Reference

7.1.6 Linking a C Program that uses the ALIGN Option
When a source file is compiled with the ALIGN option, it is important that

. all source files that are linked into the program are either alignment
independent, or also compiled with the ALIGN option, and

. the program is linked with the aligned run-time library

The aligned library is accessed by specifying 'WCOS.CLIB.OBJALIGN' as the
first entry in the SYSLIB DD, as follows:

//SYSLIB DD DSN=WCOS.CLIB.OBJALIGN,DISP=SHR
// DD DSN=other C libraries

There are five object libraries that comprise the Waterloo C run-time library (not
including the Waterloo C Panel Library). In the case where a reentrant, aligned
program is linked with the RMODE ANY pre-linked library, all five libraries can be
concatenated in the following order:

//SYSLIB DD DSN=WCOS .CLIB.OBJALIGN,DISP=SHR

// DD DSN=WCOS.CLIB.OBJRENT,DISP=SHR
// DD DSN=WCOS.CLIB.OBJVECXA,DISP=SHR
// DD DSN=WCOS.CLIB.OBJVEC,DISP=SHR
// DD DSN=WCOS.CLIB.OBJ,DISP=SHR

'"WCOS.CLIB.OBJALIGN' must always be specified before the other libraries, or
the program's behaviour may be undefined.

Preparing a C Program for Execution 139

Waterloo C Development System

7.2 Waterloo C Run-time Conventions

The following sections describe several aspects of the Waterloo C run-time
environment and how they can be modified according to the specific requirements of
a particular application.

7.2.1 Command-line Parameters and the Program Return Code

C programs that use the usual Waterloo C run-time environment should define a
function main () which the library startup code calls when the program is run. As
part of the library initialization procedure, command line arguments are converted (o
a conventional argc/argv style, depending on how the program was run, and subject
to the value of the external variable _parms. The integer value that is returned by
main () is returned to the system as the program'’s return code.

There are two parameter formats that the C run-time environment can process.
When a program is started with the TSO CALL or TEST commands, or if it is run in
a batch environment, a standard OS parameter format is received. If the program is
started as a TSO command processor, the program is passed a command processor
parameter list (CPPL). The library initialization code determines which parameter
format has been received and formats the arguments into the C argument style.

Several variations of command formatting are available and can be selected by
defining the initialized value of the constant extern symbol _parms. The possible
values of this symbol are defined in the library header file <setup.h>. Note that
the value NO_REDIRECTION is a mask value that can be included with any of the
other formats to suppress command line redirection. Only one of EXTEND,
UNTOKENIZED, EXTEND_NOPARENS and C_STRINGS should be specified. The
following is a summary of the functions performed by the library initialization for
each format value:

UNTOKENIZED
The entire argument string is passed to the program as argv[0] and
argc is always 1. If the program was not passed a CPPL, a command
name of 'CALL ' is prefixed to the argument string. This facilitates
consistent processing of untokenized format arguments, regardless of how
a program is run.

EXTEND

Blanks and parentheses (', '(" and ")) are considered to be token

140 The Waterloo C Run-time Environment

Reference

delimiters. Blanks are removed and parentheses are passed as separate
entries in the argv vector. Note that this format is provided for -
compatibility with the "extended" parameter list format provided in the
VM/CMS environment.

EXTEND NOPARENS
- The program argument is tokenized in a manner similar to the tokenization
for EXTEND, with the exception that only blanks delimit tokens. This is
the normal library default processing, as defined in the library source file
"WCOS.CLIB.C(SPARMS) '.

C_STRINGS
For this style, the program argument is tokenized as for EXTEND, with
several extensions. A backslash character (\) in the argument string is
processed as for a backslash in a C character constant. The following
backslash sequences are recognized:

\Oxh, \xhh, ...
denote a single character with an EBCDIC character code of
0xOh, Oxhh, etc. ('h' is a hexadecimal digit); the first non-
hexadecimal character terminates the character constant

\o, \oo, \ooo
denote a single character with an EBCDIC character code of 00o,
Ooo or 0oo (0" is an octal digit)

\a,\b, \f, \n, \r, \t and \v
denote the equivalent C character constant

¢ denotes the character 'c’, such as a quotation mark (for use within
quoted tokens}), or the backslash character

Quotation marks (") are treated as explicit tokenization directives, which
allow imbedded blanks to be included in a token. Two adjacent quotes
within a string are interpreted as a string concatenation operation, and are
ignored. Trigraph sequences, as recognized by the C compiler, are
replaced with their single character equivalent.

For all tokenization styles, the main () function is passed a number of command
line arguments (argc) and a pointer to a list of character string pointers (argv) that
comprise the text of the command line. In all cases, argv[argc] is NULL and,

Waterloo C Run-time Conventions 141

Waterloo C Development System

with the exception of the UNTOKENIZED style, if the command that was used to run
the program is unknown, argv [0] is the empty string ("").

The following program, 'WCOS. CLIB.C(TARGS) ', can be used to test command
line processing.

#include <setup.h>
#include <stdioc.h>

/* const int _parms = C_STRINGS; */
const int _parms = UNTOKENIZED;

int main(int arge,
char **argv)

{

int count;

printf("argc = %d\n", argc);
for{ count = 0; count < argc; ++count)

printf(" argv[%d] = \"%s\"\n", count, *argv++ };
printf(" argv{ %d] = 0x%08x\n", argc, *argv);
return{ 0);

In this example, the string array argument is defined as char **argv. An
equivalent definition that is often used is char *argv[]. The former definition is
used throughout this manual, although the latter can be used instead.

If 'WCOS.EXAMPLE.LOAD (TARGS) ' contains an executable version of this
program, it is possible to experiment with various command line arguments and
processing styles. For example, the output from a typical TSO CALL command
would be the following:

call example.load(targs) * Command-line arguments *
arge =1

argv{ 0] = "CALL COMMAND-LINE ARGUMENTS "

argv(1] = 0x00000000

READY

Note that the TSO CALL command converts the arguments to upper case. If this
program is run from JCL, mixed case arguments are available:

142 The Waterloo C Run-time Environment

Reference

//RUN EXEC PGM=TARGS,PARM=' Hello, there. ',REGION=256K
arge = 1
- argv(0] = "CALL Hello, there. "

argv[1] = 0x00000000

If the same program is run as a command processor using the TSO TEST command,
mixed case command arguments are available:

test example.load({targs) cp
ENTER COMMAND FOR CP
targs Command~line arguments

arge = 1
argv{ 0] =" targs Command-line arguments"
argv[1] = 0x00000000

- READY

Waterloo C Run-time Conventions 143

Waterloo C Development System

7.2.2 Initialization

In all of the linking configurations where the standard C run-time library is used, the
program’s main () function will eventually be given conirol when the program is
run. So that the linking procedure can resolve the call from the library into the
program, main () should be defined in a manner similar to the following:

int main{ int argc,
char **argv)
{
/* a useful program */
return(0);
}

In particular, main () must not be defined with the static attribute; its scope
must be known outside the source file.

Before the application is executed, the Waterloo C run-time environment must be set
up. Execution begins in the library at the entry point $STARTUP that is contained in
the source file 'WCOS.CLIB.ASM(STARTUP) *. From this point, the following
functions are performed by the library initialization procedure:

° memory is allocated from the system for the run-time stack, the library
" internal read-write data area and the global variable (AUX) data area

. an optional, pre-linked run-time library is loaded from a system link area, the
job library (JOBLIB DD), or the step library (STEPLIB DD) for the program

. if the program is running above 16M on an MVS/XA system, the 24-bit
mode dependent portion of the library is relocated

. pre-main program configuration parameters, such as the initial value of the
1/O error message display flag, and the default standard file name definitions

are set

. library internal read/write data is initialized, in preparation for calls to
functions such as rand and st rtok.

. the initial values for reentrant (read/write) data are set

144 The Waterloo C Run-time Environment

Reference

. system-level signal handlers and exception stacks are allocated; default signal
handlers are defined; program check handling is enabled

. system-level file I/O blocks are allocated and initialized
. device drivers for the "_NULL" and "_TERMINAL" devices are defined
. the program arguments are processed, subject to a configuration parameter

. the standard input, output and error stream files (stdin, stdout and
stderr) are opened, optionally subject to command line redirection

. main () is called

As complicated as this sequence appears, each function has been carefully designed
and optimized for both flexibility and efficiency.

Waterloo C Run-time Conventions 145

Waterloo C Development System

7.2.3 File Support

Waterloo C provides three general techniques for directing input/output operations to
a system device. If a standard OS DD name is specified, an OPEN using that DD is
executed. If an MVS data set name is specified, a DD name is dynamically allocated
for that data set and the file is processed in the same manner as if the DD is
specified. Alternatively, a device driver name can be specified. For the current
version of Waterloo C, two device names are provided: " TERMINAL." and
" NULL".

Specifying a file by DD name

The use of an OS DD name allows access to the file represented by the DD name.
The format for opening a file specified by a DD name is

ddname (options
A left parenthesis ('(") is used to introduce the file options when needed.
Recognized options are:

RECFM F set the MVS record format to "fixed”, which must
agree with the file format

RECFM V set the MVS record format to "variable”, which
must agree with the file format.

LRECL nnn set the MVS record length to the value nnn, which
must agree with the file's logical record length.
Specifying a file by Data Set Name
An MVS data set may be accessed by specifying the following:
dsname (member) (options

The member name is opticnal and the '(’ is used to introduce any needed options. A
~——3, fully qualified data set name can be specified by enclosing the name in single quotes.

146 The Waterloo C Run-time Environment

Reference

The options recognized are:

RECFM options

LRECL nnn
BLKSIZE nnn

DSORG dsorg

SPACE type, primary

The options consist of a series of one letter format
specifiers: '

F set the MVS record format to "fixed"
v set the MVS record format to "variable"
B set the MVS record format to "blocked"

M indicates the presence of machine control
characters in the MVS record

A the first character of each record is an ANSI
carriage control character

S sets the MVS record format to "spanned”
sets the MVS record length to the length nnn
sets the MVS block size to the length nnn

where dsorg is PS for a sequential file or PO for a
partitioned data set,
3

{ , secondary } {, dirblocks }

specifies the amount of space to allocate for the data
set; type determines the unit of space in which the
data set will be allocated. If it is numeric, it
specifies an average block size for unit of allocation
space. The other valid options are TRK for tracks or
CYL for cylinders as the allocation unit. The
number of space units of type in the primary and
secondary extents is given by the primary and
secondary parameters. The dirblocks
parameter allocates that number of directory blocks
for a partitioned data set.

Waterloo C Run-time Conventions 147

Waterloo C Development System

DISP status {, normdisp } {, conddisp }

specifies the disposition of the data set. status is
one of OLD, MOD, NEW, or SHR. normdisp
specifies the data set disposition if the job
terminates normally. It can be one of CATLG,
UNCATLG, DELETE, or KEEP. conddisp
specifies the data set disposition the same way as
normdisp should the job end abnormally.

If a parameter is not specified, the following defaults are used:

If the data set has a disposition of NEW or does not exist, the record format
defaults to fixed length, 80 character records. The block size defaults to the
record size. The data set organization defaults to partitioned if a member is
specified, and sequential otherwise. Any new data set will be cataloged.
When no space specification is given the primary and secondary extents will
each be allocated one unit of the type specified. When no type is specified
the data set will be allocated in tracks.

If the status of the data set is not specified, then the data set is created if it
does not exist, using the above defaults. If the data set is opened for append,
the disposition defaults to MOD; otherwise, for read the default is SHR, and
otherwise OLD. A partitioned data set may not be created without specifying
a member name and a member must exist if it is opened for read.

If a data set cannot be allocated successfully, an error message giving a "dynamic
allocation” error code may be issued. These error codes are listed in the System
Programming Library: Job Management (GC28-0627).

Specifying a file by Device Driver Name

_NULL When this file name is used, any output to the file is ignored, and any

attempt to read from the file results in an end-of-file condition.

_TERMINAL.

148

This device driver is intended primarily for use for the standard input,
output and error files, but it can be used by any application program for

The Waterloo C Run-time Environment

Reference

general purpose, mixed case, terminal input/output as well. The
general form of a file name using this device driver name is the
following:

_TERMINAL.ddname

When the file is opened, if a DD name is provided and has been
defined, input/output will be directed to that DD using the usual DD
file access. If no DD is specified, or if it has not been defined,
input/output operations will be directed to the TSO terminal using
TGET and TPUT SVC's. If the program is not executing in the TSO
foreground, the file open operation will fail.

For example, the normal standard input, output and error files are
opened with calls similar to the following:

fopen("_ TERMINAL,STDIN", "r");
fopen("_TERMINAL.STDOUT", "w");
fopen(" TERMINAL.STDERR", "w")

’

For each file, a C program that is run as a TSO foreground program
does not need to have DD's for STDIN, STDOUT or STDERR, but if
they are defined, they will be used. When a C program is run from
batch, the DD's must be specified. The library standard file names are
defined in 'WCOS.CLIB.C($SSTDIOFN) '.

Common Options

Several options are common to all methods of accessing a file:

BIN

TEXT

The newline character (\n") has no special significance when character
input/output functions are used (fputc, fgetc, fgets, fputs,
fprintf, £scanf,etc.).

The newline character is used to signify the end of a record. For fixed
format files, the remaining portion of the record is padded with blanks.
When files are read using the character input/output functions, a newline is
returned as the last character in each record.

Waterloo C Run-time Conventions 149

Waterloo C Development System

cc For a printer file, the first character of each record is a carriage control
character. If this option is not specified, a blank is inserted at the start of
each record.

RAW The system-level input/output functions read and write operate on a

single record for each call. (read will read at most one record, no matter
what count is specified.) This allows programs to take advantage of the
record structure of disk files.

DIRECT allows random access 10 a sequential file, but not to a partioned data set
member. The file must have fixed length records. Each block is
considered a record because no deblocking is done. New records may not
be created using this method but may be read and updated.

For compatibility with previous versions of Waterloo C, the special filename

terminal is recognized to allow input/foutput to a TSO terminal. All data is

converted to upper case.

For example,

fopen("'TEST.FILE'", "w")

specifies a file named 'TEST.FILE' and creates it with fixed format records and a
record length of 80, if the file does not already exist.

fopen("XYZ (BIN LRECL 1024 RECFM F", "w")
specifies a file with a DD name of "XYZ" which must have fixed format records and
a length of 1024 bytes.
Standard File Redirection

Programs developed using Waterloo C support file redirection from the command
line of the stream files stdin and stdout.

If the characters '<' or ™' are found, the rest of the command line is taken to be a file
name, and the appropriate standard 1/O stream is associated with that file. Thus, the
line

PROG Parm <INFILE >QUTFILE (RECFM F LRECL 132

150 The Waterloo C Run-time Environment

Reference

would associate stdin with the file INFILE, stdout with OUTFILE (RECFM
F LRECL 132 and pass main a parameter list consisting of the two strings
"PROG" and "Parm".

Waterloo C Run-time Conventions 151

Waterloo C Development System o

7.2.4 Run-time Stack

The size of the run-time stack is 10K bytes by default. All auto variables, parameters
and register save areas for a C program are allocated from this stack, which is
defined before the program’s main function is called. (A C program can determine
how much stack space is available by calling the stakleft function, which is
described in the Waterloo C Run-time Library Reference.) The stack size can be _
modified by changing the initialized value of the external variable staksize

(defined in the library source file 'WCOS .CLIB.C($SSTAKSIZ) ").

The following example program, BIGSTACK, defines a run-time stack of 50Kb:
#include <stdio.h>
/* BIGSTACK -- a program with a large stack */
const int _staksize = (50%1024);
int main{()
{

printf("hello, world\n");
return(0);

152 The Waterloo C Run-time Environment

