Implementing the 50 Percent Solution: High-Volume Pozzolan Concrete in Practice

Kevin A. MacDonald, Ph.D., P.E., FACI Cemstone Products Company

Why HPC with high replacement levels?

• While this might not be the clearest opportunity for innovation, it was a requirement of the RFP to have a structure with a design life of 100 years.

Extreme Example

AET 4060

- RCP at 84 days 490 Coulombs passed
- Setting Time 4:30 Initial Set
- Air Void System
 - Air Content 5.5 percent
 - Spacing Factor o.oo8 in
 - Specific Surface 600 in² /in³
- Shrinkage 0.005 percent at 28 days
- Strength Gain

Planning

- As a result some very non-traditional concretes were utilized in the construction.
- Performance-based design
 - Designer Requirements
 - Owner Requirements
 - Constructor Requirements

"Here's what I want: Your concrete should pour like, Niagara and have the strength of Gibraltar."

Performance Requirements

- The concrete had many requirements, some of which were in opposition to one another:
- There were shafts drilled to a depth of over 120 feet to socket to the bedrock through to bridge superstructure concrete which has to resist the ingress of chloride ion for the next century.
- All elements below the superstructure are mass concrete, as are the soffit slabs at the maximum shear elements, and the pier tables and diaphragms in the superstructure.
- There was a requirement for high early strength in construction, as the bonus for early finishing was substantial.

Performance Requirements

- There was a requirement for low permeability to water and aggressive chemicals such as chloride.
 - low permeability in the concrete itself
 - low shrinkage so that the concrete does not contain excessive cracking which short circuits the concrete as a protective layer.
- The concrete needed to flow into congested reinforcement, into complicated forms and into shafts that could not be inspected visually.
- The concrete should have as small an environmental impact as possible

A six sack mixture

Flyash is not a constant

Superstructure
Chloride
Freeze Thaw
Scaling
Creep and
Shrinkage
Piers
Mass Concrete
Freeze-Thaw Exposure
Chlorides

Footing Mass Concrete Freeze-Thaw Exposure Chlorides

Shafts
Consolidation
Freeze Thaw
Chlorides /
Permability

PIER 3 NB FOOTING CHG ZYC CHK DLS BRIDGE NOS.

DIMENSIONS & REINFORCING I PR-005 27410(NB)

Shaft Concrete

- 60 Percent Pozzolan Replacement
- 24 inch spread
- Air entrained
- RCP
- Shrinkage
- Strength at 28 days (lab cure) 5500 psi
- Cores from 21 day old Shaft 10,250 psi

Footings

- 60 Percent Pozzolan Replacement
- 8 inch slump
- Air entrained
- RCP
- Shrinkage
- Strength at 28 days (lab cure)

Piers

- 60 Percent Pozzolan Replacement
- 24 inch spread
- Air entrained
- RCP
- Shrinkage
- Strength at 28 days (lab cure)
- Cores from 21 day old Shaft 10,250 psi

Superstructure

- 30 Percent Pozzolan Replacement
- 8 inch slump
- Air entrained
- RCP
- Shrinkage
- Modulus of Elasticity
- Strength at 28 days (lab cure)

Shrinkage

Production Controls

Questions?