

"Innowacyjne spoiwa cementowe i betony z wykorzystaniem popiołu lotnego wapiennego" Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka, nr projektu: POIG.01.01.02-24-005/09

Michał A. Glinicki Grzegorz Nowowiejski AIR PERMEABILITY OF SUPERPLASTICIZED CONCRETE WITH 0.5 CLINKER FACTOR

Institute of Fundamental Technological Research Polish Academy of Sciences Warsaw, Poland

Anna Maria Workshop, Nov. 10-12, 2010

THE CONCEPT

One of the tools for reducing carbon emissions due to cement consumption in concrete is a reduction of clinker share in cementitious material.

TERNARY BINDERS IN CONCRETE

Ternary concrete mixtures including combinations of portland cement, slag and fly ash (or eventually silica fume) have been studied for decades.

The effect of slag in reducing the permeability of concrete is well known: generally, the higher the percentage of slag in a concrete mixture, the lower the permeability of the concrete. But the resistance to freezing/thawing +deicing salts is significantly reduced.

It is believed that high volume fly ash concrete due to its low permeability and high crack resistance should not exhibit any significant carbonation.

The reduction of permeability is most commonly reported as measured by the rapid chloride permeability test. The gas permeability of 50% clinker factor concrete mixtures is less documented.

COAL ASH RESOURCES

European (EU 27) production of coal combustion products : 100 Mio tonne/year

non-standard coal ash in Poland

FBC ash: about 2 Mio tonne/year 22 FBC boilers in power plants

High calcium fly ash : about 5 Mio tonne/year 3 brown coal mines – 3 large power plants

REGULATION (EC) No 1907/2006 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH)

- By this, all chemicals manufactured in or imported into the EU have to be registered at the European Chemicals Agency (ECHA). The registration requires information on the properties and the potential risks of the substances; no data → no trade
- Producers or importers of coal combustion products (fly ash, bottom ash, boiler slag, etc) placed on the market as construction materials have to register their substances, i.e. provide comprehensive data incl. information about human toxicology and ecotoxicology of the substances.
- The substances are registered as mono-constituent, multiconstituent or UVCB-substance (Unknown or Variable composition, Complex reaction products or Biological materials).

Effective registration of FBC Ash with ECHA september 2010

Substance Information

Substance name: [931-257-5] Ashes from fluidized Bed combustion coal fired
Power stations with and without co-combustion of secondary
fuels (biomass; other fuels - to be verified in view of
ecotoxicological and toxicological tests)

Dossier content

Dossier submission remark

Remark: Registration above 1000 tonne by Lead registrant
Dossier information
Dossier Information
Dossier creator: Dossier creator: Dossier subject
Name given by the dossier creator: Dossier_FBC_Ash
Submitting legal entity: UTEX-CENTRUM Sp. z o.o.

Submitting legal entity UUID: ECHA-fd37b9ae-1021-44e0-abb9-5bfdd519e52b

CHEMICAL SAFETY REPORT \rightarrow no risk to humans and environment

Name and other identifiers of the substance

The substance **FBC Ash** is a UVCB (origin: inorganic) having the following characteristics and physical–chemical properties

IUPAC name:	Ashes from fluidized Bed combustion coal fired Power stations with and without co-combustion of secondary fuels (biomass; other fuels - to be verified in view of ecotoxicological and toxicological tests)	
Description:	The residuum from the burning and desulfurization processes in Fluidized Bed Combustion boilers. The substance consists mainly of following oxides: silicon, aluminium, iron, calcium, titanium, sodium, potassium, magnesium and phosphorous and calcium sulphate as a residuum of desulfurization process.	S C S C S A F F Z Z Z P

Substance Identification Profile

Składnik	Min.	Max.
CaO (całkowite)	0,5	36
SO ₃	1	20
CaCO ₃	0	8
SiO ₂	10	76
Al ₂ O ₃	3	38
Fe ₂ O ₃	0,2	27
TiO ₂	0,2	8
MgO	0	8
Na ₂ O	0,01	4
K ₂ O	0,2	8
P2O5	0,1	10,5

EXPERIMENTAL : Materials and mix design

Slag-blended cement CEM II/B-S 32.5N (slag content about 30%),
Slag cement CEM III/A 42.5N-HSR/NA (slag content about 57%), according to European Standard EN 197-1.
FBC ash from fluidized bed combustion of brown coal or hard coal.
Aggregates: crushed limestone 2/8mm and 8/16 mm, or crushed granite 2/8mm and 8/16mm, pit sand 0/2mm.
Chemical admixtures: water reducer/retarder; superplasticizer.

Concrete mix designed with **constant** water to (cement+FBC ash) ratio, the slump of about 150mm.

Variable: the amount of chemical admixtures required to achieve the target slump.

Chemical composition of FBC ashes

		Test parameters	FBC FA	FBC FA Turow –	EN 450-1 requirements		b and the second
	hard	SiO ₂ ,[% by mass]	47.46	36.47	the sum of contents		coal
	coal	AI_2O_3 , [% by mass]	23.29	28.40	$(Fe_2O_3) \ge 70$	l	
		CaO , [% by mass]	7.48	15.95	*)		
12-2		SO_3 , [% by mass]	3.56	3.80	not more than 3.0		
Mg + 40 X LED 150-14/C PAN	Cl⁻ , [% by mass]	0.08	0.03	not more than 0.10	A Y T		
	Mg + 400 X LED 1530-INC PAN	CaO free, [% by mass]	0.35	4.75	not more than 1.0 or 2.5 and **)	20una ⊣ Mag = 400 X	LEO 1550- INC PAN
grain size [µr mainly below max 80 min below 1	ain size [um]:	MgO, [% by mass]	3.10	1.65	not more than 4.0	grai	n size [µm]:
	ainly below 1	Fe ₂ O ₃ , [% by mass]	7.53	4.40	-	max	(120
	ax 80 n below 1	Loss on ignition, [% by mass]	3.30	2.73	<= 5 : Category A 2-7: Category B 4-9: Category C	min	below 1
		Unburned carbon content by TGA-DTA, [% by mass]	0.3	-	-		

*) the content of reactive calcium oxide $\leq 10.0\%$

**) soundness : the expansion in accordance with EN 196-3 not greater than 10mm

EXPERIMENTAL : Specimens and test methods

Curing of specimens:

-cubes 150mm: standard moist curing

-slabs 100x500x500mm : standard moist curing for 28 days, later - indoor laboratory exposure

Tests:

- Standard test method for determination of compressive strength on cube specimens

- Air permeability test on slab specimens using Torrent apparatus

Compressive strength of concrete

Coefficient of air permeability (Torrent) of concrete

Coefficient of air permeability (Torrent) of concrete

EXPERIMENTAL : Materials and mix design -part 2

Cement CEM | 42.5R **High calcium fly ash :**

Chemical composition of HCFA [%]

LOI SIO₂ Al₂O₃ Fe₂O₃ CaO MgO SO₃ K₂O Na₂O P₂O₅ TiO₂ CaO_w

2,56 33,62 19,27 5,39 31,3 1,85 3,91 0,11 0,31 0,17 1,21 2,87

Aggregates: crushed amphibolite 2/8mm

and 8/16 mm, pit sand 0/2mm.

Chemical admixtures: water

reducer/retarder; superplasticizer.

Concrete mix designed with **constant** water to binder ratio, assuming k=0.4

Variable: the amount of chemical admixtures required to achieve the target slump.

Grinding % Specific

Grinding time [min]	retained on 45µm sieve	surface Blaine [cm ² /g]
0	38%	2860
10	23%	3500
28	10, <mark>5%</mark>	3870

Physical properties of HCFA [%]

High calcium fly ash: grain shape before and after grinding

Coefficient of air permeability (Torrent) of concrete

cement CEM I 42.5 R HCFA (15% or 30% replacement with k=0.4) significant increase of superplasticizer

CONCLUSIONS

- Reduction of clinker factor below 0.50 feasible using slag blended cement CEM II B-S and FBC ash addition with increased content of superplasticizer
- Tests revealed increased compressive strength and decreased air permeablility coefficient for FBC ash addition
- Use of HCFA for major replacement of CEM I at k=0.4 was disturbed by increased water demand
- Decreased kT for increased grinding time of HCFA