Reference

7.2.5 Register Usage

Waterloo C can use cither of two register conventions: a very efficient
implementation of the C run-time environment (the default), or an optional OS-style
linkage convention. The OS-style convention is used when one of the 0S, 0SFUNC
or OSENTRY compiler options is specified when the program is compiled.

The OS option generates code that assumes that register 12 (R12) is reserved for use
as a run-time stack register and that the function base address is contained in R15
when the function is called. The OSENTRY option generates code that requires no
run-time stack register and that makes no assumption about the function base
address; each function defines a static save area. The OSFUNC option generates
code that contains a call to a routine (SGETSPTR) to retrieve a run-time stack
pointer value; the function base address is assumed to be contained in R15.

When any of these options is specified, all functions defined and referenced in a
source file are assumed to follow the particular linkage convention. An individual
function can be identified as using a particular convention by adding the following
preprocessor directive to the source file:

#pragma linkage <convention> <function>
<convention> can be either clink, os, osfunc or osentry. clink
specifies that the default linkage convention is to be used for the specified function
(even if an OS-style compiler option is specified when the source file in which the
function is referenced is compiled); os, osfunc and osentry specify that the
corresponding linkage is to be used for the indicated function.
For example,

#pragma linkage os namel

causes the compiler to generate OS-style linkage for the function namel which may
be either defined in that source file or called from it.

#pragma linkage clink name2
causes the compiler to generate default-style linkage for the function name?2.
The #pragma linkage directive allows various linkage conventions to be freely

interspersed. Conversions from one convention to another are generated as needed.

Waterloo C Run-time Conventions 153

Waterloo C Development System

The default-style linkage is the convention used in previous versions of Waterloo C
and by the run-time library. Therefore, the use of OS-style linkage is only
recommended for calls to existing assembler routines.

7.2.5.1 Default Linkage Convention

The following is a description of the register convention normally used by the
Waterloo C compiler. This description is divided into three parts:

° the register usage at entry to a function and the function prologue,

° the register usage within a function, and

° the function exit process, called the function epilogue.
This convention is compatible with the linkage convention used in previous versions
of Waterloo C and within the run-time library.
Function Entry

When a C function is called using the default linkage convention, it is assumed that
the following registers contain the specified contents:

R10 the run-time environment register (referred to as the zeropage register in
previous versions, and abbreviated ZP), contains the address of register based
global data and the end address of the run-time library read/write data area;

R11 the linkage register (abbreviated LN), contains the address of the first
executable instruction in the function;

R12 the stack pointer (abbreviated SP), contains the address of parameters and
unused run-time stack space;

R13 the return address register (abbreviated RA), contains the address to which
control will be transferred when the function returns.

A function's parameters are placed, in the order specified by the function call (but not

necessarily the order evaluated), from low address to high address memory on the
run-time stack allocated by the run-time library initialization routine STARTUP. At

154 The Waterloo C Run-time Environment

Reference

entry to a function, the stack pointer (R12) contains the address of the function's first
parameter. The address of the second parameter is obtained by adding the length of
the first parameter to the contents of R12. Access to unused stack space is obtained
by adding the total size of the function's parameters to the contents of R12.

Functions are called with a
BALR 13,11
instruction, which assigns R11 (LN) and R13 (RA) their initial values.

More information about the use of R10 is contained in the Register-Based Global
Data and Register-Based Global Data Using AUX Files sections of this manual.

Function Prologue

To illustrate a function prologue, consider the HELLO program:

#include <stdio.h>
/* HELLO C -- A First Program. */

int main{()
{
printf("hello, world\n"):;
return(0);

}

When it is compiled with the ASMSRC option, code similar to the following is
written to the assembler file (DD ASM1):

@HELLO CSECT

* 1: #include <stdio.h>
* 2:
* 3: /* HELLO C -- A First Program. */
* 4.
* S: int main()
ENTRY MAIN
MAIN DS 0X
STM 12,2,4(12)
LR 15,12
LA 12,32(,12)
LR 14,12

Waterloo C Run-time Conventions 155

USING MAIN, 14
* 6: {

LA 2,#G146
ST 2,0¢(,12)

L 11, #P89
BALR 13,11

* 8: return(0);
SR 11,11

* 9: }
LM 12,2,4(15)
BR 13
DROP 14

EXTRN $CSTART

ENTRY SREFS$CST
SREFS$CST DS 0X

DC AL4 ($CSTART)
#G146 DS 0X

Waterloo C Development System

printf(“hello, world\n"):

DC X'88859393966B40A69699938415C0"

EXTRN PRINTF

#P89 DS OF
DC AL4 (PRINTF)
END

The first instruction to be executed (STM) saves the registers that are used within the
function at an unused location on the run-time stack. The next instruction copies the
current value of the stack pointer into the activation record pointer, R15. R15 would
be used within the function to access any parameters, auto variables, and saved
register values. The activation record, pointed to by R15, is organized as follows:

AR—>
parameters (low address)

auto variables

saved stack pointer (R12)
return address (R13)

saved base register (R14)
saved activation record (R15)
other saved registers (RO-R9)

(high address)

156

The Waterloo C Run-time Environment

Reference

The next instruction in the prologue advances R12 to point to an unused run-time
stack area. Parameters for called functions will be placed in this area.

The final prologue instruction in this example defines the function base register,
R14. R11 is often used within the function as a temporary value and will be used
during the function prologue to return any integer return value.

If a function consists of more than 4,095 bytes of code, an additional instruction is
generated to load R1 with the address of the start of the function's data area.

In some cases, a function prologue may be slightly different. For example, if the
compiler detects that no functions are called and no no temporary data is required,
R12 will be used directly instead of R15. Similarly, R11 may be used as the function
base register instead of R14.

R1 may be used to access a function's read/write data if the SPLIT or RENT

compiler option is specified. The sections Separation Of Global Data and Register-
Based Global Data contain more information about these options.

Function Epilogue

When a function returns, instructions are executed to define a return value (if
necessary), restore the saved register values and transfer control back to the caller, as
specified by the return address. If the function return value is an integer or pointer
type, the value is returned in R11. If the return value is a floating point, structure, or
union type, the return value is returned in the address pointed to by R12 (that is, the
parameter list is overwritten).

Summary

The following summarizes the register usage of the default linkage convention:

FO0-F6 floating point registers; saved by the function prologue and restored by the
function epilogue if modified

RO intermediate result and temporary values

R1 data area base register (as required)

Waterloo C Run-time Conventions 157

Waterloo C Development System

R2-R9 general purpose computations; saved by the function prologue and

R10

R11

R12

R13

R14

R15

158

restored by the function epilogue if modified
(ZP) run-time environment data

(LN) linkage and return value

(SP) pointer to unused stack area

(RA) return address

(CR) code base register

(AR) activation record pointer

The Waterloo C Run-time Environment

Reference

7.2.5.2 OS-Style Linkage Convention

The following is a description of the OS-style register convention, as generated by
the 0S, OSFUNC and OSENTRY compiler options and by the #pragma linkage
directive.

Function Entry

When a function is called using an OS-style linkage convention, it is assumed that
the following registers contain the specified contents. For the OSENTRY option, the

following registers are reserved:

R1 the parameter register (abbreviated PA), points to the list of parameters for
the function;

R10 the run-time environment register (referred to as the zeropage register in
previous versions, and abbreviated ZP), contains the address of register based
global data and the end address of the run-time library read/write data area;

R13 the save area register (abbreviated SA), points to an 18-word register save
area;

R14 the return address register (abbreviated RA), contains the address to which
control will be transferred when the function returns.

If the OSFUNC option is specified, the following registers are reserved:
R1 (as above)
R10 (as above)
R13 (as above)
R14 (asabove)

R15 the linkage register (abbreviated LN), contains the address of the first
executable instruction in the function;

Waterloo C Run-time Conventions 159

Waterloo C Development System

If the OS option is specified, the following registers are reserved:

R1

R10

R12

R13

R14

R15

(as above)
(as above)

the stack pointer (abbreviated SP), contains the address of unused run-time
stack space.

(as above)
(as above)

(as above)

Functions that use an OS-style linkage convention are called with a

BALR 14,15

instruction, which assigns R14 (RA) and R15 (LN) their initial values.

More information about the use of R10 is contained in the Register-Based Global
Data and Register-Based Global Data Using AUX Files sections of this manual.

Function Prologue

To illustrate a function prologue, consider the HELLO program:

#include <stdio.h>

/* HELLO C -- A First Program. */

int main{()

160

{
printf("hello, world\n" };
return(0);

The Waterloo C Run-time Environment

Reference

When it is compiled with the 0S and ASMSRC options, code similar to the following

is written to the assembler file (DD ASM1):

@HELLO
* 1:
* 2:
* 3:
- * 4:
* 5:
MAIN
— * 6:
* 7
* 8:
* 9:
SREFS$CST

CSECT
#include <stdio.h>

/* HELLO C -- A First Program.

int main{()

ENTRY MAIN
DS 0x

STM 14,12,12(13)
LR 9,12

LR 11,15

USING MAIN, 11l
{
printf("hello, world\n");

LA 2,#Gl46
ST 2,0¢(,12)
L 15, #P89
STM 12,1,4(12)
STD 0,28¢(,12)
LA 0,36(,12)
ST 0,8¢(,13)
LR 0,13

LA 13,36¢(,12)
ST 0,4(,13)

SR 0,0
ST 0,8¢(,13)
LR 0,12
LR 1,12

LA 12,108¢(,12)

BALR 14,15

LR 12,0

LM 0,1,20(12)

LM 12,14,4(12)

LD 0,28¢(,12)
return{ 0);

SR 15,15

}
L 14,12(,13)
LM 0,12,20(13)
BR 14
DRCP 11

EXTRN $CSTART
ENTRY SREFS$CST

Ds 0X

DC AL4 ($SCSTART)

Waterloo C Run-time Conventions

161

Waterloo C Development System

#G1l46 Ds 0¥
DC X'88859393966B40A6969993841500"
EXTRN PRINTF

#P89 DS oF
bC AL4 (PRINTF)
END

R9, the activation record pointer, is set to point to the unused stack area, initially
pointed to by R12. All local variables are placed in this area and are accessed using
R12.

R11 is used as the code base register (CR). Occasionally, R8 may be reserved as an
alternate code base register as well.

R13 points to an 18-word register save area, whose space is allocated from the same
stack as the activation record. The second word of this register save area is reserved
for the address of the previous save area, the third word is reserved for the address of
the next save area, and the fourth through 18th words are used to store the registers
R14 through R12. (The second and third words are set up when another function is
called; the first word is not used by Waterloo C.)

It is assumed that the free stack area is large enough to hold both the activation
record and a register save area for any function called by the current function. (An
overflow check can be included, if desired, to test this condition; see the section
Stack Overflow Checking for more information.)

If HELLO is compiled with the OCSFUNC and ASMSRC options, code similar to the
following is written to the assembler file (DD ASM1}):

SHELLO CSECT

= 1l: #include <stdic.h>
* 2:
* 3: /* EELLO C -- A First Program. */
* 4:
* 5: int mainf{)
ENTRY MAIN
MAIN DS 0X

USING MAIN, 15
STM 14,12,12(13)

LR 2,11
LR 3,13
BALR 11,0
B 8(,11)

DC AL4 {SGETSPTR)

162 The Waterloo C Run-time Environment

Reference

L 11,4¢(,11)
BALR 13,11
L 12,0¢(,11)
LR 11,2
LR 13,3
LR 9,12
LR 11,15
DROP 15
USING MAIN,11
61 {
* 7: printf("hello, werld\n");

LA 2,%G146
ST 2,0(,12)

L 15, #P89
STM 12,1,4(12)
sTD 0,28¢(,12)
LA 0,36¢{,12)
ST 0,8(,13)
LR 0,13

LA 13,36(,12)
ST 0,4(,13)

SR 0,0
ST 0,8(,13)
LR 0,12
LR 1,12

LA 12,108¢,12)
EXTRN $GETSPTR

LR 3,11

LR 4,13

BALR 11,0

B 8(,11)

DC AL4 (SGETSPTR)
L 11,4(,11)

BALR 13,11
ST 12,0¢(,11)

LR 11,3
LR 13,4
BALR 14,15
LR 12,0

LM 0,1,20(12)
LM 12,14,4(12)
LD 0,28¢(,12)

* 8: return{ 0),
SR 15,15
* 9: }
LR 2,11
LR 3,13
BALR 11,0
B 8(,11)

Waterloo C Run-time Conventions

163

SREFSCST

#G1l46

#P89

oC

L
BALR
ST

LR
LR

L

LM
BR
DROP
EXTRN
ENTRY
DS

DC

DS

DC
EXTRN
Ds

DC
END

Waterloo C Development System

AL4 (SGETSPTR)

11,4¢,11)

13,11

12,0¢(,11) —
11,2

13,3

14,12¢(,13)

0,12,20(13)

14 B
11

$SCSTART

REFCST

0X -
AL4 ($CSTART)

0X

X'88859393966B40A6969993841500"

PRINTF

oF

AL4 (PRINTF)

The code generated by the OSFUNC option is similar to the code generated by the 0S

option and the only significant difference is that for OSFUNC, SP, the stack pointer

register, is loaded by calling the SGETSPTR routine. With the OS option, it is
assumed that R12 already points to an unused stack area.

If HELLO is compiled with the OSENTRY and ASMSRC options, code similar to the

following is written to the assembler file (DD ASM1):

@HELLO

*

E I . 3

MAIN

164

s W N

CSECT

#¥include <stdio.h>

/* HELLO C -- A First Program. */
int main{()

ENTRY MAIN)
DS 0X

USING MAIN,15

STM 14,12,12(13)

BALR 15,0

B 8(,15)

plel X'00000006°

S 15,4¢(,15)

BALR 12,0

B 8(,12)

bC AL4 (#G150)

L 12,4(,12)

The Waterloo C Run-time Environment

Reference

* 6:
* 7
* 8:
* 9:
SREFS$CST
#Gl4e

. #P89
#G150

LR

LR

DROP

USING
{

9,12
11,15
15
MAIN, 11

printf("hello, world\n");

LA
ST
L
STM
STD
LA
ST
LR
LA
ST
SR
ST
LR
LR
LA
BALR
LR
LM
LM
LD

2,4G146
2,0(,12)
15, #P89
12,1,4(12)
0,28(,12)
0,36(,12)
0,8(,13)
0,13
13,36(,12)
0,44(,13)
0,0
0,8(,13)
0,12

1,12
12,1084, 12)
14,15

12,0
0,1,20(12)
12,14,4(12)
0,28(,12)

return{ 0);

SR

LM
BR
DROP
EXTRN
ENTRY
Ds

DC

Ds

DC
EXTRN
DS

DC

DS

Ds
END

15,15

14,12(,13)
0,12,20(13)
14

11

$CSTART
$REFSCST

0X

AL4 ($CSTART)
0X
X'88859393966B40A6969993841500"
PRINTF

OF

AL4 (PRINTF)
0X

196X

The main difference between the OSENTRY option and the other OS options is that
with OSENTRY, R15 is loaded with the code start address and R12 is set to point to a

Waterloo C Run-time Conventions 165

Waterloo C Development System

fixed (static) block of memory. Recursive functions cannot be compiled with this
option.

The preceding examples are provided only for exampie purposes. Because they
define and reference symbols (main and print£) that are referred to by the run-
time library, they cannot be linked and run unless suitable library interface routines
are provided.

Function Epilogue

When an OS-style function returns, the original values of R14 and RO through R12
are restored from the register save area pointed to by R13. The function's return
value (or return code) is loaded into R15 if it is of integer or pointer type. If it is of
floating point type, it is loaded into floating point register 0. If it is a structure or
union, it is stored at the address pointed to by R12. A branch to the address stored in
R14 is then executed.

Summary

The following summarizes the register usage of the OS-style linkage convention:

" FO floating point return value

F2-F6 floating point registers; saved by the function prologue and restored by the
function epilogue if modified

RO intermediate result and temporary values
R1 (PA) parameter and auto variable area

R2-R7 general purpose compuiations; saved by the function prologue and
restored by the function epilogue if modified

R8 data register, if necessary
RY (AR} activation record pointer

R10 (ZP) run-time environment data

166 The Waterloo C Run-time Environment

Reference

R11

R12

R13

R14

R15

(CR) code base register

(SP) pointer to unused stack area
(SA) 18-word save area

(RA) return address

(LN) linkage register and return code

Waterloo C Run-time Conventions

167

