

Sulfoaluminate belite (SAB) cements from industrial by-products

Sada Sahu BASF Construction Chemicals 23700 Chagrin Blvd., Cleveland, OH-44122

Phase composition of portland cement clinker

C-S-A-F (CaO-SiO₂-Al₂O₃-Fe₂O₃) C_3S C_2S C_3A C_4AF Lime contents (%): $C_3S = 73.7$ $C_3A = 62.2$ $C_2S = 65.1$ $C_4AF = 46.2$

Total lime content = 65-70%

Energy requirement for portland cement production

Portland cement production is a highly energy consuming process

- Clinkerization process takes place at about 1450°C
- Fuel energy = 3000 kJ/kg (2000 kJ/kg chemical reaction + 1000 kJ/kg heat losses) – major energy consumption is in the decarbonation process of calcite
- Electrical energy = 110 kWh/t (396 kJ/kg ≈ 990 kJ/kg fuel energy) –major electrical energy consumptions are in clinker and raw material grinding

Phase composition of sulfoaluminate belite (SAB) clinker

C-S-A-FS (CaO-SiO₂-Al₂O₃-Fe₂O₃-SO₃) C₂S C₄A§ C₄AF CS Lime contents: C₂S = 65.1 C₄A§ = 36.7 C₄AF = 46.2 CS = 41.2

Total lime content = 50-55% (40-45% lime from limestone)

🗆 = BASF

Energy requirement for SAB cement production

- Clinkerization process takes place at about 1200°C
 - Fuel energy = significantly lower than 3000 kJ/kg

(less lime to decarbonate + less heat losses)

Electrical energy = significantly lower than 110 kWh/t

(processed or semi processed by-products + softer clinker)

Phase compatibility in the system C-A-S*

Phase compatibility matrix

	Phases	1	2	3	4	5	6	7	8	9	10	11
1	С	I	0	1	1	1	1	1	0	0	1	1
2	C ₃ A		I	0	1	1	1	1	0	1	1	1
3	C ₁₂ A ₇			I	0	1	1	1	0	1	1	1
4	CA				I	0	1	1	0	1	1	1
5	CA ₂					I	0	1	0	1	1	1
6	CA ₆						-	0	0	1	1	1
7	А							I	0	0	0	1
8	$C_4A_3S^*$									0	1	1
9	CS*									-	0	0
10	AS ₃ *										_	0
11	S*											_

0 = compatible, 1 = not compatible

The Chemical Company

- 10. CS*-AS₃*-S*
- 9. A-CS*-AS₃*
- 8. A-C₄A₃S*-CS*
- 7. $CA_6 A C_4 A_3 S^*$
- 6. $CA_2 CA_6 C_4A_3S^*$
- 5. CA- CA₂-C₄A₃S*
- 4. $C_{12}A_7$ -CA- $C_4A_3S^*$
- 3. $C_3A-C_{12}A_7-C_4A_3S^*$
- 2. $C-C_4A_3S^*-CS^*$
- 1. $C-C_3A-C_4A_3S^*$

Phase assemblage in the system C-A-S*

Change in phase composition

100 100 MINERALOGICAL COMPOSITION (wt.%) 80 80 AĪS3 Ī CA2 C4A3Ŝ 60 60 А сŝ CA6 40 -CA 40 -20 20 0 0 100 (wt.%) 60 $\overset{0}{\text{CAC1}}$ 20 40 80 SO3

> Master Builders

Phase compatibility in the system C-S-A-S*

Phase compatibility matrix in the system C-S-A-F-S* relevant to SAB cement

	Phases	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	C ₂ S	-	0	0	0	0	0	0	0	0	0	0	0	0	0
2	С		_	1	0	1	1	0	1	1	0	1	1	0	0
3	C_3S_2			_	1	1	1	1	1	1	1	0	0	1	0
4	C ₃ A				_	0	1	1	1	1	0	1	1	0	1
5	C ₁₂ A ₇					_	0	1	1	1	0	1	1	0	1
6	CA						-	1	0	0	0	1	0	0	1
7	C ₂ F							_	0	1	0	1	1	0	0
8	CF								-	0	0	1	1	0	0
9	CF ₂									_	1	0	0	0	0
10	C ₄ AF										_	1	1	0	0
11	F												0	0	0
12	C ₂ AS												-	0	0
13	$C_4A_3S^*$													_	0
14	CS*														_

 C_2S + $CS^* \rightarrow C_5S_2S^*$ (stable 850 to 1100°C) C + $C_2S \rightarrow C_3S$ (above 1250°C)

0 = compatible, 1 = not compatible

The Chemical Company

- 9. C_2 S-CA-CF₂-C₂AS-C₄A₃S*
- 8. C_2 S-CA-CF- C_4 AF- C_4 A_3S*
- 7. C_2S -CA-CF-CF₂-C₄A₃S*
- 6. $C_2S-C_{12}A_7-CA-C_4AF-C_4A_3S^*$
- 5. $C_2S-C_3A-C_{12}A_7-C_4AF-C_4A_3S^*$
- 4. $C_2S-C_3S_2-F-C_2AS-CS^*$

- 2. $C_2S-C-C_2F-C_4AF-CS^*$
- 1. $C_2S-C-C_3A-C_4AF-C_4A_3S^*$

Phase assemblage in the system C-S-A-F-S* relevant to SAB clinkers

The Chemical Company

 $10.C_2S-C_2F-CF-C_4A_3S^*-CS^*$ $11.C_2S-C_2F-CF-C_4A_3S^*-CS^*$ $12.C_2S-C_2F-CF-C_4A_3S^*-CS^*$ $13.C_2S-CF-CF_2-C_4A_3S^*-CS^*$ $14.C_2S-CF_2-F-C_2AS-CS^*$ $15.C_2S-CF_2-F-C_2AS-CS^*$ $16.C_{2}S-CF_{2}-F-C_{4}A_{3}S^{*}-CS^{*}$ $17.C_2S-CF_2-C_2AS-C_4A_3S^*-CS^*$ $18.C_2S-F-C_2AS-C_4A_3S^*-CS^*$

Phase assemblage in the system C-S-A-F-S* relevant to SAB clinkers

SAB primarily from by-products – (chemical composition of raw materials)

Oxides	Limestone	Fly ash	Gypsum
CaO	53.44	3.64	32.55
SiO ₂	0.36	53.65	_
AI_2O_3	1.18	28.26	_
Fe_2O_3	0.08	7	_
SO ₃	0.04	0.05	46.51
MgO	1.02	2.99	_
TiO ₂	_	1.5	_
LOI	42.33	2.4	20.04

Ternary plot showing zone of SAB clinker

Master Builders

Phase field map of the system limestone - fly ash - gypsum

12. Chasely (mi 2) *l*i5 28 (wt.%) 32 LIMESTONE FLY ASH

Change in phase composition in the system limestone-fly ash (no gypsum)

Master Builders

Change in phase composition in the system limestone-fly ash-gypsum (5%)

Proportion of raw materials

Raw Mix No. Limestone Fly ash Gypsum 14.0 15.0 71.0 1 2 76.5 17.5 15.0 3 20.0 15.0 65.0 63.5 16.5 20.0 4 5 60.0 20.0 20.0 22.5 20.0 6 57.5 7 64.0 14.0 25.0 17.5 8 57.5 25.0 20.0 9 55.0 25.0 10 15.0 65.0 20.0 11 13.0 25.0 62.0

Phase composition of cements

Cement No. C2S C2AS C4A3S* CS* С C4AF CF2 45.2 23.8 6.8 0.0 0.0 14.8 9.5 1 2 52.4 14.0 7.8 0.0 16.9 8.8 0.0 3 8.5 18.4 12.8 57.4 7.4 0.0 0.0 4 52.7 10.0 8.0 0.0 0.0 16.4 12.8 5 59.6 1.0 8.8 0.0 0.0 18.4 12.0 6 56.5 0.0 0.0 3.7 12.5 14.6 12.7 7 50.0 10.1 7.7 0.0 0.0 15.0 17.0 8 57.0 1.1 8.6 0.0 0.0 17.0 16.2 9 54.0 0.0 0.0 3.6 12.3 13.3 16.8 10 49.7 14.4 7.5 0.0 13.2 0.0 15.5 11 48.0 12.8 17.3 7.4 0.0 0.0 14.4

> Master Builders

Compressive strength of mortar specimen (MPa)

Cement No.	1day	7 days	28 days
1	6.8	10.5	18.3
2	7.8	9	17.8
3	1.5	3	5
4	17.7	26.5	36.3
5	11.2	19	21.9
6	7.5	13	18.3
7	7.5	30.5	36.8
8	7.8	8.5	15
9	9.6	12.8	19.5
10	18.8	28	36
11	5	15.5	20

Hydration reactions of SAB cements

 $C_4A_3S^* + 6C + CS^* + 96 H \rightarrow 3C_3A(CS^*)_3 H_{32}$ $C_4A_3S^* + CS^* + 32 H \rightarrow C_3A(CS^*)_3 H_{32} + AH_3$ $C_2S + H \rightarrow C-S-H + CH$ $CH + AH_3 + CS^* + H \rightarrow C_3A(CS^*)_3 H_{32}$

SAB cements using red mud

- S. Sahu, "Preparation of Sulphoaluminate Belite Cement from Fly Ash and Red Mud", 4th NCB International Seminar on Cement and Building Materials, VIII-12 New Delhi, Dec. 11, (1994).
- Singh, M., Upadhayay, S. N., and Prasad, P. M., "Preparation of Special Cements from Red Mud" Waste management, Vol 16, pp 665-670 (1996).

SAB cements using CFBC ash/ S-rich fly ash

- Belz G. et al, "Fludized Bed Combustion Waste as a Raw Mix Component for the Manufacture of Calcium Sulphoaluminate cements" (2005).
- 2. Bernardo, G. et al, " Calcium sufoaluminate cements made from fludized bed combustion wastes" (2007).
- 3. Arjunan, P. et al, "Sulfoaluminate cement from lowcalcium and sulfur-rich and other industrial byproducts, CCR 29, 1305-1311 (1999).

SAB cements using slag

- 1. Ikeda, K. " Cements along the join $C_4A_3S^* C_2S^*$, 7th ICCC, III-31, Paris (1980).
- Adolfsson, D., " Steelmaking slags as raw material for sulphoaluminate belite cement" Ph. D. Thesis, Department of Chemical Engineering and Geosciences, Division of Process Metallurgy, Luleå University of Technology (2006).

Concluding Remarks

- Production of SAB cement can significantly reduce energy consumption compared to OPC.
- Use of processed or semi-processed by-products can further reduce the energy requirement.
- Phase compatibility data combined with mass balance equations can predict the phase assemblage of the cements with various raw mix proportion.
- This approach can be used to screen various raw materials for the suitability of SAB cement production.
- Cements with a wide range of properties can be produced.

