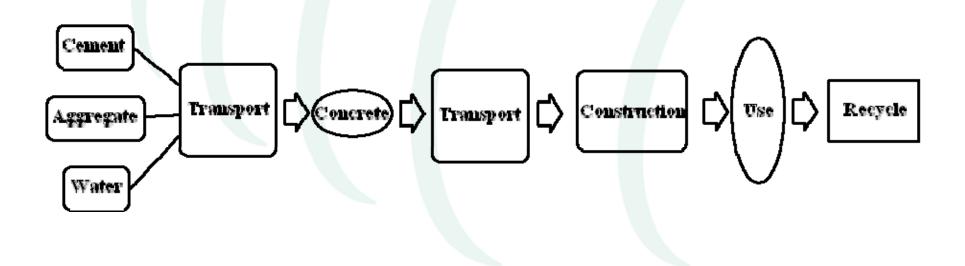
NRMCA Sustainable Concrete Plant Guidelines: The Next Step Towards Concrete Sustainability

Lionel Lemay, PE, SE, LEED AP Sr. VP, Sustainable Development

Impact of U.S. Buildings

- 14% Potable Water Use
- **30%** Waste Output
- **38%** CO₂ Emissions
- **40%** Raw Materials Use
- **39%** Energy Use
- **72%** Electricity Consumption

What makes a Building Green?


- Efficient Use of:
 - Energy
 - Water
 - Other Resources
- Protecting Occupant Health
- Improving Employee
 Productivity
- Reducing:
 - Waste
 - Pollution
 - Environmental Degradation

How Do You Measure

Sustainability?

- Best Approach: Life Cycle Assessment
- LCA is a technique to assess the environmental aspects and potential impacts associated with a product, process, or service

Impacts Measured

CLIMATE CHANGE

INDOOR ENVIRONMENTAL QUALITY

RESOURCE DEPLETION

HUMAN HEALTH CRITERIA

WATER INTAKE

HUMAN HEALTH-CANCEROUS

ECOTOXICITY

EUTROPHICATION

HABITAT ALTERATION

HUMAN HEALTH-NONCANCEROUS

SMOG FORMATION

OZONE DEPLETION

ACIDIFICATION

Prioritize Impacts

CLIMATE CHANGE

INDOOR ENVIRONMENTAL QUALITY

RESOURCE DEPLETION

HUMAN HEALTH CRITERIA

WATER INTAKE

HUMAN HEALTH-CANCEROUS

ECOTOXICITY

EUTROPHICATION

HABITAT ALTERATION HUMAN HEALTH-NONCANCEROUS

SMOG FORMATION

OCONE SERVETION

Life Cycle Impacts

 2% to 10% impact from material extraction, manufacturing and construction

90% to 98% in building operations

How Does Concrete Compare to Other Materials?

- Some LCA studies
- Some Partial LCAs
- CommonMeasures
 - Energy Consumption
 - Carbon Footprint

LCA: Concrete vs. Wood Frame

Compared residential framing systems

Concrete systems reduced energy by 17%

2x12 (R 38) = 6" ICF

Gajda, John, Energy Use of Single-Family Houses With Various Exterior Walls, CD026, Portland Cement Association, Skokie, IL, 2001, 49 pages.

LCA: Concrete Frame vs. Steel Frame*

Structural System	CO2 (kg/m2)
Concrete	550
Steel	620

* Partial LCA: Material Extraction, Manufacturing, Construction

Guggemos, A. A. and Horvath, A., Comparison of Environmental Effects of Steel- and Concrete-Framed Buildings, ASCE Journal of Infrastructure Systems, June 2005, American Society of Civil Engineers, Reston, VA, 2005

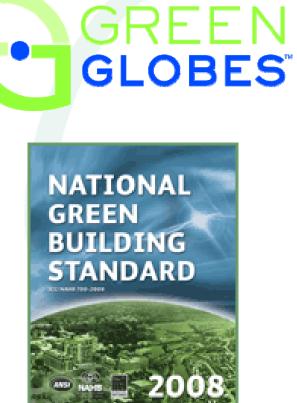
LCA: Concrete vs. Asphalt*

Pavement System	CO2 (t/km)
Concrete	674
Asphalt	738

- * 50 year life cycle
- * Asphalt pavement required 3 times more energy than concrete pavement

A Life Cycle Perspective on Concrete and Asphalt Roadways: Embodied Primary Energy And Global Warming Potential, Athena Institute, Ottawa, Ontario, 2006. Should we Conduct LCA for Every Product/Project?

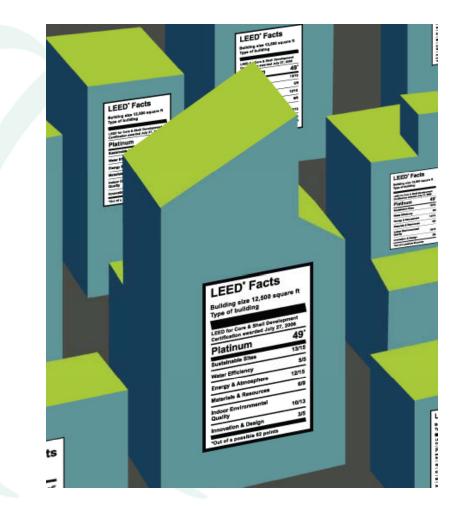
- Not realistic
- Rating Systems and Building Codes
- Surrogates for LCA
- Identify Impacts
- Prioritize Impacts
- Identifies Trade Offs


Examples

LEED

Green Globes

- NAHB National Green Building Standard
- All place emphasis on building operations
- All Favorable to Concrete



LEED Green Building Rating

System

- Voluntary program
- Positive image to community
- Energy and cost savings
- Increased labor productivity
- Contribute directly to a company's profits

LEED Credit Categories

Organized for building design process

LEED Certification Levels

- Platinum
- Gold
- Silver
- Certified

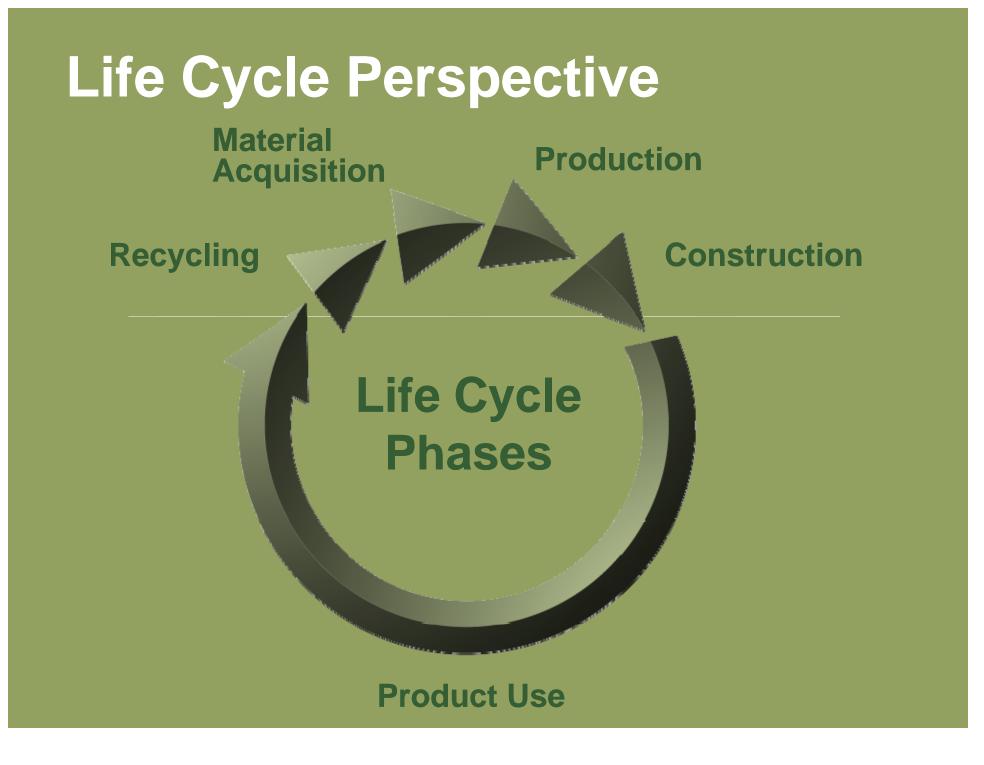
How Does Concrete Perform in LEED

Category	Total Possible	Concrete Influences
Sustainable Sites	26	12
Water Efficiency	10	10
Energy & Atmosphere	35	19
Materials & Resources	14	11
Indoor Environmental Quality	15	6
Innovation Credits	6	6
Regional Priority Credits	4	4
Total Points	110	68

So Isn't Concrete Sustainable Enough? Continuously improve product

Continuously improve process

NATIONAL READY MIXED CONCRETE ASSOCIATION SUSTAINABILITY INITIATIVES



Vision

The vision of the ready mixed concrete industry is to transform the built environment by improving the way concrete is manufactured and used in order to achieve an optimum balance among environmental, social and economic conditions.

Objectives

- Minimize Energy Use
 Reduce Emissions
 Conserve Water
 Minimize Waste
- Increase Recycled Content

A Very Long Use Phase Recycling Phase Material Acquisition, Production, and

Construction Phases

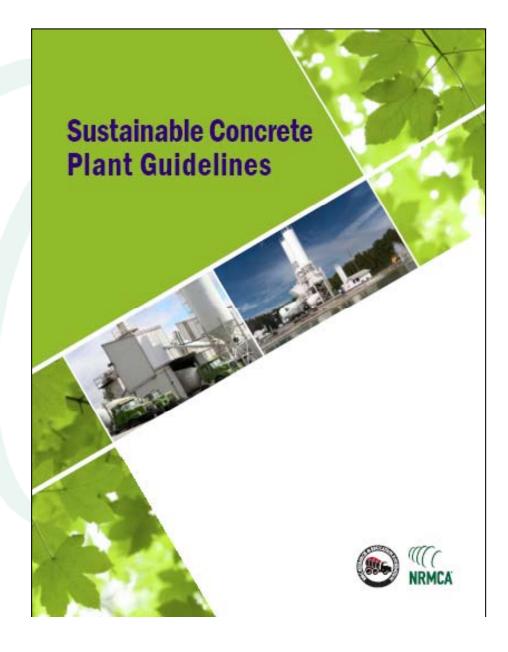
Life Cycle Perspective

Targets Per Unit of Concrete Produced from 2007 Levels

Embodied energy: □ 20% reduction by 2020 30% reduction by 2030 Carbon footprint: □ 20% reduction by 2020 □ 30% reduction by 2030 Potable water: \square 10% reduction by 2020 □ 20% reduction by 2030

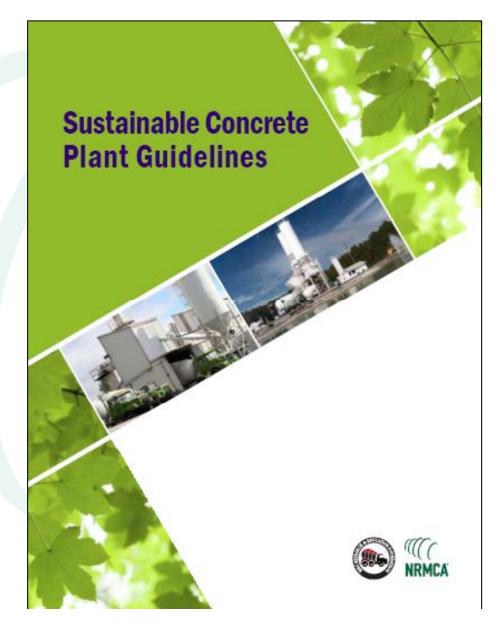
Waste:
30% reduction by 2020
50% reduction by 2030
Recycled content:
200% increase by 2020
400% increase by 2030

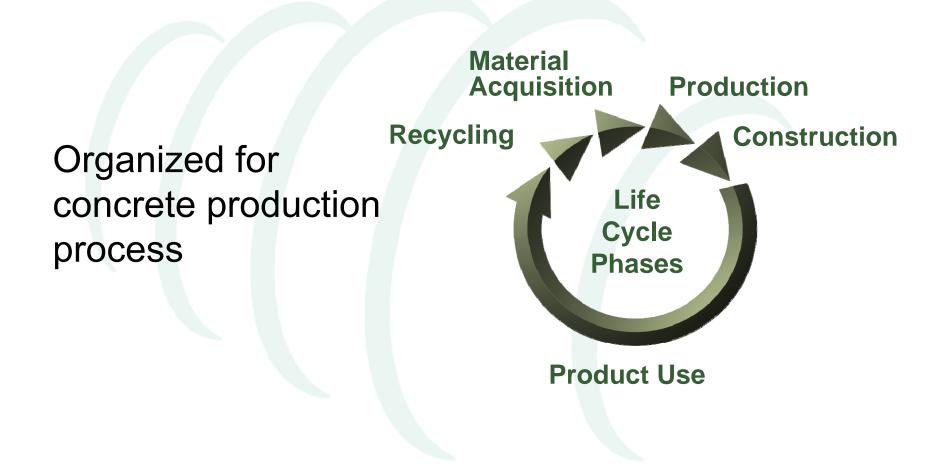
NRMCA Sustainability Programs



SEMINAR, TRAINING & EDUCATION PROGRAMS

How Do We Improve the Process?


LEED for Concrete Plants?


Sustainable Concrete Plant

Guidelines

- Voluntary program
- Positive image to community
- Energy and cost savings
- Increased productivity
- Contribute directly to a company's profits

Credit Categories

Impact Categories

- **Embodied Energy**
- **Carbon Footprint**
- Water Use
 - Waste
- 4

會

- **Recycled Content**
- $\langle \mathbf{x} \rangle$
- Social Concerns and Human Health

Sustainability Levels

- Platinum
- Gold
- Silver
- Bronze

Sustainability Credits

Category	Credits
Material Acquisition	16
Production	52
Construction	13
Product Use	6
Recycling	8
Additional Points	5
Total Points	100

Metrics

- Equations
- Worksheets
- Carbon Calculator

Recycled Aggregate Credit

recycled aggregate (%) = $\frac{recycled aggregate (tons)}{total aggregate purchases (tons)} \times 100$

≥ 2% recycled aggregate	1 point
≥ 4% recycled aggregate	+1 point
≥ 6% recycled aggregate	+1 point
≥ 8% recycled aggregate	+1 point

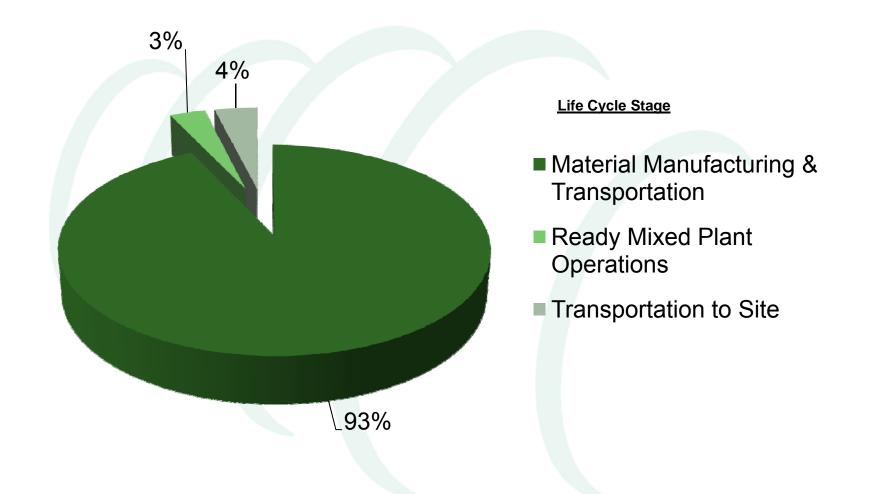
Air Quality Credit

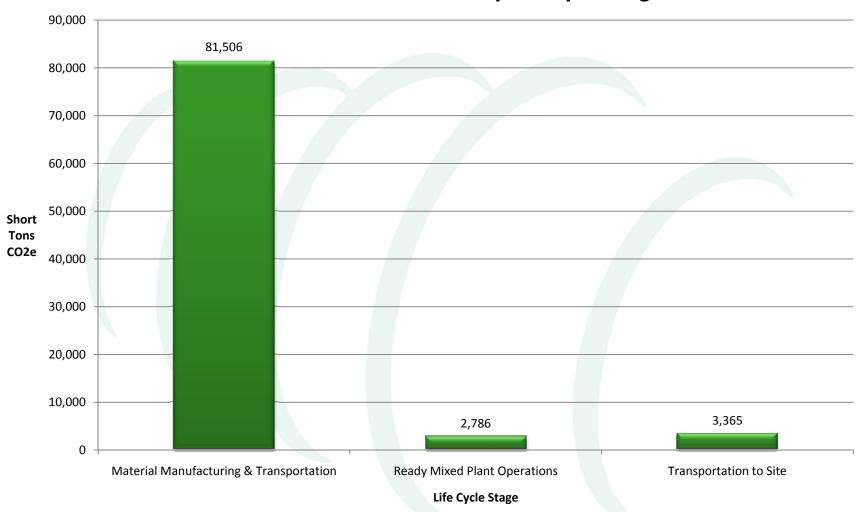
≥ 50% weighted process emission controls	1 point
≥ 75% weighted process emission controls	+1 point
100% weighted process emission controls	+2 points

Air Quality Credit

Point source emissions		weight
Cement delivery to silo*		
Silo top baghouse or silo vented to central vacuum collector system	No	5%
Silo equipped with overfill warning system	No	15%
Silo equipped with high pressure protection system (pinch valve/alarm)	No	5%
SCM delivery to silo*		
Silo top baghouse or silo vented to central vacuum collector system	No	5%
Silo equipped with overfill warning system	No	15%
Silo equipped with high pressure protection system (pinch valve/alarm)	No	5%
Cement/SCM weigh batchers		
Weigh batcher vented to batcher filter vent or vented to central dust collector (direct		
or indirect)	No	5%
Fines collected in the dust collectors are recycled	No	5%
Coarse and fine aggregate transfer to conveyor		
Transfer underground or transfer point enclosed, or conveyor covered	No	5%
Coarse and fine aggregate transfer to elevated storage		
Plant enclosed or transfer point enclosed	No	5%
Truck loading hopper		
Hopper is surrounded (3 sides) by shroud and is vented to a central dust collector	No	20%
Hopper is equipped with a telescopic boot	No	5%
Spray bar used (in lieu of central dust collector). If central dust collector is present,		
please mark this "Yes".	No	5%
CONTROLLED PROCESS EMISSION SOURCES	0.00%	

Energy Management Credit

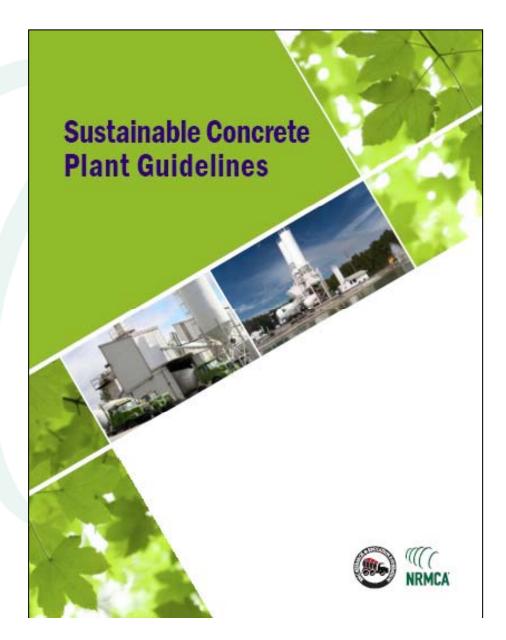

 $CO2e (\% below baseline) = \frac{national baseline (\frac{CO2e}{cy}) - plant CO2 footprint (\frac{CO2e}{cy})}{national baseline (\frac{CO2e}{cy})} \times 100$


Annual CO2e/cy ≥ 10% below baseline	1 point
Annual CO2e/cy ≥ 15% below baseline	+1 point
Annual CO2e/cy ≥ 20% below baseline	+1 point
Annual CO2e/cy ≥ 25% below baseline	+1 point
Annual CO2e/cy ≥ 30% below baseline	+1 point

Energy Management Credit

Carbon Calculator
 Material Purchase Data
 Plant Energy Data
 Fleet Energy Data

Short Tons CO2e by Life Cycle Stage



Short Tons CO2e Breakdown by Life Cycle Stage

Next Steps

- Formalize certification process
- Third party verification
- Conduct pilot program
- Approach USGBC for LEED credit?

Continuous Improvement

- April 13-15, 2010
- Tempe, AZ
- NRMCA and ASU are Co-sponsors
- Topics include
 - Sustainable Concrete Construction
 - Sustainable Concrete Manufacturing
- Many other industry partners

APRIL 13-15, 2010 - TEMPE, AZ

NRMCA

ARIZONA STATE UNIVERSITY

Summary

- LCA is best method for measuring sustainability
- Concrete performs well using LCA
- Rating systems are good surrogates for LCA
- Concrete performs well in rating systems
- Sustainable concrete plant guidelines will help improve industry performance

