU	GUb		GUL		GULb	General use cement
	MS	MSb	New in 2008 →	_			Moderate sulphate-resistant cement
	МН	MHb	2000 -/	MHL		MHLb	Moderate heat of hydration cement
	HE	HEb		HEL		HELb	High early-strength cement
	LH	LHb		LHL		LHLb	Low heat of hydration cement
	HS	HSb		_			High sulphate-resistant cement

^{*}The suffix "b" indicates that the product is a blended hydraulic cement.

CSA A3001-08 Types of Hydraulic Cement

PLC is produced to provide equivalent performance to PC in Canada So requirements for Type GUL (up to 15% limestone) same as Type GU (< 5%)

CSA A23-09 Use of Portland Cement in Concrete

 Portland limestone cement is permitted for use in all classes of concrete except for sulfate exposure classes (S-1, S-2, S-3)

[†]The suffix "L" indicates that the product is portland-limestone cement.

[‡]Portland-limestone cements should not be used in an environment subjected to sulphate exposure as defined in Table 3 of CAN/CSA-A23.1.

Beneficial Effects of Limestone Addition

- Clinker is ground finer leads to increased degree of hydration at any particular age
- Fine limestone particles as nucleation sites for hydration products at early hydration ages accelerating the hydration and consequently improving the early strength
- Limestone (primarily CaCO₃) chemically reacts with C₃A to form carboaluminates—at least at replacements of 5-10%

 Finer limestone particles fill the voids between clinker particles improving the grain packing of cement

Effect of Fineness on Performance

Testing in Canada indicates that the Blaine of PLC needs to be increased by approx 100 – 120 m²/kg compared with PC to obtain equivalent performance

Tests carried out with Canadian materials: 2007-10

- Portland-limestone cements (PLC) were produced in different grinding circuits with various clinkers (C₃A from 4.5 to 12%) and limestones.
- Amount of limestone varied between 3 and 19% (to keep within limits, the real CSA PLC max. will be ~13%).
- Standard mortar tests and chemical analyses were performed on the different PLCs.
- Concrete with various w/cm ratio's 0.35 to 0.80 were produced. The cement contents in the mixed varied between 225 and 420 kg/m³
- Concrete tests with different PLC's (10 to 22 %LS) and various amounts of slag (15, 25, 30%) and fly ash (20%) were performed
- Slump, slump retention and air were measured
- Durability tests were performed, e.g. RCP, freeze/thaw, salt scaling, shrinkage, sulfate resistance, and ASR
- Testing conducted by cement companies and universities

Field trials

Durability of PLC Concrete: Canadian Studies

- PLC with up to 15% limestone - equivalent performance as portland cement from the same clinker
- Equivalent performance achieved by increasing Blaine by 100 to 120 m²/kg
- Performance in this study was evaluated based on:
 - Strength
 - Resistance to freezethaw and de-icer salt scaling
 - "Chloride permeability" and chloride diffusion.
 - Alkali-silica reaction

Research & Development Information

PCA R&D SN3142

The Durability of Concrete Produced with Portland-Limestone Cement: Canadian Studies

by Michael D.A. Thomas and R. Doug Hooton

©Portland Cement Association 2010 All rights reserved

5420 Olid Orchard Road Skokle, Illinois 60077-1083 847.966.9200 Fox 847.966.9481

Field Trials

Gatineau, Quebec October 2008

Exshaw, Alberta September 2009

Brookfield, Nova Scotia October 2009

Cementitious Materials used in Field Trials CSA Terminology

CSA Type	Description	ASTM Equivalent
GU	"General Use" portland cement	ASTM C 150 Type I
GUL	"General Use" portland limestone cement	ASTM C 1157 Type GU
GUb-15S	"General Use" blended hydraulic cement	ASTM C 595 Type IS
GULb-15S	"General Use" blended limestone cement	ASTM C 1157 Type GU
F	Fly ash < 8% CaO	ASTM C 618 Class F
CI	Fly ash 8-20% CaO	ASTM C 618 Class F
S	Ground granulated blastfurnace slag	ASTM C 989

PLC Trial Pour at Gatineau Ready-Mixed Concrete Plant – October 6, 2008

Objective:

- Field test performance of PLC concrete with various levels of SCM in an exterior flatwork application.
- Control sections with Type GU + SCM

Eight Concrete Mixes:

Cement	SCM Replacement Level (%)					
	0	25	40	50		
Type GU (PC)	Х	Х	Х	Х		
Type GUL (PLC)	Х	Х	X	Х		

Cementing Materials:

- Type GU with 3.5% limestone (PC)
- Type GUL with 12% Limestone (PLC)
- Blended SCM = 2/3 Slag + 1/3 Fly Ash

Exshaw Cement Plant, Alberta

- Sept 2009
- Paving, Curbs & pumped concrete
- PC & PLC cements
- 15, 25 & 30% fly ash

Brookfield Cement Plant, Nova Scotia

- •Oct 2009
- Paving
- •Blended PC & PLC cements containing 15% slag
- •15 & 20% fly ash

	Gypsum (%)	Limestone (%)	Slag (%)	Clinker (%)	Target Blaine (m²/kg)
Type GU	5	4	0	91	380
Type GUb	5	0	15	80	450
Type GULb	5	12	15	68	500

Brookfield Cement Plant, Nova Scotia

- •Oct 2009
- Paving
- •Blended PC & PLC cements containing 15% slag
- •15 & 20% fly ash

	Gypsum (%)	Limestone (%)	Slag (%)	Clinker (%)	Target Blaine (m²/kg)
Type GU	5	4	0	91	380
Type GUb	5	0	15	80	450
Type GULb	5	12	15	68	500

Brookfield Cement Plant, Nova Scotia

- •Oct 2009
- Paving
- •Blended PC & PLC cements containing 15% slag
- •15 & 20% fly ash

	Gypsum (%)	Limestone (%)	Slag (%)	Clinker (%)	Target Blaine (m²/kg)
Type GU	5	4	0	91	380
Type GUb	5	0	15	80	450
Type GULb	5	12	15	68	500

Testing of Concrete Produced for Laboratory Trials

<u>Test</u>	<u>Method</u>
Slump	C 143
Air (plastic concrete)	C 231
Set time	C 403
Hardened air voids	C 457
Compressive strength	C 39
"Rapid chloride permeability"	C 1202
Freeze-thaw resistance	C 666 (Proc. A)
Salt-scaling resistance	C 672
Diffusion coefficient	C 1556

PLC Trial Pour at Gatineau Ready-Mixed Concrete Plant – October 6, 2008

- Results published in Concrete International (Jan 2010)
- SCM had significant impact on properties
- No consistent difference between the durability results for PLC versus PC at the same level of SCM
- Mix with PLC-50% SCM contained just 42% clinker by mass of cementing material. Compare with mix with PC only – 92% clinker
- CO₂ reduced by 1 ton per 8-yd³ truck through combined use of limestone and SCM

PLC Trial Pour at Gatineau – Cylinder Strengths

PLC Trial Pour at Gatineau – RCPT Results

PLC Trial Pour at Gatineau – Results of Tests on Cores taken at 35 Days

RCPT Results

Comont	Charge Passed in 6 Hours (Coulombs					
Cement	0% SCM	25% SCM	40% SCM	50% SCM		
PC	2395	1410	570	491		
PLC	2345	1308	617	520		

Chloride Diffusion Coefficients

Comont	Charge Passed in 6 Hours (Coulombs					
Cement	0% SCM	25% SCM	40% SCM	50% SCM		
PC	15.0	3.77	1.51	1.25		
PLC	11.9	2.91	1.22	1.81		

PLC Trial Pour at Gatineau - Chloride Profiles for Cores taken at 35 Days and Immersed in NaCl for 42 Days

PLC Trial Pour at Gatineau – Scaling Test Results

PLC Trial Pour at Exshaw – Cylinder Strengths

Laboratory Mixes at Brookfield – Type GU, Type GUb & Type GULb

	Gypsum (%)	Limestone (%)	Slag (%)	Clinker (%)	Target Blaine (m²/kg)
Type GU	5	4	0	91	380
Type GUb	5	0	15	80	450
Type GULb	5	12	15	68	500

Field Trials at Brookfield – Compressive Strength

Field Trials at Brookfield – Compressive Strength

Field Trials at Brookfield & Exshaw – RCPT

Alberta - Concrete with GU or GUL

Nova Scotia - Concrete with GUb or GULb

Field Trials at Brookfield – Chloride Diffusion Coefficients

$$C_{x} = C_{0} \left(\frac{x}{\sqrt{4D_{a} \cdot t}} \right)$$

	No Fly Ash		20% F	Fly Ash
	GUb	GULb	GUb	GULb
$D_a (x 10^{-12} \text{ m}^2/\text{s})$	6.1	6.4	3.9	3.4

Brookfield Cement Plant, Nova Scotia

	Gypsum (%)	Limestone (%)	Slag (%)	Clinker (%)	Target Blaine (m²/kg)
Type GU	5	4	0	91	380
Type GUb	5	0	15	80	450
Type GULb	5	12	15	68	500

Type GULb contains 23% less clinker than Type GU

Further Clinker Reductions Made at Ready-Mixed Concrete Plant!!

Mixes used in Gatineau Field Trial

Concrete Mix	Composition of Binder (%)				
	Gypsum	Limestone	SCM	Clinker	
GU + 0% SCM	5	4	0	91	
GUL + 50% SCM	2.5	6	50	41.5	

 Mix with GUL + 50% SCM contains approximately 50% less clinker in the binder than mix with straight Type GU cement

Gatineau Field Trial

Clinker Contents of Mixes used for Paving Trials (355 kg/m³ cementitious material)

Concrete Mix	Clinker in Cement (%)	Clinker in concrete without SCM (kg/m³)	Clinker in concrete with 50% SCM(kg/m³)
GU + 0% SCM	91	323	162
GUL + 50% SCM	83	295	147

- 176 kg/m³ reduction in cement clinker (= 176 kg/m³ reduction in CO₂) by combined use of Type GUL cement plus SCM compared with Type GU
- CO₂ reduced by almost 1½ tonne per 8-m³ truck
- 293 lb/yd³ reduction in cement clinker (= 293 lb/yd³ reduction in CO₂) by combined use of Type GUL cement plus SCM compared with Type GU
- CO₂ reduced by almost 1 ton per 8-yd³ truck

Overall Summary

- Portland-limestone cement (PLC) with 12% limestone, when optimized for equal strength, can provide equivalent performance to Portland cement (Type PC)
- Blended portland-limestone cement with 12% limestone and 15% slag also provided equivalent performance to PC with 23% less clinker
- PLC performs well with (further) additions of SCM at the readymixed concrete plant (providing further opportunities to reduce CO₂ emissions).
- Using a combination of PLC or blended PLC together with (further) SCM additions at the concrete plant provides the opportunity to reduce the clinker content of paving mixes by up to 50%. Such reductions can translate to CO₂ reductions of the order of 1 to 1½ tons per concrete truck!