

Metakaolin Used in Fibre Reinforced Centrifugal Placed Concrete in Mine in Western Canada

Anna Maria Workshop X, Holmes Beach, FL November 4-6, 2009

By, Lihe (John) Zhang, Ph.D., P.Eng., LEED AP D.R. (Rusty) Morgan, Ph.D., P.Eng., FACI AMEC Earth & Environmental, Vancouver, British Columbia, Canada Email: john.zhang@amec.com

Content

- Part One: Metakaolin (MK) introduction
- Part Two: MK fiber reinforced concrete trial mix
- Part Three: Centrifugal Placed Concrete (CPC) mock-up: Mix A, Mix B
- Part Four: CPC field application, Mix C, Mix D
- Part Five: Compressive strength, boiled absorption and volume of permeable voids, flexural toughness
- Part Six: Sustainability

Introduction to Metakaolin (MK)

- Mined from natural Kaolin (aluminum silicate), calcinated at high temperature (800°C) through a dry process.
- Type N Supplementary Cementing Material (SCM) in ASTM C618 and CSA A3001-03
- Product research was conducted by AMEC including trial mix, compressive strength testing, shrinkage testing, rapid chloride penetration testing, freeze-thaw testing, and AAR testing.

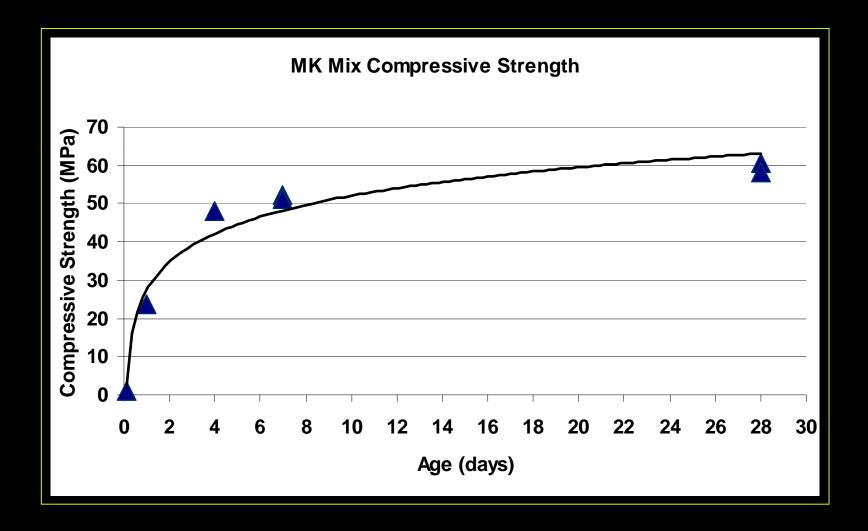
Introduction to MK– Chemical properties

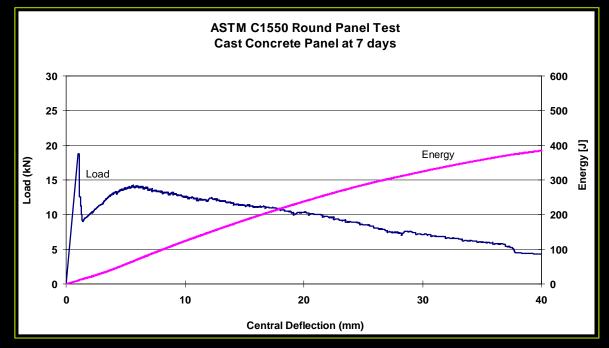
Chemical Properties			Red	quirements
			CSA	ASTM/AASHTC
SO ₃	0.06	%	3% Max	4% Max
Sum (SiO ₂ , Al ₂ O ₃ , Fe ₂ O ₃)	93.6	%		70% Min
Total Alkalis as Na2O	1.4	%		
Moisture Content	0.2	%		3% Max
Loss On Ignition - 800 C	1	%	10% Max	10% / 5% Max
Available Alkalis as Na2O	0.22	%		- / 1.5% Max
Physical Properties				
Fineness (45 um % retained)	3	%	34% Max	34% Max
Density	2.56	g/cc		
Autoclave expansion	0.02	%	0.8% Max	0.8% Max
Water Requirement	105	% of Control		115% Max
Strength Activity Index				
7 day	121	% of Control	75% Min	75% Min
28 day	116	% of Control	75% Min	75% Min
Uniformity Requirements				
Density	1	% Variation from Ave.		5% Max
ineness (45 um % retained)	0.4	Variation from Ave.		5% Max

Fibre Reinforced CPC Mix Designs

Material [kg/m ³]	Mix A: Natural Pozzolan (30%)	Mix B: Silica Fume (10%)	Mix C: Metakaolin (20%)	Mix D: Metakaolin /Silica Fume
Cement Type GU	386	430	418	420
Natural Pozzolan	119			
Silica Fume		44		21
Metakaolin			85	85
Fine Aggregate (SSD)	1516	1655	1630	1630
Water	227	200	193	210
Macro-Synthetic Fibre	6	6	6	6

Metakaolin Mix – Laboratory Hand Cast Trial





Metakaolin Mix Laboratory Hand Cast Trial Results: Compressive Strength

Metakaolin FRS Laboratory Hand Cast Trial Results: Flexural Toughness

Property At centre point deflection of							
Property							
	7 mm	10 mm	20 mm	30 mm	40 mm		
Corrected							
Load [kN]	13.7	12.6	10.3	7.2	4.3		
Load vs. First							
Peak Load	73%	67%	55%	38%	23%		
Corrected							
Energy [J]	85	124	238	324	385		

Peak Load = 18.7 kN

Panel broken into three pieces with typical Y yield line failure pattern

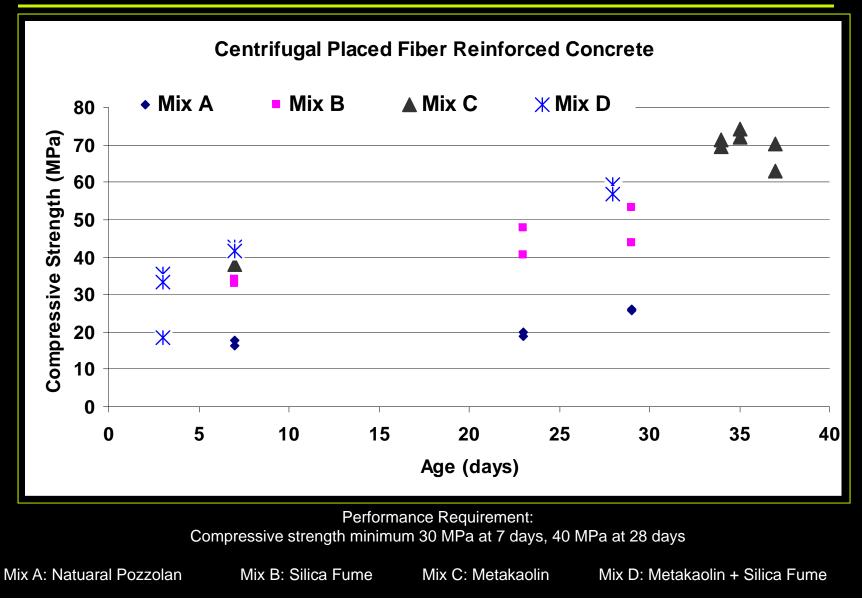
Metakaolin Mix

Centrifugal Placed Concrete (CPC) Mock-up

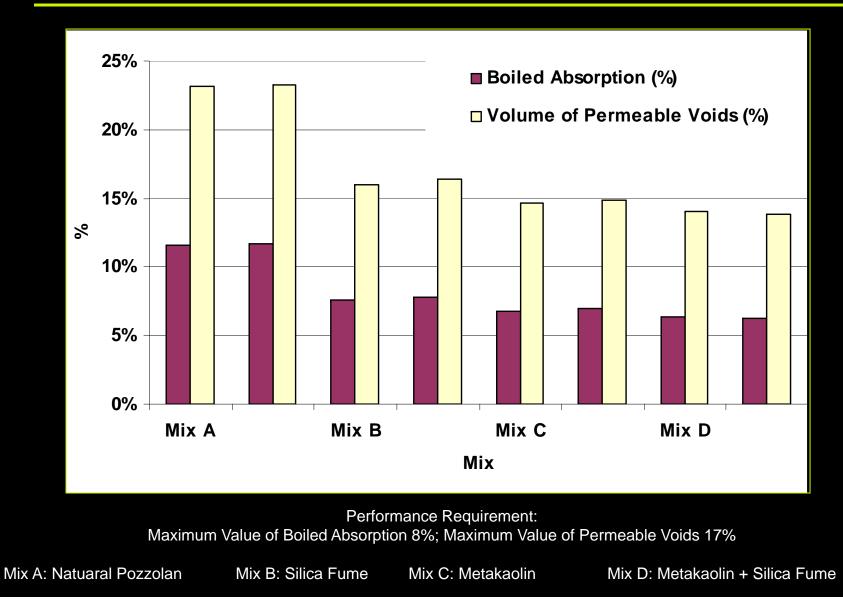
- Centrifugal placement
- Compressed air used to rotate spinner head at 4000-5000 rpm
- No accelerator added
- Slump: 150 mm at the end of hose at spinner head

Metakaolin CPC Field Application

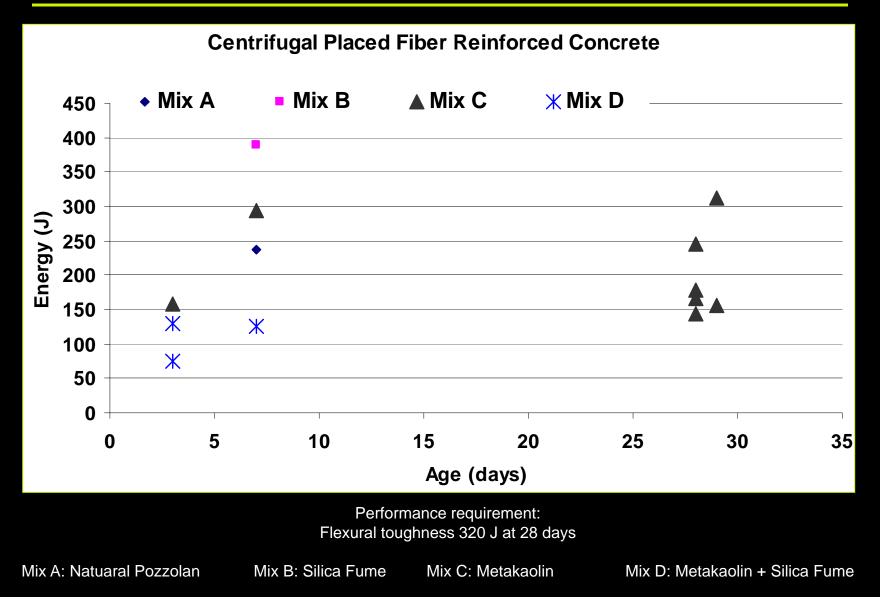
- Underground Mine Raise Bore Shaft in British Columbia, Canada
- 11.5 ft (3.5m) in diameter, 951 ft (290 m) deep
- CPC applied 2 in (50 mm) thick
- Mine set up a batch plant for batching CPC
- Time of placement : June, 2009


CPC Field Application

- Plastic concrete: 150 mm slump at the end of hose, air content 2% as shot
- Low rebound
- Two test panels (800 mm diameter, 75 mm thick) were produced every day and tested at 3 and 7 days.
- Fiber dosage 5 kg/m³

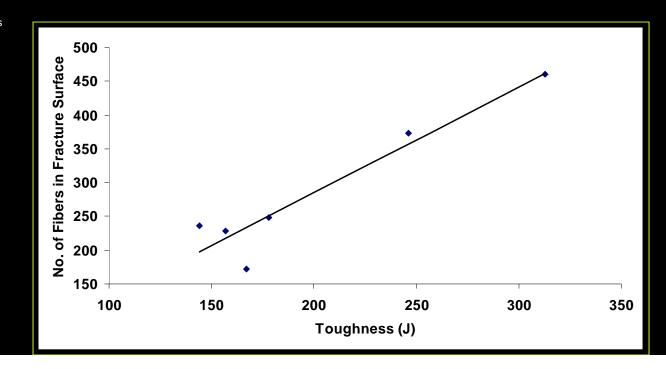

CPC Performance – Compressive Strength

CPC Performance



- Volume of Permeable Voids & Boiled Absorption (ASTM C642)

CPC Performance – Energy (ASTM C1550)



Metakaolin CPC Performance Flexural Toughness vs. Number of Fibers

Date Cast/Shot	Panel #	Mix Designation	Test Age (days)	Compressive Strength (MPa)	RDP Corrected First Crack Load (kN)	RDP Corrected Energy (J)	No. of Fibers in Fracture Surface
10 Jun 00	1	Mix C	37	62.9	27.1	313	460
10-Jun-09	2		37	70.2	26.0	157	228
13-Jun-09	1	Mix C	35	71.9	24.4	144	236
	2(1)		35	74.1	26.1	167	172
14-Jun-09	2(2)	Mix C	34	71.2	19.5	178	248

(1) Broken into two pieces(2) Not a Y type failure

Metakaolin CPC Performance

MK CPC

- 20% replacement of cement used in both trial mixes and large mine project
- Higher compressive strength than natural pozzolan concrete
- Good workability, good compaction with low values of boiled absorption & volume of permeable voids
- Performed well with macro synthetic fiber reinforcement

Centrifugal Placed Concrete (CPC) Method

- Cost effective: completed in 10 days (much shorter than previously used: conventional robotically placed dry-mix steel fiber reinforced shotcrete lining completed in 6 weeks)
- First time used in North America (D.R. Morgan., Centrifugal Placed Concrete for Lining Horizontal Pipes, Culverts, and Vertical shafts, 3rd International Conference/Engineering Developments in Shotcrete. Queenstown, New Zealand 2010 March)
- Now to be used for lining several more raise bore shafts in mines in North America

Metakaolin in Concrete – Sustainability

- MK is a SCM
- MK concrete has high compressive strength, and good durability
- LEED New Construction MR 4.1 & 4.2:
- Cement Reduction (%) = 2x(cement in base mix-cement in SCM mix)/(cement in base mix)
- MK replaces 20% cement by mass; LEED equates this to a 40% cement reduction

Metakaolin in Concrete – LEED Compliance

- LEED New Construction, MR 4.1 & 4.2:
- 1 point for 7.5% (post-consumer + $\frac{1}{2}$ post-industrial)
- 2 points for 15% (post-consumer + ½ post-indsutrial)
- LEED specifies post-consumer recycled content and post-industrial content, such as fly ash, slag, silica fume, incinerator ashes, GS-CEM.
- Calcining kaolin at 800 °C generates 55% less GHG vs. cement production.
- Calculation of CO₂ emitted for 1 ton cement production (1 ton) vs. 1 ton metakaolin production (to be determined)

Metakaolin in Concrete – LEED Compliance

- MRc5 Regional Materials
- MRc8 Durable Building (LEED Canada NC 1.0)
- MRc2 Environmentally Preferable Products (LEED Canada for Homes 2009)

AMEC's Leading Role in Industry

- 1976 Converted ready mix concrete producers in Western Canada into routine use of fly ash in everyday concretes
- 1983 first time use of silica fume in shotcrete in North America
- 1998 founding member of America Shotcrete Association
- 2000 Full characterization Teck Commico ground metallergical slag cementing material, later become integral hardener with brand name of "Hard Cem"
- 2002-2008 use of high volume fly ash (up to 48%) in Little Mountain Reservoir and Seymour Capilano Filtration Plan projects in Vancouver
- 2005 Full characterization of use of calcined metakaolin in concrete
- 2008/9 Dow Jones Sustainability Index