

Allowing higher cement replacement by class C fly ashes: A new method

Josephine Cheung Denise Silva

Nov. 5, 2009 - Anna Maria Workshop X

Growth Drivers & External Factors for Use of Fly Ash in Concrete

Concrete Producer
 In most cases cost of
 Fly Ash is significantly
 less than cement
 (approx \$100/ton for
 cement and \$50/ton for

Fly Ash)

• Power Plant

Disposal cost for Fly Ash ~ \$10/ton. Cost will rise significantly if Fly Ash is classified as toxic waste. Environment

- Pressure on cement producers to reduce overall CO2 footprint.
- Cement manufacturing is one of the top 5 largest CO2 producers in the world

 LEED credits for high volume fly ash concrete (50% Fly Ash) Classes of Fly Ash (ASTM C618)

Calorimetry profiles of class F and C fly ash

Low Ca ashes (Class F)

- Low Ca (Class F) ashes are <u>not reactive</u> in water
- Retardation of blended system due to cement <u>'dilution'</u> effect

High Ca ashes (Class C)

- High Ca (Class C) ashes are <u>highly reactive</u> in water
- <u>Strong</u> retardation of blended system indicating <u>antagonistic hydration</u> between the cement and fly ash

Hypothesis

Why so much set retardation and strength decrease?

Antagonistic hydration between cement and fly ash Would promoting hydration of cement and fly ash at different times address the problem ? Would addition of suitable chemicals help?

JRACE

Solution: Pre-Hydration + Chemical Treatment of High Ca fly ash

Nov. 5, 2009 - Anna Maria Workshop X

Impact of Treatment method

Nov. 5, 2009 - Anna Maria Workshop X

A1 - High Ca Fly Ash Slurry (Fly Ash #1 + Cement A)

A2 – Pre-Treated High Ca Fly Ash Dried Powder (Fly Ash #1 + Cement A)

Nov. 5, 2009 - Anna Maria Workshop X

Result Summary of 8 High Ca Fly Ashes

Impact of Treatment Methods : Mortar with FA #2 + Cement A

	Workability	Stre	ength (I	Set (br)	
	(mm)	1D	2D	28D	(hr)
Current Practice	200	2.7	15.0	37.3	13
1 hr Pre-Hydration	43	9.1	16.8	39.5	7
1 hr Pre-Hydration + Additive	128	9.0	17.7	40.4	7

50% FA #2 + 50% Cement A ; w/fa = 0.4; w/c=0.5

Impact of Treatment Methods : Concrete with FA #2 + Cement A

	<u>Slump</u>	<u>Strength</u> (PSI)				<u>Set</u>	<u>Air</u>
	(inches)	1D	2D	7D	28D	(Hr)	(%)
Current Practice	8 1/4	299	741	2479	3700	13:43	2.3
0.5 hr Pre-Hydration + Additive	8	1088	1689	3226	4350	10:38	2.2

50% FA #2 + 50% Cement A ; CF = 611; w/fa = 0.4; w/c = 0.5; 3.5 oz AC 575

Pre-treatment of FA

- accelerates set
- increases strength
- corrects workability issues
- provides proper hydration development

Impact of Treatment Methods : Mortar with FA #3 + cement A

	Workability	Str	<u>Set</u>		
	(mm)	1D	2D	28D	(Hr)
Current Practice	226	3.1	8.5	35.0	10
1 hr Pre-Hydration	2	12.7	21.4	44.7	7.8
1 hr Pre-Hydration + Additive	81	11.2	18.7	44.7	5.3

50% FA #3 + 50% Cement A ; w/fa = 0.4; w/c=0.5

Conclusion

- High Ca fly ash gave long set retardation and poor strength development when blended with cement, making the material not useable in concrete
- Pre-treatment of High Ca fly ash suppresses the antagonistic hydration reactions between high Ca fly ash and cement, making the material useable
 - Good workability
 - Faster set time
 - Good strength development (50 % FA levels = 20 40% FA levels)
- Treatment time is dependent on
 - Chemistries of High Ca Ash
 - Chemistries of Cement
 - Mixing Conditions
- Patent Application filed

GRACE