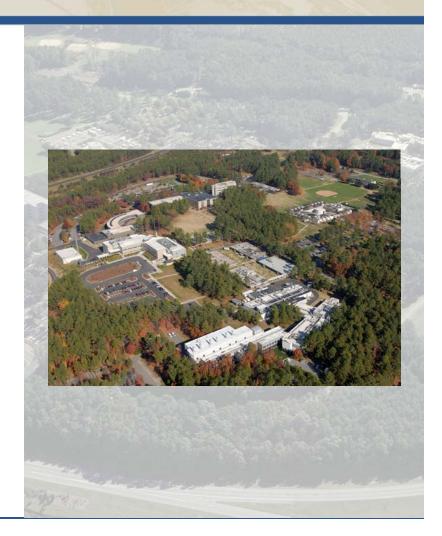


Carbon Capture Technologies and Implementation Challenges for the Cement Industry

Tom Nelson, Vijay Gupta, Raghubir Gupta, David Myers RTI International


Anna Maria Workshop IX Holmes Beach, Anna Maria Island, Florida November 11-14, 2008

www.rti.org

RTI International is a trade name of Research Triangle Institute

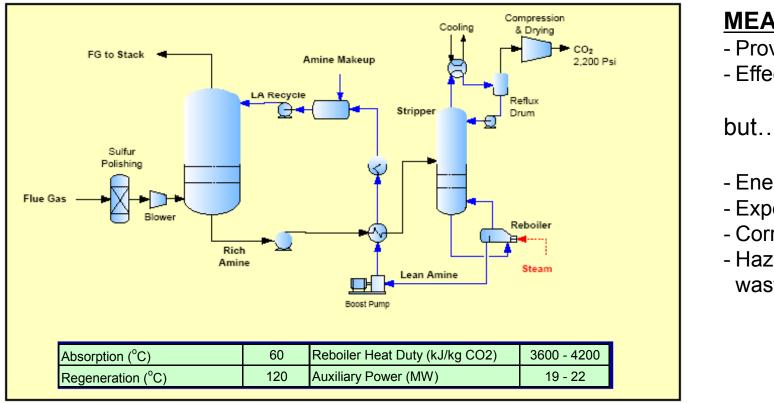
RTI International

- The second largest non-profit research institute in the US
- Mission: To improve the human condition by turning knowledge into practice
- Headquartered on 180-acre campus in Research Triangle Park, N.C.
- Founded in 1958
- FY2008 Revenue \$ 710 million
- 2600 staff working in over 40 countries

CO₂ in the Cement Industry

- Cement industry releases 1.3 1.7 GtCO₂ annually
 - ~5% of global anthropogenic CO₂ emissions
 - General metric: 1 ton CO_2 emitted for every 1 ton clinker produced
- Two sources of CO₂:
 - Raw material-derived: $CaCO_3 \rightarrow CaO + CO_2$
 - Fuel-derived: $C + O_2 \rightarrow CO_2$
- What CO₂ regulatory environment awaits us? Who knows?
 - Multiple Congressional bills proposed (e.g. Lieberman-Warner, etc.); AB 32 legislation in California; Europe's cap and trade
 - Some form of carbon regulations are probably on the horizon
 - Primary target: Fossil-fuel fired power plants (~43% of global CO₂ emissions)
 - Secondary targets: Cement plants, steel mills, refineries

Carbon Mitigation Options


Carbon mitigation options

- Energy efficiency, blended cements, alternative binders, carbon neutral fuels, and...
- ...several post-combustion CO₂ capture technologies are compatible with cement plant exhausts
 - Chemical solvents: amines, ammonia, carbonate solvents
 - Physical solvents: methanol, ionic liquids
 - Membranes: polymers, molecular sieves
 - Physical sorbents: metal organic frameworks
 - Chemical sorbents: carbonates, CaO, amine-enhanced zeolites

Conventional Technology: Monoethanolamine (MEA)

Amine CO₂ scrubbing

MEA Process

- Proven

- Effective

but...

- Energy intensive
- Expensive
- Corrosive

- Hazardous

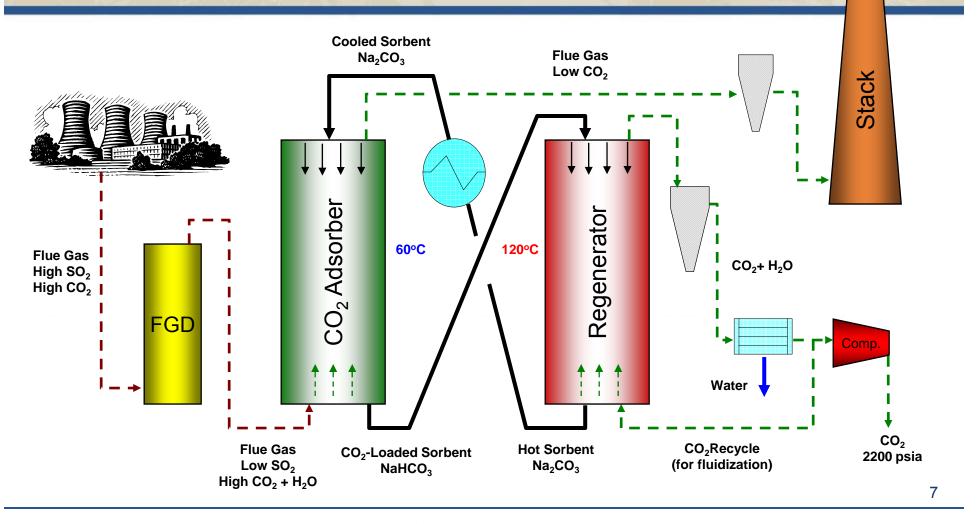
waste produced

Source: Existing Coal Power Plants and Climate Change ..., 2008 Energy Technology Forum, Ciferno J., DOE/NETL

5

www.rti.org

RTI's Dry Carbonate Process


RTI's objective has been to develop a carbon dioxide capture technology that is

- Based on a solid, regenerable, carbonate sorbent
- Applicable to flue gases of coal and natural gas-fired power plants
- Intended for retrofit in existing plants
- Less expensive and less energy intensive than conventional technologies
- Of relatively simple process design

7 years of R&D effort with \$7MM of DoE funding committed to date.

The Dry Carbonate Process CO₂ Capture from Flue Gas

www.rti.org

The Dry Carbonate Process A Closer Look at Reaction Chemistry

CO₂ Adsorption (Carbonation)

 $Na_2CO_3(s) + CO_2(g) + H_2O(g) \leftrightarrow 2NaHCO_3(s)$

Exothermic $\Delta H_r^{\circ} = -3082 \text{ kJ/kg CO}_2$ Operating temperature: < 80°C

Sorbent Regeneration

 $2NaHCO_3(s) \leftrightarrow Na_2CO_3(s) + CO_2(g) + H_2O(g)$

Endothermic $\Delta H_r^{\circ} = 3082 \text{ kJ/kg CO}_2$ Operating temperature: > 100°C

Contaminants

 $Na_2CO_3(s) + SO_2(g) + \frac{1}{2}O_2(g) \rightarrow Na_2SO_4(s) + CO_2(g)$ $Na_2CO_3(s) + 2HCl(g) \rightarrow 2NaCl(s) + CO_2(g) + H_2O(g)$

Reactions with SO₂ and HCl are irreversible at process conditions

No observed effects by O_2 , Hg, and NO_x

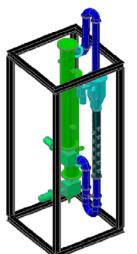
Advantages and Challenges of Using Sodium Carbonate

Advantages

- Lower total regeneration energy requirement (vs. conventional MEA)
- Lower CO₂ removal cost
 - Readily available, abundant, and inexpensive sorbent.
 - No flue gas pretreatment (no heating, no cooling, no guard beds)
- Non-hazardous and non-toxic sorbents; no hazardous waste generated

Challenges

- Large solids handling/circulation requirements
 - Best-case scenario $\rightarrow Na_2CO_3 : CO_2 = 2.4 : 1 \text{ (mass ratio)}$
 - High capacity sorbents; best available solids handling technologies
- Exothermic CO₂ adsorption affects reaction equilibrium
- CO₂ removal requires equimolar amount of water
- Condensed water causes raw Na₂CO₃ to agglomerate



RTI's Technology Development

Sorbent Development

- Raw materials
 - Higher theoretical capacity (~40%), inexpensive
- Supported sorbents
 - Improved reactivity, improved attrition resistance, improved ability to adsorb heat during exothermic CO₂ removal
- ~225 kg supported sorbent manufactured to date

Process Development

- Entrained-bed reactor (Dispersed phase)
 - > 90% capture achieved
 - Better heat control, better sustained reactivity

10

www.rti.org

The Dry Carbonate Bench-Scale Unit

System Specifications

- Designed to "treat" up to 200 SLPM of flue gas
- Sorbent circulation rate: 10 150 kg/hr
- Screw conveyors: 20 cm wide and 2 m tall
- Heated screw conveyor is rated to 550 kPa (~160°C saturated steam)
- City water used for cooling

Note:

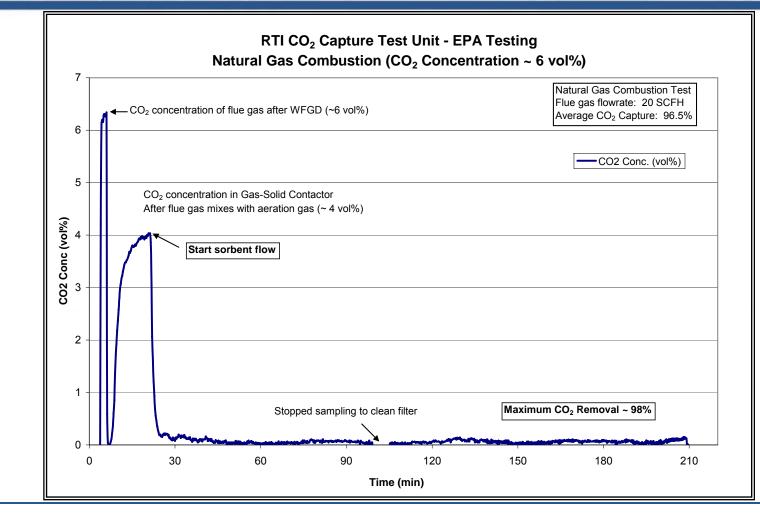
This "integrated" system was built after first verifying the performance of each process component individually

www.rti.org

Field Testing of the Dry Carbonate Unit U.S. EPA – Research Triangle Park, NC

- EPA's Multi-pollutant Control Research Facility
 - 4.2 Million kJ/hr (1.2 MW_t) multi-fuel fired facility
 - ~10 tonne/day CO₂ produced
 - Field test site used to evaluate emission control technologies
- RTI's Dry Carbonate Unit installed and operated at EPA site
 - Testing was coordinated with ARCADIS, Inc. (EPA's on-site contractor)
 - ~3-5% slipstream of EPA's flue gas
- Objectives
 - Evaluate process and sorbent using actual combustion flue gas
 - Identify optimal operating conditions
 - Evaluate sorbent degradation and effects of flue gas contaminants

RTI's Dry Carbonate Process prototype was tested at EPA for >230 hrs using coal & natural gas flue gas



12

Field Testing at U.S. EPA Natural Gas Combustion

www.rti.org

Key Findings of Field Testing at U.S. EPA

- Sorbent is capable of sustained >90% CO₂ capture in both coal- and natural gas-derived flue gas
- Sorbent regeneration more effective at 120 140°C (EPA steam header)
- No negative effects observed due to contaminants
 - No significant particle changes, no agglomeration, CO₂ capture not inhibited
- After > 1000 hrs of circulation, sorbent shows minor signs of wear
 - Slightly lower avg. particle size, surface area
 - Larger scale testing will be better for attrition analyses
- Further work required to optimize:
 - heat control in the adsorption unit to improve heat removal from the sorbent
 - Sorbent loading capacity for economical operation of process

Current R&D Findings and Path Forward

Bench-scale findings

- Sorbents with improved CO₂ loading capacities produced [> 15 wt% CO₂]
- Modified designs for the adsorption and regeneration reactors have been evaluated
- CO₂ capture and loading rate are greatly improved with improved heat transfer in absorber

Process development and demonstration

- Construction of a 0.3 MT CO₂ captured per day unit
- Long-term testing planned at RTI's Central Utility Plant and EPA site
- Testing expected to begin in mid-2009, last 8-10 months
- Data will be used to scale-up to 5 10 MT CO₂ capture per day
- Perform a comprehensive economic analysis

Path to Commercialization

Anticipated development timeline for RTI's Dry Carbonate Process

2001

Laboratory and "proof of concept" studies

2003 Novel CO₂ capture sorbent developed based on supported sodium

carbonate

2005

RTI field testing proves feasibility of dispersed gassolid reactor design

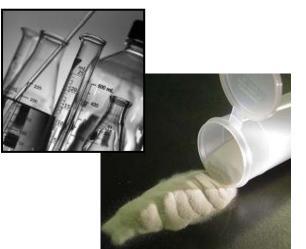
2007

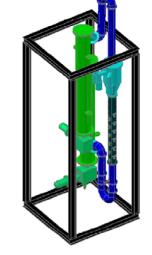
Bench-scale system successfully tested at coal-fired research facility

2010

Pilot-scale demonstration of technology – up to 10 MT CO₂ captured per day

2013 Large-scale


demonstration at


captured per day

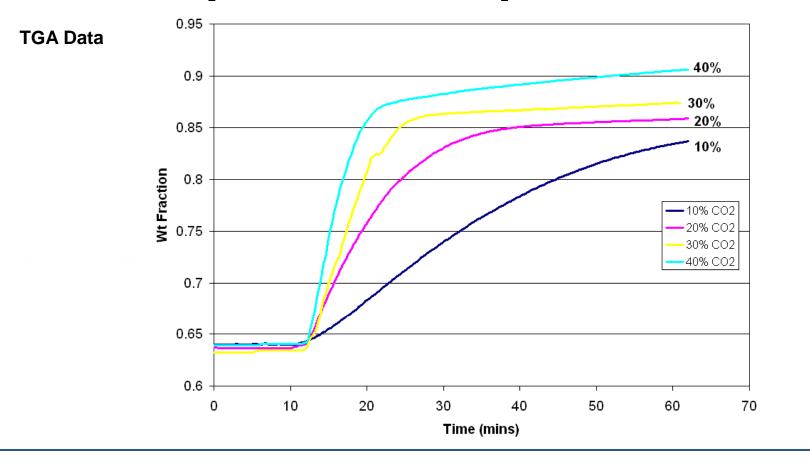
- 500 MT CO₂

Commercial Technology utility company site

~2016

Cement Plant vs. Power Plant

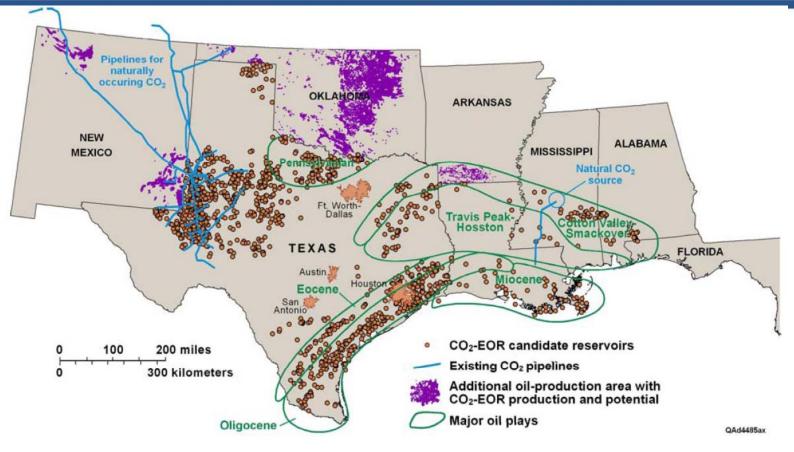
Comparison of exhaust gases at "typical" cement plant & power plant


	Cement Plant ¹	PC Power Plant ²
CO ₂ (vol%)	22.4	13.1
H ₂ O (vol%)	7.2	17.3
SO ₂ (vol%)	n/a	< 0.01
O ₂ (vol%)	2.3	2.4
N ₂ (vol%)	68.1	66.4
Temperature	160°C	60°C
Pressure	1 atm	1 atm
Flow rate	3,043 m ³ /min	44,886 m³/min
CO ₂ Flow rate	~81 MT/hr	~765 MT/hr
Solids feed rate	~100 MT/hr (kiln feed)	~295 MT/hr (coal feed)

¹Based on St Marys cement plant case study in S. M. Nazmul Hassan thesis, University of Waterloo, 2005 (2,400 TPD clinker rate) ²Based on case study in DOE's *Cost and Performance Baseline for Fossil Energy Plants*, August 2007 – 680 MWe PC power plant

Higher CO₂ Concentration

Comparison of CO₂ capture rates at various CO₂ feed concentrations



18

11/26/2008

www.rti.org

CO₂ EOR Potential in the Gulf Coast

Ref: West Texas Geological Society Publ. #05-115 Fall Symposium, October 26-27, 2005 Mark H. Holtz, Vanessa Nunez Lopez, and Caroline L. Breton

19

www.rti.org

Continuation of Cement Plant Evaluations

- Comprehensive economic analysis of Dry Carbonate Process installed at a cement plant
 - Capital & operating costs based on \$/kg CO₂ removed & \$/ton cement produced
- Evaluation of equipment size, full integration scheme, materials handling & storage, land use, resource availability, etc
- Testing of new sorbents under high CO₂ concentration and simulated cement exhaust gas
- Evaluation of CO₂ compression to pressures needed for pipeline delivery of CO₂ for EOR applications

