Waterloo C Development System
Version 3.2
for
OS, MVS and MVS/XA

User's Guide

WATCOM Products Inc.
415 Phillip Street
Waterloo, Ontario
Canada N2L 3X2

M.J. Carmody
D.W. Mulholland
E.M. Ruest
G.L. Simmons

February 1, 1989

Reference

6.1 Supported Language

The Waterloo C compiler translates programs that are written in the C language to
IBM System/370 object or assembler code. It conforms, as far as practical in the OS,
MVS and MVS/XA environment, to the Draft Proposed American National
Standard for Information Systems - Programming Language C, (ANSI
X3J11/88-159), December 1988.

The ANSI language definition was, to a large extent, based on The C Programming
Language, by Brian W. Kernighan and Dennis M. Ritchie (Englewood Cliffs, New
Jersey: Prentice-Hall, 1978); however, the newer document reflects the experience of
several years of C language use. Many of the constructs that have been formalized
in the ANSI draft were introduced in Version 7 of UNIX and have subsequently been
adopted in most implementations of the language. Beyond what is defined in these
publications, consideration has also been given to the /EEE Trial-Use Standard
Portable Operating System for Computer Environments, (IEEE Std 1003.1), April,
1986.

UNIX is a trademark of AT&T Bell Laboratories.

Supported Language 91

Waterloo C Development System

6.2 ANSI Additions to C

Extensions to the Kernighan and Ritchie definition of the C language that have been
incorporated into the ANSI draft standard inciude the following:

. enumerated data types

. structure values as function parameters and return values
. arelaxed structure member name convention.

. trigraph sequences

. the void data type

. new preprocessor features

. generalized rules for value preserving type promotion

. function prototypes

6.2.1 Enumerated Data Types

The enumerated data type facility, a feature common to languages such as Ada,
Pascal and Modula-2, allows a set of symbolic constants to be associated with a
specific type. The constants are given either a default or explicit value definition.
For C enumerated types, the syntax is similar to the definition of a struct. For
example,

enum colours { red, blue, yellow, green }

defines the tag colours as a data type that consists of the four member values
red, blue, yellow and green. Each member is defined as an integer constant
and can be used anywhere in a C program that a constant is valid. By default, the
first member represents the integer constant 0, and subsequent constants are set to
the previous value plus one. Altematively, members can be given explicit values,
such as the character constants "F' and 'M', as in

enum sex { female='F', male='M' }

92 The Waterloo C Compiler

Reference

Variables can then be declared with a tag type, as follows:
enum colours x

This implies that the variable x can only be assigned a member of colours. For
example, the assignment expression

x = red
is valid; however,
x =1

is considered a type incompatibility because 1 is not a member of colours.

6.2.2 Structure Parameters and Return Values

Function calls with structures as arguments cause entire structure values to be

passed. Similarly, functions declared with structure return value types return
- structure values.

struct a { int b; char c; } vy;

struct a func(struct a x)

{

return{ x);

. int main ()
{
y = func(y);
}

This program passes the value of v when the function is called, and then assigns y
the value returned from func.

ANSI Additions to C 93

Waterloo C Development System

6.2.3 Relaxed Structure Member Names

In the original definition of C, the names of the members for a structure were
required to be unique for all member names in a program. This rule has been relaxed
so that member names only have to be unique within a structure.

6.2.4 Trigraph Sequences

For any occurrence in a C source file of one of the following characters, the
corresponding three character sequence could be used instead.

Character | Trigraph

?72=
272
22/
27)
- 272!
27<
22!
27>

] e e D> e

27

For example, the following two C strings are equivalent

"hello, world??/n"

"hello, world\n"
6.2.5 Void Data Type
void is a reserved keyword that specifies the type of an object that has no defined
value. A special case for the void type occurs when a function is defined as taking
a single parameter of this type. Such a function is defined as taking no parameters.

For example,

static void func{ void)

94 : The Waterloo C Compiler

Reference

is a declaration of the function £unc that takes no parameters and returns no value.

A useful application of the void type is as the target of a pointer type object. Any
pointer type object can be assigned to a void* type object and that value can then
be assigned back to the original pointer without changing the value of the original
pointer. Several of the run-time library buffer manipulation functions (such as
memchr and memcpy) process parameters or return a value of type void*.

6.2.6 ANSI Preprocessor Directives

The following preprocessor directives are provided:

#if #define
#ifdef #undef
#ifndef #include
#elif #line
#else #pragma
#endif #error

The following preprocessor features may differ on some (non-standard)
implementations of the preprocessor: ‘

° Macro-function invocations must provide the same number of arguments as
the macro definition specified. For example, consider the following macro
definition for t imes2:

#define times2{ param) (param*2)
The following is an acceptable use of t imes2:

times2(1)

The following is not a correct use of t imes2 and would be diagnosed with a
compiler error message:

times2(1, 2)

. The # operator can be used within a macro function to replace a parameter
value with a string literal that contains the text of the corresponding macro

ANSI Additions to C 95

Waterloo C Development System

argument. For example, consider the following macro definition and
invocation:

#define same(pl, p2) func2(pl, #p2)
same (strl, str2);

If the program is compiled with the PPC command line option, a file with the
following expansion is generated:

func2 (strl, "str2");
The ## operator can be used within a macro function to concatenate two
tokens into a single token. For example, consider the following macro
definition and invocation:

#define same(pl, p2) func2(pl#i#p2)

same(strl, str2);

If the program is compiled with the PPC command line option, a file with the
following expansion is generated:

func2 (strlstz2);

The following preprocessor macros are defined by the compiler before the
first statement of the program is processed. For this example, the macros
were contained in the default source input stream, which was compiled at
15:34:56 in the afternoon of September 25, 1987.

Macro Expansion
__DATE_ _ "Sep 25 1987"
__TIME__ "15:34:56"
__FILE_ _ "SYSIN"
__LINE__ | 4

__stpCc__ | 1

The Waterloo C Compiler

Reference

6.2.7 Value Preserving Type Promotions

A value of type char can be assigned to a value of type int and a value of type
float can be assigned to a value of type double without a change in the value.
6.2.8 Function Prototypes

Function declarations can define the number and type of arguments that are to be
passed to a function, as well as the storage class and return value type of a function.
For example, the function (prototype) declaration

static char *mystrfunc(char *str };

defines the function mystrfunc to be a function with static storage class,
returning a value of type chaxr* and processing a single parameter of type char*,

ANSI Additions to C 97

