Waterloo C Development System

7.2.6 Interfacing with Assembler Code

Assembler language routines which conform to either the Waterloo C default register
convention or an OS linkage convention can be called directly from a Waterloo C
function, possibly with a #pragma linkage directive. Alternatively, specialized
interface functions can be written to handle a variety of linkage conventions.

The following routine can be called from Waterloo C with up to ten parameters. The
first parameter is the address of an assembler language routine which follows the OS
370 calling conventions. The next 9 parameters are stored in memory and a pointer
to them is passed in R1 to the assembler routine. The assembler routine may return a
value in RO which will be passed back as the value of the C function calil.

@INTER CSECT
ENTRY INTER

INTER STM 12,1,4*10(12) SAVE REGISTERS
LA 13,4*10+4%6(,12) GET FREE AREA
L 15,0¢(,12) GET ROUTINE
LA 1,4(,12) POINT AT PARMS
BALR 14,15 CALL
LR 11,0 SET RETURN VALUE
LM 12,1,4*10(12) RESTORE REGISTERS
BR 13 RETURN TO CALLER
END

The following is an example of an OS assembler routine which could be called using
the above interface routine. This assembler routine expects R1 tc peint to three
integer values. The sum of these values is returned in RO.

@ADDUP CSECT
ENTRY ADDUP

ADDUP STM 15,12,12(13} SAVE REGISTERS
LR 12,15 GET ADDRESSABILITY
USING ADDUP, 12 e .
L 2,0(,1} GET FIRST PARM
-y 2,44{,1) ADD 2ND PARM
A 2,8(,1} ADD 3RD PARM
ST 2,16(, 13} STORE RETURN VALUE
LM 15,12,12(13) RESTCRE REGISTERS
BR 14 RETURN TO CALLER
END

168 The Waterloo C Run-time Environment

Reference

The following C program uses the above routine by calling the Inter routine. The
output of this program is the sum of 1, 2 and 3.

#include <stdio.h>

extern void ADDUP() ;
extern int inter(void *rtn, ... };

int main{()
{
printf ("%d\n", inter(ADDUP, 1, 2, 3));
return(0);

}

The library functions acall and oscall provide similar assembler interfaces (see
the function descriptions for more details).

Waterloo C Run-time Conventions 169

Waterloo C Development System

7.2.7 Waterloo C and VS FORTRAN

Although C is applicable to a wide variety of programming problems, it may be
useful to be able to call existing subroutines in VS FORTRAN. For example,
engineering and scientific utility packages, vector processor libraries and complex
number function libraries are some of the most commonly used FORTRAN
applications. Waterloo C provides facilities for C functions to call VS FORTRAN
routines, as well as for VS FORTRAN programs to call C functions.

Calling VS FORTRAN Routines from C

Four functions are provided to allow Waterloo C programs to call VS FORTRAN
routines: fvsinit,fvscalli,fvscallr and f;(;ﬁc«@fa'ﬁ.

If the main part of the program is written in C, the fvsinit function must be called
when VS FORTRAN input or output operations are to be used.

fvscalli and fvscallr are used to call FORTRAN routines that return int or
double values respectively. These routines have similar formats and perform
almost identically. The first parameter is the address of the FORTRAN routine. The
second parameter is the number of arguments to be passed. The remaining
parameters are the addresses of the values to be passed.

For example, the following C program calls the FORTRAN function DGAMMA,
which returns a double value:

extern double fvscallx():;
extern /*FORTRAN*/ double DGAMMA() ;

int main()
{
double retval;
double parml;

parml = 5.0;

retval = fvscallr(DGAMMA, 1, &parml };
printf("GAMMA %f = %f", parml, retval);
return(0);

170 The Waterloo C Run-time Environment

Reference

DGAMMA should have the form:

FUNCTION DGAMMA (PARM1)
REAL*8 DGAMMA
REAL*8 PARMI1

Each of the interface functions is described in more detail in the Waterioo C Run-
time Library Reference.

Calling C Functions from VS FORTRAN

To call a C function from a FORTRAN program, the C run-time environment must
first be initialized by calling the function CINIT. This function initializes the C run-
time stack, memory manager, and I/O system. A non-zero value is returned if an
error condition occurs; otherwise, zero is returned, Signal handling is not initialized
so that any run-time errors will use the VS FORTRAN error handling.

The routine CEXIT should be called after the last use of C facilities to close any
opened files and to release any memory that was allocated by the C functions.

To call C functions, the interface routines CCALL, ICFUNC and DCFUNC are
provided. CCALL can be used to call a C function that does not return a value.
ICFUNC can be used to call a C function that returns an integer value and DCFUNC
can be used to call a C function that returns a REAL*8 value. To allow maximum
flexibility, all of these routines pass the address of the VS FORTRAN argument list
to the C function.

The VS FORTRAN argument list contains the addresses of variables, arrays,
character strings, and subprogram arguments. The last argument address in the
argument list has the high order bit set to one.

The full word preceding the argument list contains the displacement of the length list
from the start of the argument list. The length list is a list of addresses of full word
lengths for character string arguments. A length address entry is reserved for every
argument, however it is valid only if the argument is a character string. The
displacement from the beginning of this list for a length address is the same as the
displacement for the corresponding argument address from the start of the argument
list.

Waterloo C Run-time Conventions 171

Waterloo C Development System

The FORTRAN argument list has the following form:

offset of length address table

parameter list —>
pointer to address of routine

address of parameter 1
address of parameter 2
address of parameter 3

address of length parm 1
address of length parm 2
_ address of length parm 3

For example, the C function df romi, that returns a double value with the same
value as the first parameter (of type int), can be called as follows:

EXTERNAL CINIT, CEXIT
EXTERNAL DCEFUNC, DFROMI
REAL*8 DCFUNC
INTEGER*4 CINIT

C
IF (CINIT() .EQ.0) GOTO 20
WRITE (6, 10)
10 FORMAT (' CINIT FAILED'")
STOP
20 CONTINUE
c
I =10
WRITE{6,30) (DCFUNC{ DFROMI, I))
30 FORMAT(' DOUBLE VALUE = ', F20.4)
Cc
CALL CEXIT
Cc
STOP

END

172 The Waterloo C Run-time Environment

Reference

The C function would have the form:

double dfromi(int **arglist)
{
double retval;
int parml;

parml = *arglist[1 1;
retval = parml;
return(retwval };

}

The VS FORTRAN Version 2 Programming Guide (SC26-4222) contains more
information about VS FORTRAN linkage conventions.

Waterloo C Run-time Conventions 173

Waterloo C Development System

7.2.8 Separation of Global Data — The SPLIT Option

The SPLIT compiler option causes global read/write data (modifiable variables
defined outside a C function) to be placed in a separate object (and assembler) file
from the read-only code and data. The option simplifies the adaptation of programs
for use in run-time environments where separate read-only and read-write object
code is required.

When the SPLIT option is specified, R1 (or R8, if an OS-style convention is used) is
set in each function prologue to point to the start of the block of global data for the
source file, if it exists. A global variable is then accessed by retrieving the difference
between the address of the variable and the address of the data block, as generated by
the compiler, and adding it to R1 (or R8), yielding the address of the variable.

For example, consider the following program, VARS:

#include <stdio.h>
/* VARS -- A Program With Read/Write Data. */

int varl;
int var2;

int main{ int argc,
char **argv)
{
var?2 = 0;
return(var2);

}

When it is compiled with the SPLIT and ASMSRC options, code similar to the
following is written to the assembler file (DD ASM1):

@VARS CSECT
EXTRN VARSG@ -

* 1: #include <stdio.h>
* 2:
* 3: /* VARS -~ A Program With Read/Write Data. */
* 4:
* 5: int varl;
* 6: int var2;
* 7
* 8: int main(int argc,
* 9: char **argv)
ENTRY MAIN

174 The Waterloo C Run-time Environment

Reference

MAIN Ds 0X
USING MAIN, 11
STM 14,2,8(12)

LR 14,11
L 1,#L2
DROP 11
USING MAIN, 14
10: {
11: var2 = 0;
SR 2,2
ST 2,4(0,1)
* 12: return{ var2 });
L 11,4(0,1)
* 13: }
LM 14,2,8(12)
BR 13
#L2 DS 0H
DC AL4 (VARS@)
DROP 14

EXTRN S$CSTART

ENTRY SREFS$CST
SREF$CST DS 0X

DC AL4 ($CSTART)

END

Code similar to the following is written to the secondary assembiler file (DD ASM?2):

VARSE CSECT
ENTRY VARI1
VAR DS 0X
DC 4X'00°
ENTRY VAR2
VAR2 Ds 0X
bC 4¥X'00"
END

By specifying the const attribute, read-only (initialized) data can be kept in the
code file.

Waterloo C Run-time Conventions 175

Waterloo C Development System

7.2.9 Register-Based Global Data — The RENT Option

The RENT compiler option provides a capability to define an arbitrarily long,
register-based, read/write data area. As for the SPLIT option, global data is placed
in a separate object and assembler file, however variables are accessed using offsets
from the read/write data area base register, R10. Separate data files are only
generated when necessary.

Because of the different variable access techniques, object files that are compiled
using this option should not be linked with files that are not compiled with this
option.

When the RENT option is specified, a function that accesses global data sets R1 to
the difference between the start of the data area for the program and the start of the
data area for the file in which the function is contained. (RS is used instead of R1 if
an OS-style linkage convention was specified.) Therefore, a particular global
variable is referenced by adding the address contained in R10 to the displacement
contained in R1 (or R8), and then adding the difference between the relative address
of the variable and the relative address of the start of the data area for the file (a
constant generated by the compiler).

For example, consider the following program, VARS:

#include <stdio.h>
/* VARS -- A Program With Read/Write Data. */

int varl;
int var2;

int main(int argc,
char **argv)
{
var2 = 0;
return{ var2 j};

}

When it is compiled with the RENT and ASMSRC options, code similar to the
following is written to the assembler file (DD ASM1):

@VARS CSECT
EXTRN SCRWDAT
EXTRN VARSE

176 The Waterloo C Run-time Environment

Reference

* 1:
* 2:
* 3:
* 4:
bl 5:
* °H
x 7:
* 8:
* 9:
MAIN

* 10
* 11
* 12:
* 13
#L2
SREF$CST

#include <stdio.h>

/* VARS -- A Procgram With Read/Write Data.

int varl;
int var2;

int main(int argc,
char **argv)
ENTRY MAIN
DS 0X
USING MAIN, 11
STM 14,2,8(12)
LR 14,11
L 1, $L2
DRCP 11
USING MAIN, 14
{
var2 = 0;
SR 2,2
ST 2,4(10, 1)
return{ var2);
L 11,4(10,1)

LM 14,2,8(12)

BR 13
Ds OH
DC AL4 (VARSE@-SCRWDAT)
DRCP 14

EXTRN $CSTART
ENTRY $REFSCST

Ds 0X
bC AL4 ($SCSTART)
END

*/

Code similar to the following is written to the secondary assembler file (DD ASM2):

VARS@

VAR

VAR2

CSECT

ENTRY VAR1
Ds 0X

DC 4x'00"
ENTRY VARZ
Ds [th ¢

DC 4x'00”’
END

Waterloo C Run-time Conventions

177

Waterloo C Development System

By specifying the const attribute, read-only (initialized) data can be kept in the
code file. The section Preparing a Program for the LPA Using the RENT Option
describes a procedure that can be used to link a program that was compiled with this
option,

178 The Waterloo C Run-time Environment

Reference

7.2.10 Register-Based Global Data Using AUX Files

A method of accessing uninitialized, modifiable (read/write global) variables using a
base register involves the use of an "auxiliary storage allocation information” (AUX)
file. Each file in the program must be compiled with the AUX compiler option, as
described in the Compiler Options section, which specifies a file that describes the
layout of the global data area.

Note that all files in a program that reference global variables must be compiled with
this option, if it is used.

Each line in an AUX file is either an offset or an origin directive, or an
include directive that includes another AUX file. A line of the form

origin <where>

sets the origin (that is, where the next variable begins) to <where> bytes beyond the
start of the global data area. A line of the form

offset <variable> <size>
reserves <size> bytes at the current origin for <variable>.
Variables that are to be located in this area must be declared as extern in any C
file where they are referenced. The compiler reads the AUX file declarations to

resolve any references to them. Thus, such variables should not be defined in any
file.

Waterloo C Run-time Conventions 179

Waterloo C Development System

For example, consider the following segment of C source code:

struct info
{
char name{ 20];
short age;
int salary;
}:

struct llist
{

struct llist *back;
struct llist *forward;
struct info data_area;

}s

extern struct llist FirstGuy:
extern struct info Me, MyBoss;

extern int Profits;

An AUX file to describe these variables would be:

origin 0

offset Me 26 % location 0
offset MyBoss 26 % 26

offset FirstGuy 34 % 52

offset Profits 4 $ 86

% Now, origin is 90

The origin of each element can be calculated as the origin of the previous entry, plus
the length of the previous entry. It is necessary to calculate the size of each item in
bytes. For example, struct info has a size of 20+2+4, or 26 bytes; struct
1list has a size of 4+4+26 or 34 bytes (each pointer takes 4 bytes and st ruct
info has size 26 bytes).

The library initialization routine $STARTUP sets R10 to the start of a 4K data area
for global variables. Thus, in the example above, the variable Me is at the address
contained in R10 and FirstGuy is at the location obtained by adding 52 to the
contents of R10.

180 The Waterloo C Run-time Environment

Reference

7.2.11 Macro Expansion Of Function Calls

Calls to the C functions strlen, strcpy, memcmp, memcpy and memset can
optionally be processed as macro expansions. When a call to one of these functions
is encountered, code to perform the comresponding operation is generated directly,
using one of the System/370 MVCL, CLCL and TRT instructions. The library
function is not referenced.

The #pragma inline preprocessor directive is used to indicate that a function is
to be generated inline and the #pragma callable directive is used to indicate
that a function call is to be generated. For example, the following sequence indicates
that code for the st rlen function should be generated inline, but code for st rcpy
is not.

#pragma inline strlen
#pragma callable strcpy

While the inline code is larger than a call to the library function would normally be,
it is usually more efficient because no parameter passing or function linkage is
required. This feature is most useful when one of the above functions is called many
times within a frequently repeated code section.

Waterloo C Run-time Conventions 181

Waterloo C Development System

7.2.12 Waterloo C Library Read/Write Data
All of the global read/write data used by the library is found in two data files.

"WCOS.CLIB.C(SIOBRWD) ' contains the data for C library FILE structures,
pointers to which are returned by the £open function.

"WCOS .CLIB.C(SCLIBRWD) ' contains a pointer to the library read/write data
area that is used by the C functions that are called from a FORTRAN program.

182 The Waterloo C Run-time Environment

Reference

7.2.13 Stack Overflow Checking — The STACKCHK Option

During execution, memory for auto variables, parameters and register save areas for
a C function are allocated using a stack protocol from a memory pool that is defined
at program startup time. The STACKCHK compiler option allows a programmer to
request that functions within a source file should have stack overflow checking code
generated. Stack overflow checking is accomplished by generating a call to the
library routine $STAKCHK at the start of the routine to be generated. $STAKCHK
verifies that there is sufficient space remaining on the run-time stack to allow the
function to execute. If insufficient space remains, a stack overflow exception is
generated.

For example, consider the HELLO program:
#include <stdio.h>
/* HELLO C -- A First Program. */

int main()

{
printf("hello, world\n");

return(0);

}

If this file is compiled with the STACKCHK and ASMSRC options, code similar to the
following is written to the assembler file (DD ASM1):

@HELLO CSECT
EXTRN $STAKCHK

* 1: #include <stdio.h>
* 2:
* 3: /* HELLO C -- A First Program. */
* 4:
* 5: int main{()
ENTRY MAIN
MAIN DS 0X
USING MAIN, 11
A 12,18¢(,11)
STM 13,14,0(12)
L 14,22¢(,11)
BALR 13,14

DC X'0000007C0000C000"
DcC AL4 ($STAKCHK)

Waterloo C Run-time Conventions 183

= 6:
* 7:
= 8:
* 9:
SREFS$CST
#G1l4e

4P89

Waterloo C Development System

L 13,0(,12)
ST™M 12,2,4(12)
LR 15,12
LA 12,324(,12)
LR 14,11
DROP 11
USING MAIN, 14

{

printf("hello, world\n");

LA 2, #G14¢6
ST 2,0(,12)

L 11, #P89
BALR 13,11

return(0) ;
SR 11,11

H
LM 12,2,4(15)
BR 13
DROP 14
EXTRN 3CSTART
ENTRY SREFS$CST

Ds 0X
DC AL4 ($CSTART)
DS 0X

DC X'88859393966B40A6969993841500°
EXTRN PRINTF

Ds oF
bC AL4 (PRINTF)
END

Note that space for parameters for functions that are called by the current function is
taken into account when the check is performed.

184

The Waterloo C Run-time Environment

