

Solutions For Making Blended Cements For Non-Engineered Concrete

Introduction

Roman Cement

- Andrew S. Hansen
- John M. Guynn

National Institute of Standards and Technology

- Dale P. Bentz

Roman Cement Philosophy

Engineer Cement and Pozzolan to Work Together

┿

....But

- Cement Industry Optimizes for 100% Cement
- Industry Attempts to "Fix" the Pozzolan Fraction

Engineered Concrete...

....But is it Suitable for the Masses?

Engineered Concrete...

...When Good Mix Designs are Implemented by the Untrained

Roman Cement: Performance Criteria

Make General Purpose "Plug and Play" Cements

- Match the <u>Strength</u> Curve of OPC
- Maintain similar Water Demand
- Maintain similar Set Time
- Maintain similar Autogenous Shrinkage

How It Works

What Should the Particle Size Distributions of the Cement and Pozzolan Be?

- Cement gives good Early Strength
- Fly Ash gives good Long Term
 Strength and Durability

Predicted Outcome of Blending Fine Cement With Coarse Pozzolan

Strength Development

Portland Cement will provide early age strength and Pozzolan will provide later age strength

Water Demand

Coarse Ash Will Compensate For Fine Cement

Set Time

Fine Cement Will Provide Reasonable Set Times

Autogenous Shrinkage

Coarse Pozzolan Will Compensate For Fine Cement

Experimental Mix Designs

Four Cements

Targeted D90s of 5, 10, 15 and 20 microns

Four Fly Ashes

Targeted D10s of 5, 10, 15 and 20 microns

Distributions of Cement Fractions

Distributions of Fly Ash Fractions

Experimental Mix Designs

Four Substitution Levels by Volume

20%, 35%, 50%, 65%

Mortars Prepared With Constant Volume Fractions

Binder, Water and Sand

1- and 3-Day Strengths

7- and 28-Day Strengths

128- and 182-Day Strengths

"Main Effects Plot" 1 Day Strength

"Main Effects Plot" 3 Day Strength

"Main Effects Plot" 7 Day Strength

"Main Effects Plot" 28 Day Strength

"Main Effects Plot" 91 Day Strength

ROMAN C E M E N T

"Main Effects Plot" 128 Day Strength

Matching the Strength Curve of OPC

Roman Cement Blends vs 100% OPC (w/c = 0.35)

100% UltraFine Cement vs 100% OPC

Autogenous Deformation

	Run	28-d net autogenous		
Mixture	Order	shrinkage		
	ID	(microstrain)		
Control	1	247		
Control repeat	1A	175		
50 % fly ash	2	74		
35 % FA 3–Cem 7	3	125		
35 % FA 2-Cem 8	5	187		
35 % FA 5-Cem 9	8	269		
35 % FA 4-Cem 10	10	258		
35 % C ash -Cem 9	19	348		
35 % FA 5-Type III	20	Not measured		
50 % FA 2-Cem 7	4	85		
50 % FA 5-Cem 8	16	175		
50 % FA 4-Cem 9	6	125		
50 % FA 3-Cem 10	12	190		
65 % FA 5-Cem 7	15	59		
65 % FA 4-Cem 8	11	48		
65 % FA 3-Cem 9	18	174		
65 % FA 2-Cem 10	7	73		
20 % FA 4-Cem 7	13	279		
20 % FA 3-Cem 8	14	415		
20 % FA 2-Cem 9	17	415		
20 % FA 5-Cem 10	9	524		

Water Demand

Hydration Rates: Isothermal Calorimetry

Example Set Times

				Setting times (min)	
Paste/Mortar	Fly ash (%)	Cement ID	Fly ash ID	Initial set	Final set
ID					
1	0	6		168	214
2	50	6	1	258	318
8	35	9	5	227	267
9	20	10	5	131	168
14	20	8	3	220	255

Conclusion

Blended Cements at Different Substitution Levels can be designed to match the Strength Curve of OPC by Optimizing the PSDs of Cement and Pozzolan Fractions

