MUSIC/SP User's Reference Guide

Part 5 - Chapter 9 (UR_P5.PS)

Chapter 9. System Subroutines

Chapter 9. System Subroutines 459

Chapter 9. System Subroutines

Overview
This chapter describes the MUSIC system subroutines. Many other subroutines are also available to the
MUSIC user such as the mathematical functions SQRT, and so forth.
First, alisting of the routines in functional groups will be presented. Next, an aphabetical arrangement of al
these subroutines with detailed usage descriptions of each is presented.

Functional Summary of Subroutines

Scheduling Actions and Controlling Jobs
This group of subroutines cause aMUSIC activity to be scheduled after the current job ends.

NONCAN Make a program noncancel able.

CANCAN Remove the effect of a call to NONCAN.

NXTCMD Schedule a command to be run next using multi-tasking or program chaining.
NXTPGM Schedule a program to be run next using program chaining.

PARM Pick up the information from a/PARM control statement.
SAVREQ Schedule a/SV command next.
SIGNOF Schedule a/OFF next.

NSGNOF Removes the request to schedule a/OFF command next.

SYSMSG Suppress system information messages until after the scheduled activity is done.
EQJ Terminate the current job and sets a return code.

GETRET Get return code.

Time, Date and User Information

These routines can obtain the time and date in various formats. Information about the userid running the job
and the workstation type is also available. Routines are provided to give elapsed job time. A delay routine
can be used to re-activate a job after a given amount of time.

CMDRET Retrieves command strings.

CMDSTO Stores command strings.

CODON Determinesif auserid is signed on to MUSIC.

DATCON Converts date data from one format to another.

DATCN2 Similar to DATCON with a more thorough analysis of the argument list.

DELAY Specify time delay before job is re-activated.

GETID Gets ownership id from afile name or data set name.
STATUS Returns the time of day, current date, service units used, etc.
TIMCON Converts time data from one format to another.

TIMDAT Getstime of day (by TSTIME) and date (by TSDATE).
TIMOFF Job time is displayed.

TIMON Reset time counter used in TIMOFF.
TSDATE Give current date.

TSTIME Give current time of day or execution time.
TSUSER Provide userid and workstation type.

460 MUSIC/SP User's Reference Guide

Dynamic Access

These routines allow you to read and write files from FORTRAN without having to pre-define the file names
on /FILE statements. The files are opened and closed dynamically.

OPNFIL Open afile.

CLSFIL Close afile.

SETINF Specify information for a new file.
FILMSG Get error description text.

PURGE Delete afile.

FRSTOR Frees main storage for use viaan array.

GTSTOR Gets main storage for use viaan array.
QFOPEN Opens afile and defines buffer area
QFCLOS Closes afile and rel eases buffer
QFREAD Reads next logical record

QFBKRD Reads previous logical record
QFRBA Sets RBA for next read

QFREW Rewinds the file

SYSIN Read Routines

These routines alow you to dynamically specify which file to read from the Save Library. They also allow
you to inspect where the SY SIN (unit 5) datais coming from and issue messages.

SYSINR Dynamically open afile for reading.

SYSINM Give message identifying file and line number.
SYSINE Inspect error return codes for sysin.

SYSINL Inspect SY SIN nesting stack.

Block Transfer

These routines allow reading and writing of large blocksto disk files, bypassing the logical blocking and
buffering operations. A large number of separate logical files are allowed.

GULPDF Defines file characteristics for GULP routines.
GULPRD Read in GULP mode.
GULPWR Write in GULP mode.

FORTRAN /O

These routines are used in conjunction with FORTRAN 1/0. They can re-read the last logical record, do 1/0
to an in-core buffer, allow mixed free-and fixed-format 1/O, and close adirect accessfile.

MCNCAT Replace V'S Fortran's CNCAT# concatenation routine.
REREAD Re-read last logical record.

CORE DO 1/0O to buffer in main storage.

XGCON Allow mixed free and formatted 1/0.

XGCOFF Turn off XGCON mode.

CLOSDA Close direct access buffers.

FRMTDA Erase the contents of a direct-access data set.

BIGBUF Allow record lengths of greater than 133 bytes to be used.

Chapter 9. System Subroutines 461

ASCII Terminals

TPOPEN Turn off linefolding at col 72onaTTY terminal.

TPCLSE Turn on linefolding at col 72 for TTY terminal.

NOCRLF Stop automatic return at the end of lines.

CRLF Re-instate automatic return at end of line.

NOTRIN Suppress translation of terminal input.

TRIN Cancel acall to NOTRIN and resume the normal translation of terminal input.

3270-Type Workstations

These routines alow you to control the display of the input area on 3270-type workstations when performing
aconversational read.

ADTOXY Convert a 3270 2-byte screen address to row and column.

KEEPIN Do not erase the contents of the input area.

CLRIN Erase the contents of the input area.

NOECHO Do not display the contents of the input area on the output area.
ECHOIN Display the contents of the input area on the output area.

NOSHOW Do not display the characters being entered to the input area.
SHOWIN Display the characters being entered to the input area.
Workstation Prompting

These routines alow you to remove and restore the conversational read prompt.
NPRMPT Remove prompting entirely

PROMPT Do prompting again

Workstation Features

These routines can be used to set TABS, turn on and off line folding, nonstop mode, and type element return
functions.

TABS Informs MUSIC of desired TAB settings.

NOPAUS Set nonstop mode. Used mainly for 1050 terminals.

PAUSE Turn off non-stop mode. Used mainly for 1050 terminals.

TEXTLC Lower case letters input during execution are to be preserved as such.

TEXTUC Lower case letters input during execution are to be converted to their upper case equivalents.

Controlling Output

STOPSK Stop /SKIP operation requested by the user.

Controlling Tape

BACKSP Do a backspace operation on atape file defined by a ddname.

462 MUSIC/SP User's Reference Guide

Manipulating Bits

Routines that work on the 8 bits of abyte. Each bit of the byte has the two possible values of ON or OFF.

BITON
BITOFF
BITFLP
TBIT

Turn bit on.

Turn bit off.

Reverse abit.

Test if bit ison or off.

Character Trandation

CTRAN
FIXSCR
TOLC
TOUC
TRANSL

Trandate each occurrence of one character to another.
Trandates hex characters to blanks.

Trandates a string of charactersto lower case.
Translates a string of characters to upper case.

Modify characters using atrandate table.

Moving Bytesand Words

These routines get or move storage on a byte or word basis. One routine can set many bytes to zero.

BYTE
FILL
HWORD
LMOVE
LBMOVE
MOVE
ZERO

Get first byte of arg.

Fill storage with a specified character.

Get first 2 bytes of arg.

Move bytes from one place to another.
Same as LMOVE but on any byte boundary.
Move words in storage.

Set storage to zeros.

Converting Character Strings

Cc2b
C2l
C2R
C2X
DECN
DECOUT
12C
12X
X2C
X2l
MAZ2E

ME2A

TBAS64
FBAS64
B64TXT
UUENC

UUDEC

Convert anumeric character string to adecimal value (double precision).

Convert anumeric character string to an integer value.

Convert numeric character string to a decimal value (single precision).

Convert a character string to hexadecimal.

Convert anumeric string to an integer value.

Convert an integer value to a character string, smilar to Fortran | format.

Convert an integer value to a character string.

Convert an integer to a hexadecimal string.

Convert ahexadecimal string to characters.

Convert a hexadecimal string to an integer value.

Convert from Ascii to EBCDIC (1-to-1 mapping for all 256 characters). Same calling
sequence as A2E.

Convert from EBCDIC to Ascii (also 1-to-1). Same calling sequence as E2A.

Encode data using Base64 method (MIME standard).

Decode Base64 data.

Processes Base64 data: decode, separate into records by CRLF, and convert from Ascii to
EBCDIC. Record input and output is done by calling user-supplied subroutines. This
routine could be used by MAIL to display MIME text.

Encode data using the UUENCODE method. Similar to Base64, but uses different character
table and does not remember the exact original length.

Decode UUENCODE'd data.

Chapter 9. System Subroutines 463

Manipulating Strings

ABBREV
CENTER
GETOP
LIJUST
LN
NXWORD
PROCOP
RJUST
RVRS
SEP
WORD

Test whether a string is atrue abbreviation for a keyword.
Center a string.

Get the parameters from a character string.

Left justify astring.

Gets the length of a character string.

Get the next word from a string.

Process an option item in the format abc(xyz).

Right justify a string.

Reverse the order of charactersin astring.

Separate out fields separated by 1 or more blanks/commas.
Separate a string into words.

Character Searching

FNDALL
FNDCHR
LOCATE
VERALL

VERIFY

Find all specified reference charactersin astring.

Find the first reference character in astring.

Thisroutine finds the first occurrence of one string within another string.

Verify al characters of astring are within a set of reference characters and returns all
mismatches.

Verify all characters of a string are within a set of reference characters and returns the first
mismatch.

Comparing Bytesand Words

Routines to compare numbers or character strings for equality (and so forth).

EQUAL
EQUALB
LCOMP

LBCOMP

Compare strings for equality.
Compare byte strings for equality.
Compare strings.

Compare byte strings for equality.

L ogical Operations

Perform logical operations and shift bits within words.

LAND
LOR
LXOR
LCOMPL
LSHFTL
LSHFTR

Sorting

Logical AND.

Logical OR.

Logical exclusive OR.
Logical complement.
Do left shift operation.
Do right shift operation.

See "Sorting Routines’ in Chapter 10. Utilities for larger disk sort operations.)

DSORT
SSORT
SRTMUS

Generalized disk sort subroutine, see Chapter 10. Utilities.
Sort arrays in main storage.
Similar to DSORT, see Chapter 10. Utilities

464 MUSIC/SP User's Reference Guide

Generating Random Numbers
This routine, with its several function calls, allows for various types of random number generation.

RSTART Random number generation

PANEL Support

MODFLD Redefine the attributes of modifiable fields by field number of screens designed using

PANEL.
MODOPT Modify panel options previously defined using the PANEL subsystem.
PANFLD Query information about PANEL fields.
Debugging
DEBUG Invokes the Debug Facility at various pointsin your program.

TCP/IP Sockets

CARGCALL Guarantees that arguments are passed correctly for C programming.

Index Text Searching (ITS)

ITSFID Initialization/dynamic call
ITSFIW Initialization/workarea call
ITSFOP Open a search set

ITSFSS Search string

ITSFOR Order result list

ITSFRE Retrieve results

ITSFCL Close search

M iscellaneous

LOCNAM Change an output file name to make it local to the current directory (if necessary).

Chapter 9. System Subroutines 465

SubroutinesListed Alphabetically

ABBREV

This subroutine tests whether a string is atrue abbreviation for a keyword.

Calling Sequence: k=ABBREV (a,len,kw,minl,maxl)

Arguments:
a isatrue abbreviation.
len isthe length in bytes.

kw is the keyword.
minl isthe minimum length of the abbreviation.
max| isthe maximum length of the abbreviation.

ABBREYV returns k=1 if a (of length len bytes) is a true abbreviation for kw (minimum abbreviation length
minl, total length maxl), otherwise k=0. Should have 1 <= minl <= max| <= 256.

return k=1 if: | en>0
and | en>=m nl
and | en<=nmaxl|
and equal (a, kw, | en)

See also: NXWORD, PROCOP, and GETOP.

ADTOXY

This subroutines converts a 3270 2-byte screen address to row and column numbers.

Calling Sequence: CALL ADTOXY (addr,width,row,column).

Arguments:

addr (input) 2-byte screen addr, either 12-bit coded form or 14-bit uncoded form.
width (input) screen width (e.g. 80 or 132).

row (output) row number (>=1).

column (output) column number (1 to width).

BACKSP

This routine preforms a backspace operation on atape file defined by a ddname. It can be used by a COBOL
or PL/I program to add datato the end of an existing tape file. Refer to the discussion on /FILE for tape.

466 BACKSP - MUSIC/SP User's Reference Guide

Calling Sequence: CALL BACKSP('ddname ")

BIGBUF

(Fortran G1 only) This subroutine is used to increase the size of the maximum record length handled by
FORTRAN sequentia 1/0Os. If this subroutine is not called, the maximum is 133 bytes.

To allow record lengths of more than 133, call BIGBUF and supply an array of length n bytes. The system
uses awork area buffer for all input/output except direct access. BIGBUF is normally called once at the
beginning of the job, before any input/output is done.

Calling Sequence: CALL BIGBUF(buffer,n)

Arguments:

buffer isthe name of the array that is used as an 1/0 buffer. Since the array must start on a fullword
boundary, it is convenient to use an array of type INTEGER*4 or REAL*4.

n isany number 133 or more indicating the record length. Regardless of the limit defined by
BIGBUF, the maximum record length in afile may be subject to other limitations. For
further details see Chapter 4. File Systemand 1/0 Interface of this guide.

Example:

The following FORTRAN program writes three 400-byte records to a temporary file, then
reads the records back and displays them. If BIGBUF were not caled, this program would
give the error message: IHN212l, END OF RECORD ON UNIT 1.

/ EILE 1 NAVE(&&TEMP) NEW DELETE LRECL(400)
| NTEGER BUF(100), A(80)
CALL BI GBUF(BUF, 400)
WRI TE(1, 10) (1, 1=1, 240)
10 FORMAT(801 5)
REW ND 1
15 READ(1, 10, END=20) A
WRI TE(6, *) A

GO TO 15
20 STOP
END
BITFLP

This subroutineisidentical to BITON except that the referenced bitisreversed. Thatis,aOissetto 1, and a
lissetto 0. Thisroutineisan INTEGER function and must be declared as such in your program.

Calling Sequence: n=BITFLP(ak)

Arguments:
a location of the byte.
k isanumber between 0 and 31 indicating the bit position.

Chapter 9. System Subroutines- BITFLP 467

BITOFF

This subroutineisidentical to BITON except that the referenced bit is set to O instead of 1. Thisroutineisan
INTEGER function and must be declared as such in your program.

Calling Sequence: n=BITOFF(a,k)
Arguments:
a location of the byte.

k isanumber between 0 and 31 indicating the bit position.

BITON

ThisFORTRAN INTEGER function is used in conjunction with TBIT, BITOFF, and BITFLP. It returns the
current value of bit k (k=0,1,2,...) of location a, and setsthat bit to 1. Thisroutineisan INTEGER function
and must be declared as such in your program.

Calling Sequence: n=BITON(a,k)

Arguments:
a location of the byte.
k isanumber between 0 and 31 indicating the bit position. For example, if kis 24, the value of the

first bit of the fourth byte of ais returned and that bit isset to 1. Thefirst bit position isreferred to
ashit 0. If kisnegative, avalue of zerois returned and the bit is not changed.

BYTE

This subroutineis a FORTRAN INTEGER function which returns the value (0 to 255) of the first byte of the
argument x. Thisroutineisan INTEGER function and must be declared as such in your program.

Calling Sequence: n=BYTE(x)

B64ATXT

This routine processes BASE64 data, asin mime mail data, decodes it, separates it into records, and converts
it from ASCII to EBCDIC. Records are assumed to be separated by ASCII CRLF (X'0DOA"). Input records
(max 80 bytes each) are read by calling user-supplied routine B64TRD. Output records are written by call-
ing user-supplied routine B64TWR. (thisroutine isreentrant.)

In the input BASE64 data, blanks and line breaks are ignored. Also, control characters (less than x'40") are
alsoignored. Aninput quartet (group of 4 encoded bytes) may be split by these characters or line breaks. |If
invalid characters are found in the BASE64 data, the corresponding output triples are replaced by "??77".

Routines used: FBAS64 - decode base64 data; MAZ2E translate from 8-bit ascii to ebcdic.

468 B64TXT - MUSIC/SP User's Reference Guide

Calling Sequence: CALL B64TXT(work,wrklen,mxolen,argrd,argwr,numout,retcod)

Arguments:

work awork area, on a doubleword boundary.

wrklen (input) length of the work area. Should be at least 400 + mxolen.

mxolen (input) maximum length of output records. when looking for crlf's to separate the records,
records longer than this are truncated. if mxolen<l, vaule 1 is used.

argrd (input) this argument is passed to B64TRD routine.

argwr (input) this argument is passed to B64TWR routine.

numout (output) number of output records.

retcod (output) return code:

0 normal, no errors.

1 work areaistoo small.

2 terminated by error from b64trd routine.

3 terminated by error from b64twr routine.

4 1 or more bad characters were found in the base64
data. the output text may be incorrect.

5 1 or more output records were truncated.

6 both retcod conditions 4 and 5.

The following is the calling sequences for user-supplied record read/write routines:

Calling Sequence: CALL B64TRD(argrd,rec,maxlen,len,k)

Arguments:

argrd same as arg passed to B64TXT.

rec buffer to receive input record.

maxlen max length of input record (= buffer size). currently maxlenis 80.

len (output) actual length of record (0 to maxlen). B64TXT skips O-length input records.

k (output) O=normal, 1=eof, 2=error (B64TXT stops). Note: if an EOF quartet (one with the
specia pad character "=") isfound in the input, B64TXT stops before eof is received from
b64trd.

Calling Sequence: CALL B64TWR(argwr,rec,len,k)

Arguments:

argwr same as arg passed to b64txt.

rec record to be put out.

len length of the record (0 or more).

k (output) O=normal, 1=error (b64txt stops).
CANCAN

A cadll to thisroutine removes the effect of a previous call to the NONCAN routine. 1t makes the program
cancelable by the/CANCEL command. A call to CANCAN does not take effect until after the next

Chapter 9. System Subroutines- CANCAN 469

conversational read or call to CLSOUT.

Calling Sequence: CALL CANCAN

CARGCALL

This subroutine isintended for C programmers calling TCP/IP socket routines. When called before the first
socket routine, it guarantees that the arguments are passed in the manner C requires.

Calling Sequence: CALL CARGCALLY();

CENTER

This routine centers a substring, within a 1-to 256-character string, defined as the first non blank character
from the left and the last non blank character. The substring is then placed at the center of the string.

Calling Sequence: CALL CENTER(string,strlen,pad)

Arguments:

string is a 1-to 256-character string to be centered.

strlen isthe length of the string, an integer in the range of 1-256. When strlen=0 no action is taken
by CENTER

pad al leading and trailing blanks in the string are converted to the pad character, after the text
has been centered.

Example:

Given that:

STRING --> ' bb12345bbbbb'
STRLEN --> 12
PAD -->"'p

CALL CENTER(STRI NG STRLEN, PAD)
Returns:

STRI NG --> ' bbb12345bbbb’
STRLEN --> 8

CLOSDA

(Fortran G1 only) A call to this subroutine closes a direct access file specified by unit. This close operation
causes the contents of buffersto be written out on disk. Also, adirect accessread following acall to
CLOSDA actually reads from disk, rather than from a buffer in main storage. Thisisimportant for applica-
tions where several programs share a direct-accessfile. Y ou may still use the file for further direct-access
operations. Note that direct-access data sets may not be closed by the system unless the job terminates

470 CLOSDA - MUSIC/SP User's Reference Guide

normally.

Calling Sequence: CALL CLOSDA (unit)

CLRIN

A call to this subroutine cancels the effect of a previous call to the KEEPIN subroutine.

Calling Sequence: CALL CLRIN

CLSFIL

Dynamically close afile. Refer to the section "Dynamic Access to Files' for adescription of this routine.

CMDRET

This routine retrieves command strings from a circular buffer of previously stored commands. Thisworksin
the same way as the store/retrieve (F12) whenin *Go. The CMDSTO is used to store the commands strings
in the buffer.

Calling Sequence: CALL CMDRET(cmd,cmdlen,maxien,cmdbuf)

Arguments:

cmd a 1-126 character string returned from the command buffer
cmdlen the length of the string CMD is returned.

maxlen the maximum length of the string CMD (1-126)

cmdbuf a 256 character string to be used as the command buffer.
Notes:

1. Only thefirst 128 bytes of CMDBUF are used, the other 128 bytes are used as atemporary buffer.
2. Successive entries of the same CMD string will not be stored.

3. Thisroutineisre-entrant.

CMDSTO

This routine stores a command string into a circular buffer for later retrieval. Thisworksin the same way as
the store/retrieve (F12) when in *Go. The CMDRET is used to retrieve from the commands from the buffer,
in the order they were entered.

Calling Sequence: CALL CMDSTO(cmd,cmdlen,maxien,cmdbuf)

Chapter 9. System Subroutines- CMDSTO 471

Arguments:

cmd a 1-126 character string to be placed in the command buffer.
cmdlen the length of the string CMD (1-126).

maxlen the maximum length of the string CMD (1-126).

cmdbuf a 256 character string to be used as the command buffer.
Notes:

1. Only thefirst 128 bytes of the CMDBUF are used, the other 128 bytes are used as a temporary buffer.
2. Successive entries of the same CMD string will not be stored.

3. Thisroutineisre-entrant.

CODON

This routine reads the terminal control blocks (TCB) and determinesif the code passed is signed on to
MUSIC and returns the TCB number and the code's terminal mode.

Calling Sequence: CALL CODON(code,tcbno,mode,irc)

Arguments:
code seven-character user id
tcbno return terminal (TCB number) 2 character integer
mode return terminal mode

0= not active

1=*go

2= break

3= conversational

4= spooled input

5= running ajob

6= FSIO

7= command execution from a prog
irc Set to 0 if codeis not active, setto 1if codeis active.
CORE

This subroutine for FORTRAN allows reading and writing from a buffer in memory, without physical 1/O.

Executing this call statement causes the next formatted or list-directed READ or WRITE to transmit from or
to the data area in core beginning at location buffer, and extending length bytes.

Calling Sequence: CALL CORE(buffer,length)

472 CORE - MUSIC/SP User's Reference Guide

Arguments:

buffer isan array name.
length isthe length of the array in bytes. Length must be at least 4 and up to 32000.
Notes:

1. Thecal to CORE must be executed before each formatted or list-directed READ or WRITE (that is to
use an incore buffer) is executed. The unit number in the READ or WRITE statement isignored.
CORE must not be called twice without an intervening formatted or list-directed READ or WRITE
statement. The 1/0O request must not attempt to read or write more than one logical record.

2. Declaring the buffer to be of type LOGICAL *1 has the advantage that each character in the buffer can
be accessed by subscripting. The buffer isfilled with blanks before any datais written into it.

3. Unformatted READ or WRITE statements, and BACK SPACE or REWIND statements must not be
executed between the CALL CORE and the READ or WRITE statement.

4. If REREAD and CORE are used within the same program, REREAD istemporarily disabled when
CORE iscdled.

For example:

LOG CAL *1 BUFF(80)
5 CALL REREAD

10 READ(5, 100) X

20 CALL CORE(BUFF, 80)
30 WRI TE(N, 102) X

40 CALL CORE(BUFF, 80)
50 READ(99, 103) Y

60 READ(99, 104) Z

X iswritten into the incore buffer BUFF by statement 30. Statement 50 reads from the incore buffer into
y. Statement 60 rereads the record read by statement 10.

Example:

*CGo
list sanple
*In progress
/ LOAD VSFORT
DI MENSI ON A(5)
LOG CAL *1 BUFF(80), NBUFF(80)
LOG CAL EQUAL, Bl
DO 1 1=1,5
1 A(l)=10**]
VRI TE(6, 2) A
2 FORMAT(' 0', 5F12.0)
CALL CORE(BUFF, 80)
VRI TE(N, 8) A
8 FORMAT(5F12. 0)
C NOW COMPRESS MULTI PLE BLANKS | N
C BUFF TO ONE BLANK, BY COPYI NG TO NBUFF
NEWEL
Bl=. FALSE.

Chapter 9. System Subroutines- CORE 473

DO 3 K=1, 80
| F(EQUAL(BUFF(K),' ',1)) GO TO 4
Bl=. FALSE.
5 NBUFF(NEW =BUFF(K)
NEWENEW1
GO TO 3
4 IF (Bl) GO TO 3
Bl=. TRUE.
GO TO 5
3 CONTI NUE
NEWENEW 1
WRI TE(6, 7) (NBUFF(1), | =1, NEW
7 FORMAT(' 0', 80A1)
CALL EXIT
END
*End
*Co
sanpl e
*In progress
MAIN = 0003DC
003AA8 BYTES USED
EXECUTI ON BEG NS

10. 100. 1000. 10000. 100000.
10. 100. 1000. 10000. 100000.
*End
*Go
CRLF

A call to this subroutine cancels the effect of acall to the NOCRLF subroutine. This subroutineisfor ASCII
terminals only.

Calling Sequence: CALL CRLF

CTRAN

This routine locates and translates every occurrence of a specified character to another character. The
number of characters changed is returned.

Calling Sequence: CALL CTRAN(string,strlen,oldchr,newchr,kount)

Arguments:

string is character string to be processed of length strien.

strlen is an integer specifying the length of the string.

oldchr isthe target character in string to be converted to the character specified by newchr.
newchr isthe new character for which each occurrence of oldchr will be swapped in string.

474 CTRAN - MUSIC/SP User's Reference Guide

kount isaninteger returned that reports the number of characters changed as specified.
Example:
Given that:

STRI NG --> ' bb12345b'
STRLEN --> 8
OLDCHR --> 'Db'
NEWCHR --> ' *'

CALL CTRAN(STRI NG, STRLEN, OLDCHR, NEWCHR, KOUNT)
Returns:

STRING --> "' **12345*"
STRLEN --> 8

OLDCHR --> 'Db'
NEWCHR --> ' *!

KOUNT --> 3

Cc2Db

This subroutine converts a numeric character string to its double precision decimal value. Conversion from
character number to a decimal is done by separating the whole and the fractional part. These are then
converted to their integer values. j and k are first converted to long-format floating point. Then xis
computed from j.k*10**n. where| isthewhole, kisthe fractional part and n is the exponent.

Calling Sequence: CALL C2D(string,strlen,x,irc,badchr,iexp)

string is a 1-to 256-character string on which a substring of character numbersis to be converted to
short or long format floating point number, in other words, areal number.

strlen isthe length of the string, an integer in the range of 1-256.

X isthe real floating point number returned.
x must be declared as REAL* 8 (double precision).

irc is the return code describing the conversion.
irc=-1 The string was blank.
irc=0 Conversion was successful.
ircc1l Anillega character was found in the string.
irc=2 Exponent overflow (IEXP>75).
irc=3 Exponent underflow (IEXP<-75).

Note: Xxisset tozerowhenircisnot equal to 0.

badchr A one byte variable where the bad character (non integer character) is returned when irc=1.
iexp An integer variable where the exponent of the number being converted is returned when
irc=2orirc=3.

Chapter 9. System Subroutines- C2D 475

C2|

This routine converts the substring, within a 1-to 256-character string, defined as the first non blank character
from the left and the last non blank character, to an integer.

Calling Sequence: CALL C2I(string,strlen,i,irc,badchr)

Arguments:
string is a 1-to 256-character string on which a substring of character numbersis to be converted to
integer.
strien isthe length of the string, an integer in the range of 1 to 256.
[isthe integer returned.
irc is the return code describing the conversion.
irc=-1 the string was blank.
irc=0 conversion was successful.
irc=1l anillegal character was found in the string.
irc=2 conversion not possible, number wasto large.
Note: iissettozerowhenircisnot equa to 0.
badchr aone byte variable where the bad character (non-integer character) is returned when irc=1.
Example:
Given that:

STRI NG --> ' bb12345b'
STRLEN --> 8

CALL C21 (STRI NG, STRLEN, I, | RC, BADCHR)
Returns:

STRI NG --> ' bb12345b'

STRLEN --> 8

I --> 12345

| RC -->0
BADCHR --> 'b'

C2R

This subroutine converts a numeric character string to its single precision decimal value. Conversion from
character number to a decimal is done by separating the whole and the fractional part. These are then
converted to their integer values. j and j arefirst converted to long-format floating point. Then xis
computed from j.k*10**n. where| isthe whole, kisthe fractional part and n is the exponent.

Calling Sequence: CALL C2R(string,strlen,x,irc,badchr,iexp)

476 C2R - MUSIC/SP User's Reference Guide

Arguments:

string isalto 256 character string on which a substring of character numbersisto be converted to
short or long format floating point number. i.e. areal number.

strlen isthe length of the string, an integer in the range of 1-256.

X isthe real floating point number returned.
X must be declared as REAL*4 (single precision).

irc is the return code describing the conversion.
irc=-1 The string was blank.
irc=0 Conversion was successful. ..text
irc=1l Anillega character was found in the string.
irc=2 Exponent overflow (IEXP>75)
irc=3 Exponent underflow (IEXP<-75)

Note: that x is set to zero whenirc isnot equal to O.

badchr A one byte variable where the bad character (non-integer character),is returned when irc=1.

iexp An integer variable where the exponent of the number being converted,is returned when
irc=2orirc=3.

C2X

This subroutine converts (unpacks) a EBCDIC character string to its hexadecimal character representation.

Calling Sequence: CALL C2X(string,strlen,hexstr)

Arguments:

string isastring of length strlen to be converted to its hexadecimal representation.

strlen isthe length of the string, in the range of 1 to 256. When strlen =0 no conversion takes
place.

hexstr is the output string where EBCDIC hexdigits representing the original string are returned.
The character string must be at least twice the length of string.

Example:

Given that:

STRI NG --> ' bb12345b'
STRLEN --> 8

CALL C2X(STRI NG STRLEN, HEXSTR)
Returns:
STRI NG --> ' bb12345b'

STRLEN --> 8
HEXSTR --> ' 4040F1F2F3F4F540'

Chapter 9. System Subroutines- C2X 477

DATCN2

This subroutineis aversion of DATCON that does a more thorough analysis of the argument list passed.
When an error occurs it passes an error number to the calling program. It does not stop the job, nor does it
print error messages. Except for the insertion of theirc variable in the calling sequence, DATCN2 parame-
tersareidentical to DATCON.

Enhanced error checking includes:

- Checksif too many or too few parameters are passed.

- Except for type 10, all input dates are checked for valid month, that the corresponding number of days
in that month is correct, and that the number of daysis not greater than afull year. theleap year istaken
into account on all verifications.

- For types4 and 6 the integer year can be expressed as 1989 or 89. "1900" is assumed.

- For type 10, acheck is made that it is a packed decimal value only. Since this data was generated by
datcn2, datcon, or tsdate, further checking is not required.

Calling Sequence: CALL DATCNZ2(irc,m,argl,{ arg2,arg3} ,n,argl { arg2,arg3})
Arguments:
irc is the one of the following return codes:

irc=0 no error detected conversion successful

irc=1 input data conversion typeisinvaid

irc=2 output data conversion typeisinvalid

irc=3 input data (date) isinvalid

irc=4 wrong number of arguments detected.

See DATCON for descriptions of the other arguments.

DATCON

This subroutine is used to convert date data from one format to another. DATCON checks incoming dates
for errors and stops the job and writes an error message. In addition, no attempt is made to convert the bogus
dates; blanks are returned in character fields and zero values in numeric fields.

Calling Sequence: CALL DATCON(m,argl{arg2,arg3},n,argl{arg2,arg3})

Arguments:
m isone of the numbers listed below (except 5) representing the input date format.
n isone of the numbers listed below representing the output date format.

1 16 bytedate, for example: 'FRI SEP 06, 1989

2 isan 8 bytedate in the form MM/DD/YY, for example: 09/06/89.

3 isan 8 hyte date, for example: 06SEP89

4 arglistheinteger year (1989); arg2 istheinteger date of the year (249).

5 istheinteger day of the week (Sunday is1, Monday is 2).

478 DATCON - MUSIC/SP User's Reference Guide

argl isthe integer month (5); arg2 isthe integer day (26); arg3 isthe integer year (1989).
is an 8 byte date in the form DD/MM/YY, for example: 26/01/89.
is an 8 byte date in the form YYMMDD, for example: 890126.
is an 8 byte date in the form DDMMY'Y, for example: 260189.
0 isa4bytedatein packed decimal 0077DDDZ format, for example: 0089360C.

2 O00~NO

DEBUG

Callsto subroutine DEBUG ($SUB:DEBUG.OBJ) can be inserted at various points in a program, to invoke
the Debug Facility when execution reaches those points. If Debug is not active, the callsareignored. The
usage in a VS Fortran programis"CALL DEBUG" (no arguments). /INCLUDE $SUB:DEBUG.OBJ must
beinserted in the job.

Specify the DEBUG option on /JOB (or on the member name statement after /LOAD XMON). At the begin-
ning of the program, you are presented with the Debug screen. Press F2 to run the program. When a CALL
DEBUG isreached in the program, the Debug Facility isinvoked and you can do debug operations from the
Debug screen. Press F2 to resume execution.

This technique is useful when it is not feasible to trace the entire program or set Debug break points. Note

that VS Fortran programs are difficult to trace, because Fortran run-time library modules such as
IFYVRENC are normally in the Link Pack Area, which is read-only storage.

DECN

This subroutine converts a numeric character string to an integer value. The string is of length from 1 to 9.
A valid string consists of decimal digits, without any leading blanks.

Calling Sequence: CALL DECN(string,len,ivalue,irc)

Arguments:
string isanumeric character string specified by the caller.
len isthe length of the string from 1 to 9.
ivalue is the output integer value.
irc isone of the following return codes:
irc=0 successful conversion.
irc=1 input string isincorrect.
DECOUT

This routine converts an integer value to a printable character string, in the same way as done by Fortran |
format. The output isright justified in the area, preceded by blanks, and aminussign ("-") is supplied if the
number is negative. If the areaistoo short, it isfilled with asterisks ("*"). Thisroutineisre-entrant (it does
not modify itself).

Calling Sequence: CALL DECOUT(string,len,ivalue)

Chapter 9. System Subroutines- DECOUT 479

Arguments:

string is the output character string.

len isthe length of string set by the caller. Therangeisfrom O to 256.
ivalue isthe input number.

DELAY

A cadll to this routine suspends the execution of the job for at least n seconds. Use the subroutine CLSOUT
before along delay if you wish to force al generated output to be printed before the delay.

Calling Sequence: CALL DELAY (n)
Arguments:

n is the number of seconds for the delay period. Y ou should use adelay period of at least 1 second.
DSORT

DSORT isageneralized disk sort subroutine callable from many of MUSIC's high-level languages such as
FORTRAN. For information see "Sorting Routines’ in Chapter 10. Utilities.

ECHOIN

A call to this subroutine cancels the effect of a previous call to the NOECHO subroutine.

Calling Sequence: CALL ECHOIN
EOJ

This routine terminates the current job and sets the return code. (See also the GETRET subroutine.)
Calling Sequence: CALL EOJ(irc)
Arguments:

irc isan integer number supplied by the caller. Itisput into register 15 when the job ends. A value of 0
usually means normal end, while a nonzero value usually indicates an error condition.

EQUAL

This subroutineis a FORTRAN LOGICAL function used for comparing bytes. If the compared bytes are
identical, EQUAL issetto TRUE. If they are not identical, EQUAL isset to FALSE. Thisfunction must be
declared as LOGICAL in your program. (See also EQUALB.)

480 EQUAL - MUSIC/SP User's Reference Guide

Calling Sequence: v=EQUAL (a,b,n)

Arguments:

a is one location of bytes.

b is another location of bytes.

n is the number of bytesto compare. If nislessthan 1, EQUAL is set to TRUE.
Example:

LOG CAL EQUAL
REAL *8 ALPHA, BETA

| F(EQUAL(ALPHA, BETA, 6)) GO TO 10
EQUALB

ThisisaFORTRAN LOGICAL function used for comparing bytes. If the compared bytes are identical,
EQUALB issetto TRUE. If they are not identical, EQUALB isset to FALSE. Thisfunction must be
declared as LOGICAL in your program.

Calling Sequence: v=EQUALB(a,ka,b,kb,n)

Arguments:

a is one location of bytes.

ka indicates which byte to start with at location a. (The first byte is referred to as byte 1, not 0.)

b is another location of bytes.

kb indicates which byte to start with at location b. (The first byte is referred to as byte 1, not 0.)

n is the number of bytesto compare. If nislessthan 1, EQUALB isset to TRUE.

Example:

LOG CAL EQUALB
REAL *8 ALPHA, BETA

| F(EQUALB(ALPHA, 2, BETA, 4, 2)) GO TO 10
FBAS64

This subroutine decodes BASE64 data. Thisisthe "base 64" encoding scheme used for e-mail mime, as
defined in RFC 1521. Base 64 encodes any 8-bit text to printable characters, producing 4 output characters
for each 3 input bytes. See the trandate table in this routine for the 64 printable characters used. An addi-
tional character "=" is used for padding at the end of the encoded text if the original length is not amultiple
of 3. See TBAS64 routine for additional notes on the pad character and for examples of encoding. (This
routine is re-entrant.)

Chapter 9. System Subroutines - FBAS64 481

This routine decodes the base 64 data, back to the original data. See also: TBAS64 - encode to base 64; and
UUDEC - uudecode-style decode.

Calling Sequence: CALL FBAS64(intxt,inlen,outtxt,outlen,retcod,displ)

Arguments:

intxt

inlen

outtxt

outlen

retcod,displ

Examples:

input data (encoded as base 64). It isassumed to start on a quartet (group of 4 bytesin the
encoded text) boundary. Note: intxt is destroyed by this routine (tranlated in place), so the
caller should pass a copy of the original data, if it isto be used again. intxt isdestroyed only
up to (not including) the first blank or pad character ("=") or invalid character or to the end
of the last full input quartet.

length of input data. If O or less, this routine sets outlen=0, retcod=0, and displ=0 and no
other action is taken.

areato receive output (decoded) data. It must be large enough to hold the output data.
Maximum possible output is ((inlen+1)/4)* 3 bytes, where/ isinteger dividei.e. discard the
remainder.

this argument sets outlen to the length of the output data. Thisisusually amultiple of 3, but
may be otherwise if the pad character ("=") isfound in the input, indicating end of data.
outlen is aways the number of bytes stored into outtxt.

the routine sets these integer arguments to indicate various cases, errors, and ending condi-

tions. retcod isareturn code and displ is a displacement within intxt, usually indicating how

many input characters have been processed. Scanning stops when a blank isfound, or after
an EOF quartet (with "=" pad char) isfound, or aninvalid character is found; this we call the

"scan end".

1. if the scan endsimmediately follows a quartet, and the last quartet is not an EOF quar-
tet, retcod=0 and displ=displacement to scan end i.e. 4* (number of quartets processed).
outlen=3* (number of quartets processed).

2. if scan endsimmediately follows an eof quartet, displ is set asin case (1), and retcod=-1
(if quartet is of the form "xxx=") or -2 (if "xx=="). an exception isthat if the second
"="isnot actually present in "xx==", displ isto after the first "=", i.e. 4*(no. of quar-
tets) - 1. outlen=exact length of original text.

3. if scan end iswithin a quartet (other than the exception in case (2)), retcod=number of
of charsin last quartet before the scan end i.e. 1 to 3, and displ=displacement to end of
the last complete quartet. outlen=3* (humber of complete quartets processed). only the
first displ bytes of intxt are destroyed; the partial quartet at the end isintact, and can be
concatenated with later data and passed to a subsequent call to thisroutine.

4. if aninvalid character isfound, retcod=4 and displ=displacement to the bad character.
any preceding complete quartets are processed, and outlen=3* (the number of them).

In these examples, x and y in outtxt are not the actual output characters, but indicate the form of the output.

i nt xt =" abcdefgh',inlen=8: outtxt="xxxyyy', outl en=6,

r et cod=0, di spl =8

i ntxt="abcd efgh',inlen=9: outtxt="xxx"', outlen=3,

i ntxt="'

r et cod=0, di spl =4

",inlen=0: outtxt=""',outlen=0,retcod=0, displ=0

482 FBAS6K4 - MUSIC/SP User's Reference Guide

nt xt =" abcdef g=", i nl en=8: outtxt="xxxyy', outl en=5,
retcod=-1, di spl =8

nt xt =" abcdef ==", i nl en=8: outtxt="xxxy', outl en=4,
ret cod=-2, di spl =8

nt xt =" abcdef =", inl en=7: outtxt="xxxy', outl en=4,
retcod=-2,displ=7 (this is the exception in case (2).)

(sane result for intxt="abcdef=",inlen=8)

nt xt =" abcde' , i nl en=5: outtxt="xxx", outl en=3,retcod=1, di spl =4

nt xt =" abcdefg',inlen=7: outtxt="xxx', outlen=3,
ret cod=3, di spl =4

nt xt =" abcdef *h' , i nl en=8: outtxt="xxx", outl en=3,
ret cod=4, di spl =6

nt xt =" abcde===",inl en=8: outtxt="xxx", outl en=3,
ret cod=4, di spl =5

nt xt =" abcdef =*' or 'abcdef=h"',inlen=8: outtxt="xxx"', outlen=3,
retcod=4, displ=6 (the "=" is the bad char because it is
not followed by another "=")

Notes:

intxt argument is modified by this routine. See description of intxt above.

Other 3-to-4 encoding schemes may use a different tranglate table and pad character, and may handle

lengths which are not a multiple of 3 differently.

This routine assumes the base 64 encoded text contains EBCDIC (not ASCII) printable characters. If
the input is ASCI|, the caller must convert the input to EBCDIC before calling this routine.

FILL

Arguments:

This routine sets each byte of an areato a specified character.

Calling Sequence: CALL FILL(arealen,char)

is the name of the storage area.

isthe length in bytes of the storage area. If thelen is O or negative, no bytes are changed.

is the character to use to fill in the area.

Example:

CALL FILL(RECORD, 80,' ')

Chapter 9. System Subroutines- FILL 483

FILMSG

Get descriptive error text corresponding to afile error condition. Refer to the section "Dynamic Access to
Files' for a description of this routine.

FIXSCR

This subroutine tranglates the hex characters x'00" to x'3f' to x'40 (blank). Under certain conditions the hex
characters between 00 x'00' and x'3f' combine with printable characters to accidentally produce 3270 data
stream orders. These will disrupt the screen format when FSIO requests or panel are used. FIXSCR
prevents these characters from damaging the screen format.

Calling Sequence: CALL FIXSCR(alen)

Arguments:

a isthe data to be translated.

len is the number of bytesto be trandated (0 or more). length may exceed 256. no action if
lengthis O or less.

FNDALL

Thisroutine finds al the characters of a string that are one of the group of characters specified in reference
string. All reference characters located will have their relative position in the string returned, aswell as the
number found.

Calling Sequence: CALL FNDALL(string,strlen,refstr,reflen,pos,numpos)

Arguments:

string is acharacter string of length strlen, that is to be verified.

strien isthe length of the string, in the range of 1 to 256.

refstr isthe group of character(s) that constitute the set of charactersthat are to be found in string.
This character string can be called the reference string and the characters reference charac-
ters.

reflen isthe length of the refstr, in the range 1 to 256.

pos is an integer array where the relative character positions of matched refstr characters are
returned. pos should be dimensioned to the byte length of string, that is pos(strien). If a
character is detected in string, and is one of the reference characters, itsrelative position is
returned in pos(i).

nuUMpPOoSs is an integer where the number of relative character positions of matched refstr characters

are returned.

484 FNDALL - MUSIC/SP User's Reference Guide

Example:
Given that:

STRI NG --> ' bb12t 45b'
STRLEN --> 8

REFSTR --> ' 0123456789’
REFLEN --> 10

CALL FNDALL(STRI NG, STRLEN, REFSTR, REFLEN, PGS, NUMPOS)
Returns:

STRI NG --> ' bb12t 45b'

STRLEN --> 8

REFSTR --> ' 0123456789’
REFLEN --> 10

PGS -->3, 4, 6, 7, 0, 0, 0, O
NUMPCS --> 4
FNDCHR

This routine finds the first occurrence of any of the characters specified by areference character string in
string. If areference character islocated, its relative paosition in the string is returned.

Calling Sequence: CALL FNDCHR (string,strlen,refstr,reflen,pos)

Arguments:

string is acharacter string of length strlen, that isto be scanned.

strien isthe length of the string, in the range of 1 to 256.

refstr isthe group of character(s) that constitute the range of characters, that is to be searched for,
instring. This character string can be called the reference string and the characters refer-
ence characters.

reflen isthe length of the refstr, in the range of 1 to 256.

pos isaninteger returned that is set to 0 if none of the characters of string are also in the refer-
ence string, refstr. 1f acharacter is detected in string, that is one of the reference characters,
itsrelative position is returned in pos.

Example:

Given that:

STRI NG --> ' bb12t 45b'
STRLEN --> 8

REFSTR --> '0123456789b'
REFLEN --> 11

CALL FNDCHR(STRI NG, STRLEN, REFSTR, REFLEN, PCS)

Chapter 9. System Subroutines- FNDCHR 485

Returns:
STRI NG --> ' bb12t 45b'
STRLEN --> 8
REFSTR --> '0123456789b'

REFLEN --> 11
POS --> 3

FRMTDA

(Fortran G1 only) A call to this subroutine writes blank records throughout the direct accessfile defined on
MUSIC /O unit number n. It can be used to erase al previous contents of the file.

Calling Sequence: CALL FRMTDA(n)

FRSTOR

This subroutine frees main storage for use via an array in an os-mode program (normally FORTRAN).
FRSTOR does a FREEMAIN to free a specified amount of storage starting at a specified offset from a given
array. Seeadso GTSTOR.

Calling Sequence: CALL FRSTOR(amt,a,0ffset,retcod)

Arguments:

amt number of bytesto be freed. This number is aways rounded up to amultiple of 8. amt<=0
isano-operation. amt is rounded up to amultiple of 8 by freemain.

a an array relative to which the storage areais referenced.

offset distance in bytes from the array to the storage area. The allocated areais alwayson a
doubleword boundary. The area must be on a doubleword boundary.

retcod return code:
0 successful.
1 requested storage not available.
2 invalid reguest or argument value (e.g. areato be freed is not on doubleword bound-

ary).

3 not OS mode.

Notes:

1. Anattempt to free storage that you did not get, or that has already been freed, can result in job termina-
tion by the GETMAIN/FREEMAIN processor in OSTRAP.

2. neither get nor free clears storage. The caller should do this (by calling the ZERO subroutine) if
desired.

3. If free storageis fragmented, a request for maximum available storage returns the largest contiguous
free area, which may be much less than the total free storage.

486 FRSTOR - MUSIC/SP User's Reference Guide

GETID

This routine gets the ownership id from afile name or a data set name.

Calling Sequence: CALL GETID(type,name,Iname,idout,pos)

Arguments:
type ID type:
1 nameisafilename, and end of id isindicated by a colon (:), asin userid:name_proper
2 nameisaUDS data set name, and end of ID isindicated by aperiod (.), asin
USERID.ABC.DEF. aso, if the DSNAME does not contain a period, and is length 4 or
more, the userid is assumed to be the first 4 characters. Any other value for type sets
IDOUT=""POS=1.
name (input) the name to be processed.
Iname (input) max length of the name. The nameis ended by a blank or after Iname characters,
whichever comesfirdt.
idout (output) 16-char userid from the name, padded with trailing blanks if necessary, or blanks if
the name does not start with a1 to 16 character userid.
pos (output) integer position of the first character of the name proper, after the userid. Vaue 1
means no valid userid was present. Value n means the name proper starts at the n'th charac-
ter of the name (counting from 1). n>1 means avalid userid was found.
GETOP

This subroutine gets the parameters from a character string. It isused by commands/LIST, /SAVE,
/PURGE, /INPUT, etc. and by some utility programs.

Parameters in the string are separated by one or more blanks or commas, and may be preceded by leading
blanks (but not leading commas - leading commas are considered to be part of the first parameter). Option-
aly, acommand keyword at the beginning of the string may be skipped.

Calling Sequence: CALL GETOP(ctl,prmfld,prmlen,optbl,maxop,kwtbl,& err)

Arguments:

ctl isaninteger containing option bitsin the 4th byte:

x'01" theinput string (prmfld) starts with a command keyword which should be skipped. Thisis
done by searching for the first blank and starting the parameter scan after that blank. If no
blank is found, there are considered to be no parameters.

(other bits reserved)

prmfld istheinput character string containing the parameters. It may have leading and trailing blanks (after
the command keyword has been skipped, if x'01' option in ctl).

prmlen isthe length (O or more) of the character string.

optbl isthetableto hold the parameter information. The first word will be set to the number of parameters

Chapter 9. System Subroutines- GETOP 487

found (0 or more). Therest of the table consists of entries, each 3 words long.
1st word of entry: address of the parameter in the character string.
2nd word of entry: length of the parameter.

3rd word of entry: if the parameter is 1 to 9 decimal digits, thisisthe numeric value (O or more).
Otherwise the value is negative. Thefirst byteisx'80', or x'80'+n if the parameter matches the
keyword with id n in the keyword table (kwthl). Note: if akeyword in kwtbl is all decimal digits,
The 3rd info word does not have the numeric value but starts with x'80'+n.

maxop isthe maximum number of parameters that optbl can hold. thetotal size of the table is 1+ 3* maxop
words.

kwtbl isthetable of special keywordswhich may occur as parameters. Each is given anon-zero id number
n, which isreturned in the optbl as described above. Different keywords may have the sameid
number. Each entry is of variable length:
1st byte: length of keyword, or 0 meaning end of table.
2nd byte: length of minimum abbreviation.
3rd byte: the id number n.
remaining bytes of entry: the keyword.

&err istheaternate return istaken if there are more than maxop parameters. The first maxop parameters

are still put into the table, and the first word is set to maxop. For assembler callers, output r15=0
means no error, r15=4 means too many parameters.

GETRET

This routine returns the return code set by the previous job. This also includes jobs done viathe NXTCMD
subroutine.

Calling Sequence: CALL GETRET(irc)
Arguments:

irc is an integer number representing the return code set by the previous job.

GTSTOR

This subroutine gets main storage for use viaan array in an OS-mode program (normally FORTRAN).
GTSTOR does a GETMAIN to get a specified amount (or the max amount available) of main storage, and
passes back an offset "T", which is the distance in bytes from the start of agiven array "A" to the start of the
allocated storage. A(T+1) then references the first element of the storage. The array is normally declared as
size linthe calling program. Seeaso FTSTOR.

Calling Sequence: CALL GTSTOR(amt,a,offset,lenget,retcod)
Arguments:

amt number of bytesto get. This number is aways rounded up to a multiple of 8. amt=0
requests the maximum storage available.

488 GTSTOR - MUSIC/SP User's Reference Guide

a an array relative to which the storage area is referenced.

offset distance in bytes from the array to the storage area. The allocated areais alwayson a
doubleword boundary. Thisisset to Qif thereisan error.
lenget the number of bytesto get(amultiple of 8). If thereisan error, lengot is set to O.
retcod return code:
0 successful.

1 requested storage not available.
2 invalid reguest or argument value (e.g. amt<0 for get).
3 not OS mode.

Note: GTSTOR doesnot clear storage. The caller should do this (by calling the ZERO subroutine) if
desired.

GULPDF

This subroutine is used to define afile to be processed using GULPRD and/or GUL PWR subroutines for
efficient reading and writing of large amounts of data.

Calling Sequence: CALL GULPDF(fileno {,sblk filid} ,blksiz,numblk)

Arguments:

fileno specifies the unit number and must be an integer from 1 to 15 inclusive. These numbers
correspond to a/FILE statement defining a UDS-type disk data set or file.

blksiz isthe size of each block of data (in bytes) and is limited only by the size of the array to be
used for data.

numblk The program sets numblk to the number of blocks of data which can be stored in the data set.

sblk isoptional, it specifies the physical record number (number of the 512 byte block) to be used
asthefirst block of alogical dataset. If shlkis used then filid must be specified al so.

Filid isalogical unit number (specified by the user) by which thislogical fileisto be referenced,
and must be avalue from 1 to 32 inclusive: All arguments are integers.

Notes:

1. If shlk and filid are specified, the program can be called more than once for the same fileno permitting
several logical filesto be defined on one data set. If sblk and filid are not specified, they are assumed to
be equal to 1 and fileno, respectively.

2. Whenthe data set is originally allocated, arecord size of 128 bytes should be specified. For afile, the
record format should be F or U. If thefileisto have n blocks of blksiz bytes each, the number of
records specified at allocation time should be (with the result of the division truncated before multiplica-
tion):

(bl ksiz + 511)
4n

512

Chapter 9. System Subroutines- GULPDF 489

3. Theactua amount of disk space used for each logical block isamultiple of 512 bytes. For this reason,
very small blksize specifications, or those just slightly larger than multiples of 512 tend to waste disk
space.

4. No other /O statements (direct access or sequential) should be used on data sets used by these routines.

5. The GULP routines can be used only with UDS or fileson disk. They cannot be used with tape files.

6. When using GULPWR to write to anew file for the first time, gaps must not be left between blocks.
For example, you may not write blocks 1,2, and 5 in that order, because blocks 3 and 4 would be a gap.

A sequence such as 1,2,3,2,4,5 isallowed. Also, you may not read a block which has never been writ-
ten. Theserestrictions do not apply to UDSfiles.

GULPRD

This subroutine is used to read a file defined by a call to the GUL PDF subroutine.
Calling Sequence: CALL GULPRD(filid,blkno,array {,len})
or

CALL GULPRD(fileno,blkno,array {,len})

Arguments:

filid specifies the logical unit defined in the call to GULPDF. If it was not specified, filid should
be the fileno specified in the call to GULPDF.

blkno is the number of thelogical block at which reading is to begin.

array isthe variable into which the datais to be read.

len isthe number of bytes of datato be read, and its value must be from 1 to blksiz. blksizisthe
argument supplied with GULPDF.) Lenisoptiona and if omitted, blksizis used.

Notes:

1. Foragivenblock, if more datais read than had been written, the excess data has an unpredictable value.

2. All arguments are integers, except array which can be any type.

GULPWR

This subroutine is used to write afile defined by a call to GULPDF. (Arguments follow the samerules as
GULPRD.)
Calling Sequence: CALL GULPWR(filid,blkno,array {,len})

or

CALL GULPWR(fileno,blkno,array {,len})

490 GULPWR - MUSIC/SP User's Reference Guide

Arguments:

filid specifies the logical unit defined in the call to GULPDF. If it was not specified, filid should
be the fileno specified in the call to GULPDF.

blkno is the number of thelogical block at which writing is to begin.

array isthe variable into which the data is to be written.

len is the number of bytes of datato write, and its value must be from 1 to blksiz. blksizisthe

argument supplied with GULPDF.) Lenisoptiona and if omitted, blksizis used.

HWORD

This subroutine isa FORTRAN INTEGER function which returns the first two bytes of the argument x.
Y our program must declare this function as INTEGER.

Calling Sequence: n=HWORD(x)

| TSFxx

The following are indexed text search (ITS) retrieval subroutines for basic indexing:

ITSFID initialization/dynamic call
ITSFIW initialization/workarea call
ITSFOP open a search set

ITSFSS search string

ITSFSW search word list

ITSFOR order result list

ITSFRE retrieve results

ITSFCL close search

See thetopic "ITS Subroutines’ later in this chapter for more information.

12C

This routine converts an integer to its EBCDIC character representation.

Calling Sequence: CALL 12C(i,string,sublen)

Arguments:

[any 4 byte location to be converted to its EBCDIC character representation.

string is the output string where the EBCDI C character representing the original string is returned.
The character string representing the number isleft justified in string. String must be at least
12 byteslong.

sublen isareturned value that contains the length of the character string stored in string.

Chapter 9. System Subroutines- 12C 491

Example:
Given that:
I --> 888
CALL 12C(I, STRI NG SUBLEN)
Returns:
I --> 888

STRI NG --> ' 888bbbbbbbbb’
SUBLEN --> 3

12X

This routine converts an integer to its hexadecimal character representation.

Calling Sequence: CALL 12X (i,hexstr)

Arguments:
[any 4 byte location to be converted to its hexadecimal representation.
hexstr is the output string where EBCDIC hexdigits representing the original string are returned.
Hexstr must be at least 8 bytes long.
Example:
Given that:

| --> 249
CALL 12X(I, HEXSTR)
Returns;

| --> 249
HEXSTR --> ' 000000F9'

KEEPIN

This subroutine is used to keep the contents of the input area for 3270-type workstations only. When a
response to a conversational read is entered in the input area, it is not erased when the ENTER key is
pressed. (See CLRIN.)

Calling Sequence: CALL KEEPIN

492 KEEPIN - MUSIC/SP User's Reference Guide

LAND

This subroutineis a FORTRAN INTEGER function which is used to perform alogical and of two fullword

operands a and b.
Calling Sequence: n=LAND(a,b)
Example:

N=LAND(ABLE, BAKER)

LBCOMP

This subroutineis a FORTRAN INTEGER function used for comparing bytes. The function returns avaue

of -1, 0, or 1 corresponding respectively to whether aisless than, equal to, or greater than b.
Calling Sequence: m=LBCOMP(aka,b,kb,n)

Arguments:

a is one location of bytes.

ka indicates which byte to start with at location a. (Bytes are numbered starting at 1, not 0.)

b is another location of bytes.

kb indicates which byte to start with at location b. (Bytes are numbered starting at 1, not 0.)

n is the number of bytesto compare. If nislessthan one, the function returns a value of zero.
Example:

| F(LBCOWP(ALPHA, 1, BETA, 3, 2)) 10, 20, 30

LBMOVE

This subroutine is used to copy bytes from one location in main storage to another location.
Calling Sequence: CALL LBMOVE(aka,b,kb,n)

Arguments:

a isthe location in main storage of the bytes to be moved.

ka indicates which byte to start with at location a. (Bytes are numbered from 1, not 0.)
b isthelocation in main storage to move the bytes from location a.

kb indicates which byte to move to at location b. (Bytes are numbered from 1, not 0.)

n is the number of bytesto move. If nislessthan one, no action is taken.

Chapter 9. System Subroutines - LBMOVE

493

Example:
DI MENSI ON ABLE(20) , BAKER(20)

CALL LBMOVE(ABLE(5), 2, BAKER(2), 3, 40)
LCOMP

This subroutineisa FORTRAN INTEGER function is used to compare bytes. The function returns avalue
of -1, 0, or 1 corresponding respectively to whether aisless than, equal to, or greater than b.

Calling Sequence: m=LCOMP(a,b,n)

Arguments:

a is one location of bytes.

b is another location of bytes.

n is the number of bytesto compare. If nislessthan one, the function returns a value of zero.
Example:

| F(LCOVP(1, J, 2)) 10, 20, 30
LCOMPL

This subroutineisa FORTRAN INTEGER function which is used to transform the single full word argument
toits 1's complement.

Calling Sequence: n=LCOMPL(a)

LJUST

Thisroutine left justifies a substring, within a 1 to 256 character string, defined as the first non-blank charac-
ter from the left and the last non-blank character.

Calling Sequence: CALL LJUST(string,strlen,sublen,pad)

Arguments:

string isalto 256 character string to be left justified.

strlen isthe length of the string, an integer in the range of 1 to 256. When strlen =0 no action is
taken by LJUST.

sublen isthe length of the character string defined by the first non-blank character from the right.

pad al trailing blanks in the string are converted to the pad character.

494 LJUST - MUSIC/SP User's Reference Guide

Example:
Given that:
STRING --> ' bb12345Db'
STRLEN --> 8
PAD -->"'p'
CALL LJUST(STRI NG STRLEN, SUBLEN, PAD)
Returns:
STRING --> '12345bbb'

STRLEN --> 8
SUBLEN --> 5

LMOVE

This subroutine is used to copy bytesin main storage.

Calling Sequence: CALL LMOVE(ab,n)

Arguments:

a isthe start of the location in main storage of the bytes to move.

b isthe start of the location to receive a copy of the bytes.

n is the number of bytesto move. If nislessthan one, no action is taken.
LN

This subroutine gets the length of a character string, not counting trailing blanks.

Calling Sequence: n=LN(charvar)

or
n=LN(area,len)
Arguments:
charvar isa VS Fortran character variable or character array item. The declared length is found from
the extra arglist info passed by V'S Fortran.
area isany character string, of length "len".
n isthe returned length of the string, not counting trailing blanks. n=LN(area,len) is equiva

lent to n=LOCATE(area-len, ' ',-1), i.e. backscan for a nonblank.

Chapter 9. System Subroutines- LN 495

Notes:

1. Thefirst form, with only 1 argument, isvalid only if the argument isa VS Fortran character item. For a
non-char item, the length is unknown and n=0 is returned. No error message is issued.

2. If "len" isO or negative, n=0 is returned.

LOCATE

This subroutine searches for the substring within astring. If the string islocated n is set to the starting posi-
tion (i.e. byte number, counting from 1) of the substring which matches str. If the search is unsuccessful, nis
set to zero.

LOCATE may be used as a subroutine or as an integer function.

Calling Sequence: CALL LOCATE(a,la,str,len,n)

or

n=LOCATE(a,lastr,len)

Arguments:
a location of the string to be searched.
la isthe length of string a It can be specified as a negative or positive integer. If positive, the search for

the substring starts at the beginning of a and proceeds forward. If lais negative, the search starts at
the end of a and searches backwards. |a should not be O.

str is the substring to search for.
len isthe length of str (in bytes) and must have an absolute value between 1 and 256 inclusive. It can be

negative or positive. If lenis negative, the searchisfor the first string not equal to str. Note that if
len is negative, n=0 means that all substrings of a are equal to str.

LOCNAM

This subroutine changes an output file name to make it local to the current directory (if necessary).

Calling Sequence: CALL LOCNAM(filnam)

Arguments:

filnam isa64-char file name, that will be used for output or append. Thisroutine adds".\" (restrict

the name to the current directory - or lower) to the front of the name if the name does not
already start with any of the following:

id: (aspecific userid implies root of that id)
\ (root directory or a specific subdirectory)
A (current directory)

A (next higher directory)

/ (specia names like /input imply the root)

496 LOCNAM - MUSIC/SP User's Reference Guide

Thisis similar to what the /PURGE command does.
For example, suppose an application lets a user specify afile to which some datais to be appended (e.g. mail
copy function with the append option). The application should call this routine to adjust the name. If the
user specifies file name "abc", this routine would changeit to ".\abc". anamelike "sam:abc" or "\mydir\abc"
would be left asis.

If thisroutine isnot called, thereisreal danger of a privileged user appending to a public file that he/she does
not own, thus corrupting the public file without realizing it.

LOR

This subroutineis a FORTRAN INTEGER function which is used to perform alogical or of the two full
word arguments a and b.

Calling Sequence: n=LOR(a,b)

LSHFTL

This subroutineisa FORTRAN INTEGER function which is used to perform alogical shift left, k bits, in the
full word argument a. If kislessthan O, Oisused. If kisgreater than 32, 32 is used.

Calling Sequence: n=LSHFTL(ak)

LSHFTR

This subroutineisa FORTRAN INTEGER function which is used to perform alogical shift right, k bits, in
the full word argument a. If kislessthan O, Oisused. If kisgreater than 32, 32 is used.

Calling Sequence: n=LSHFTR(a,k)

LXOR

This subroutineis a FORTRAN INTEGER function which is used to perform alogical exclusive or of the
two full word arguments a and b.

Calling Sequence: n=LXOR(a,b)

MAZ2E

This subroutine translates 8-bit ASCII to (MUSIC) EBCDIC. Seealso: ME2A, A2E, and E2A subroutines.

Calling Sequence: CALL MAZ2E(alen)

Chapter 9. System Subroutines- MA2E 497

Arguments:
a is the data to be trand ated.

len is the number of bytesto be trandlated (0 or more). length may exceed 256. No action istaken if
lengthisO or less. (Thisroutineisre-entrant.)

Notes:

1. Thisisaone-to-one mapping between the 256 ASCII and 256 EBCDIC characters. When routines
MAZ2E and ME2A are used successively on the same data, there is no net change. It can therefore be
used for storing extended ASCII (accented, foreign, and graphics chars, etc.) or binary ASCII on
MUSIC in EBCDIC. When the datais later translated back to ASCII, nothing will be lost.

2. Most ASCII control characters are trandlated correctly. In particular: cr, If, ht (tab).

3. Thistrandationisvery close to that done by ind$file (3270 file transfer). ME2A's translation of
EBCDIC 6ato d5 is one exception; ind$file trandates it to 7c, making ind$file not one-to-one.

4. Some notable characters:

EBCDI C <---> ASCl |

4a (cent sign) e5

4f (solid vert bar) 7c (split vert bar)

5f (not sign) 5e (caret)

6a (split vert bar) d5

79 60 (grave accent)
MCNCAT

This routine can replace VS Fortran's CNCAT# (in IFY CNCAT or AFBCNCAT) concatenation routine, in
cases where the Fortran run-time library routines are not available (e.g. MAIL).

Place /INC $SUB:MCNCAT.OBJin the program or LKED thefile. (Note: This routine should * not* be
added to the subroutine library.)

Calling Sequence: CALL MCNCAT(srcl,lenl,src2,len2,...,dest,destin)
Entry point CNCAT# is equivalent to MCNCAT. Thisisequivaent to: dest=srcl//src2/]...
Strings can be any length, including 0. If len<=0, string is considered to be null. Theresulting string is

truncated or blank-padded to match the target string length. Immediate return if # argumentsis not even and
>=2.

ME2A
This subroutine translates (MUSIC) EBCDIC to 8-bit ASCII. Seealso: MAZ2E, A2E, and E2A subroutines.

(Thisroutine is re-entrant.)

Calling Sequence: CALL ME2A(alen)

498 ME2A - MUSIC/SP User's Reference Guide

Arguments:
a is the data to be trand ated.

len is the number of bytesto be trandlated (O or more). length may exceed 256. No action if lengthisO
or less.

Notes:

1. Thisisaone-to-one mapping between the 256 ASCII and 256 EBCDIC characters. When routines
MAZ2E and ME2A are used successively on the same data, there is no net change. It can therefore be
used for storing extended ASCI| (accented, foreign, and graphics chars, etc.) or binary ASCII on music
in EBCDIC. When the datais later translated back to ASCII, nothing will be lost.

2. Most ASCII control characters are trandlated correctly. in particular: cr, If, ht (tab).

3. thistrandation isvery close to that done by ind$file (3270 file transfer). me2a's trandation of EBCDIC
6ato d5 is one exception; ind$file trandates it to 7c, making ind$file not one-to-one.

4. Some notable characters:

EBCDI C <---> ASCI |

4a (cent sign) e5b

4f (solid vert bar) 7c (split vert bar)

5f (not sign) 5e (caret)

6a (split vert bar) d5

79 (grave accent) 60 (grave accent)
MODFLD

Thisroutine is used to re-define the attributes of modifiable fields by field number of screens designed using
PANEL. The attributes that can be modified are: protection, intensity, hide, and skip. See the PANEL docu-
mentation in Chapter 10. Utilities for details about these.

Calling Sequence: CALL MODFLD(pandl,ifld,irc,{iprt,intens,ihide,iskp,fldien})
Arguments:

panel isthe panel name whose attributes are to be modified. Note that panel must be declared as external
in the calling program.

ifld is the field number whose attributes are to be modified.

irc isthe return code.
=0 normal return, instructions followed as specified.
=1 invalid field number, ifld is either less than zero or greater than the highest field number avail-
ablefor this panel.
=2 skip setting could not be set because the field following the target field did not have an attribute
of X'6¢' or x'7c' (protected, nondisplay).

iprt isthe protection flag:
<=-1 setto unprotected
=0 make no change to current field protection status
>=1 setto protected

Chapter 9. System Subroutines- MODFLD 499

intens istheintensity flag:
<=-1 settolow intensity
=0 make no change to current field intensity status
>=1 setto highintensity

ihide isthehideflag:
<=0 make no change to current hide setting.
>=1 set attribute to hide (nondisplay, noprint, nondetectable)
To undo hide, reset the intensity; hide isaform of intensity.

iskp istheskip flag:
<=-1 settonoskip
=0 make no change to current skip status
>=1 setskip
Skip for afield can only be set if the field isimmediately followed by a protected, numeric, nondis-
play/ nondetectable/noprint field.

fldlen thelength of the panel field is returned.

Note: iprt, intens, ihide, and iskp are optional positional arguments. If you do not wish to choose one of
these options, assign avalue of 0 (zero). If the option(s) appears at the end of the sequence, it may
be left out.

Examples:

1. The following shows how to change the intensity of field number 2.

CALL MODFLD(PANEL1, 2,1 RC, 0, 1,0, 0)
or CALL MODFLD(PANEL1, 2,1 RC, 0, 1)

2. The following example indicates that field number 3 is to be hidden.

CALL MODFLD(PANEL1, 3,1 RC, 0,0, 1)

MODOPT

Thisroutineis used to modify PANEL options previously defined using the PANEL subsystem. The options
that can be modified are;

upper/lower case trandation.

PF13-PF24 trandlated to PF1-PF12.

PA2 automatic reshow.

PF12 as print screen.

help screen availability.

the help screen to be displayed (by name).

OO WN P

Calling Sequence: CALL MODOPT (panel,irc,icode,iset)
Arguments:

panel isthe panel name whose attributes are to be modified. Note that PANEL must be declared as exter-
nal in the calling program.

500 MODOPT - MUSIC/SP User's Reference Guide

irc isthe return code.
=0 normal return, instructions followed as specified.
=1 invalid icode number, ICODE <=0 or > 5.

icode isoption number to be reset.
=1 upper/lower case trangdlation.
=2 PF13-PF24 trandated to PF1-PF12.
=3 PA2 automatic reshow.
=4 PF12 as print screen.
=5 help screen available.
=6 help screen to be displayed (by name)

iset is the option setting desired:
<=-1 turn off option.
=0 make no change to current setting.
>=1 turn on the option.
= help panel name declared external in the calling program.
Examples:
CALL MODOPT(PANEL1, | RC, 6, HELP1)

CALL MODOPT(PANEL1, I RC, 1, -1)

MOVE

This subroutine copies full words from one location to another. n full words starting from location a to loca-
tions starting at location b.

Calling Sequence: CALL MOVE(ab,n{,m})

Arguments:

a isthe location of the words to be moved.

b indicates the |ocation to move the words.

n is the number of full words. If nislessthan 1, no action is taken.

m is optional, it specifies the length of each element. If misomitted, 4 is assumed.
NOCRLF

This subroutineisfor ASCII terminalsonly. A call to this subroutine suppresses the carriage return-line feed
which normally occurs at the end of each line of output. (See CRLF.)

Calling Sequence: CALL NOCRLF

Chapter 9. System Subroutines- NOCRLF 501

NOECHO

This subroutine is only used for 3270-type workstations. A call to this subroutine causes the contents entered
to the input area of the screen, when responding to a conversational read, not to be displayed on the output
area of the screen when the ENTER key is pressed. (See ECHOIN.)

Calling Sequence: CALL NOECHO

NONCAN

A call to this subroutine makes the program non-cancellable. That is, the /CANCEL command can not be
used to terminate the program. Use CALL CANCAN to remove the effect of CALL NONCAN. Notethat a
call to NONCAN only takes effect after the next conversational read or call to CLSOUT.

Calling Sequence: CALL NONCAN

NOPAUS
A call to this subroutine inhibits the system function of stopping every few lines to give the user a chance to
cancel the job that isrunning. (Itis meaningful only with 1050 terminals.) Seeaso PAUSE.

Calling Sequence: CALL NOPAUS

NOSHOW

This subroutine is only used for 3270-type workstations. A call to this subroutine causes the characters being
entered to the input area of the screen, when responding to a conversational read, not to be displayed. (See
SHOWIN.)

Calling Sequence: CALL NOSHOW

NOTRIN

This subroutine suppresses the trand ation of terminal input data from the terminal code to EBCDIC. This
can be used for specia applications on ASCII terminals, where the program requires the original terminal
data stream. The trand ation of terminal output data can be accomplished using the X'41' carriage control.
Normal tranglation can be resumed by calling the subroutine TRIN.

Calling Sequence: CALL NOTRIN

NPRMPT

A call to this subroutine can be used to delete the conversational read prompt message entirely. If however,
the workstation is set up to pause periodically during output (for example, the /PAUSE command has been
issued from aworkstation), a question mark (?) isissued as a prompt. (See PROMPT.)

502 NPRMPT - MUSIC/SP User's Reference Guide

Calling Sequence: CALL NPRMPT
NSGNOF
A call to this subroutine removes the request to schedule a/OFF next. It can be used to negate the effect of a

previous call to SIGNOF.

Calling Sequence: CALL NSGNOF

NXTCMD

A call to this subroutine causes the specified command, or program, to be executed. Depending on the
options specified, the command is either run concurrently with the calling program using multi-tasking
support or is run after the calling program terminates using program chaining.

Calling Sequence: CALL NXTCMD(cmd,len{,opt})

Arguments:

cmd isthe command string to be executed. If the command string specified isnot avalid MUSIC
command an attempt is made to schedul e the user program with that name. The command or
program name part of the string should be in upper case. The second part of the command string is
the parameter (PARM field).

len isthe total length of the command string and should not exceed 196. If the string is too long, the
excess characters at the end are ignored.

opt isan optional bit-string value that controls the execution of the command. Only the bits the low
order byte are used. The high order bytes must be zero. The X'80' bit determinesif the request isfor
multi-tasking execution or program chaining.

Program Chaining

In program chaining the system remembers the command specified in the NXTCMD call and executes it
automatically when the calling program terminates. The following options are available.

x'80' Must be zero.
X'40 Not used.

x'20 Not used.

x'10 Not used.

x'08' Not used.

xX'04' Not used.

x'02' Not used

x'01 Non-cancelable.

Chapter 9. System Subroutines- NXTCMD 503

Commands that are processed directly by MUSIC's workstation command scanner are not supported by
program chaining. These are/COMPRESS, /CTL, /DISCON, /EXEC, /NS, /PAUSE, /PROMPT,
/REQUEST, /RUN, /STATUS, /TIME, /TEXT, /ITABIN, /TTABOUT, /JUSERS, /WINDOW.

Multi-Tasking

When the multi-tasking option is used, the system creates a new session and runs the command immediately.
Thisisreferred to asthe child task. The original session is called the parent. There are a number of options
available that define the relationship of the child and the parent. Since multi-tasking is based on the systems
multi-session support, multi-session commands such as/NEXT and /PREVIOUS can be used to switch
between child and parent.

x'80' Must be set to 1.

x'40 Parent will wait for child task to end. Thisoption isignored if the parent or child is a back-
ground task (BTRM).

x'20' Delete child task at child end of job.

x'10' Displays job startup messages

x'08' Control of the workstation remains with the parent task once the child is started.

x'04' Hide parent task. Multi-session commands cannot be used to return to parent before child
terminates.

x'02' Run task in background (BTRM).

x'01 Make child task non-cancelable.

x'0C' Delete child when parent task terminates.

Examples:

CALL NXTCMX(' HELP SORT', 9, 128+64+32)

Thisinvokesthe HELP facility for topic "sort". The parent task waits, and the new task (help) is deleted
when the help program ends.

CALL NXTCMD(' EDI T FILE1', 10)

This uses program chaining to call the editor.

NXTPGM

A call to this subroutine causes the specified program to be executed when the current job terminates. This
routine can also be used to schedule an always program. An always program is one that is run whenever the
workstation would otherwise return to command mode and can be used to run command mode replacement
programs such as TODO, or provide sophisticated program chaining facilities. A call to this subroutine with
ablank name cancels the previous call.

Calling Sequence: CALL NXTPGM(('name'{,'parm',len,opt})

504 NXTPGM - MUSIC/SP User's Reference Guide

Arguments:

name isthe name of the file which contains the job to be executed. The length of name can be from 1 to
22 characters. If nameislessthan 22 charactersin length, it must be terminated with ablank. If the
option argument is 16 or 17, the file name can be up to 64 characters long and must be terminated
with ablank.

parm isacharacter string which will be passed to the program that isto be executed. The maximum
length of parm is 74 characters.

len isthe length of the parameter string. If it is not specified, the parameter string must be terminated by
a$sign (whichis not part of the actual parm).

opt is one of the following numbers informing the system that the program is:
1 - non-cancelable
4 - an "aways' program
5 - bath, non-cancelable and always program
16 - long file name (up to 64 characters)
17 - non-cancelable and long file name

Note: If you do not wish to pass any parmto the program, either specify only the name argument, or spec-
ify the 2nd argument as 0. The parmfield is not used by always programs.

Examples:
CALL NXTPGM ' nane ')
CALL NXTPGMV ' nane ', ' parn$')

CALL NXTPGM ' nane ','parm,|en)

CALL NXTPGM ' nane ','parm,len,1) (non-cancel abl e)
CALL NXTPGM ' nane ', 0,0, 4) (al ways program
NXWORD

This subroutine gets the next word from astring. Warning: This routine makes assumptions about how the
TOUC subroutine is coded.

Usage:
PCs=1
DO UNTI L LENCUT=0
CALL NXWORD(pos, a, | ena, out , maxout, | enout, opt)
... (PROCESS THE WORD I N "QUT")...
END- UNTI L
Arguments:
pos indicates the starting position in the string. 1t should be set to 1 before calling NXWORD, to

start at the beginning of the string (i.e. to get the first word). NXWORD sets pos to the posi-
tion of the delimiter (blank or comma) following the end of the returned word, or to lena+1
if noword found.

Chapter 9. System Subroutines- NXWORD 505

maxout

lenout

opt

Examples:

isthe string.
isthe length of the string.

isan area, of length maxout, to receive the word. The word is truncated or blank-filled to
match the area. The search starts at position posin the string. Delimiters (blanks and
(optionally) commas) are skipped to get to the start of the next word. The word ends at the
next delimiter or end-of-string.

isthe length of the output area.

isthe length of the word. If the output areaistoo small, the word is truncated to length
maxout, but lenout is set to the true (longer) length. If there are no more wordsin the string,
lenout is set to 0 and out is set to blanks.

isan (optional argument) numerical option value. option bitsin the 4th byte are:

x' 01" Treat commas as a delimter, in addition to blanks.
x' 02" Convert the word to upper case.
x' 04" Consider all characters between () as part of the
keywor d.
e.g. abc(xyz ttt)
abc(1,2)
abc(xyz(1 2) fred)

If omitted, O is assumed.

CHARACTER A*10/' ABCD EFG '/, QUT*8

POS=1

CALL NXWORD(POS, A, 10, OUT, 8, LENOUT)

SETS QUT='" ABCD ', LENQUT=4, POS=5

CALL NXWORD(POS, A, 10, OUT, 8, LENOUT)

SETS QUT=' EFG ', LENQUT=3, POS=9

CALL NXWORD(POS, A, 10, OUT, 8, LENOUT)

SETS QUT=' ', LENQUT=0, POCS=11

See also: PROCOP, ABBREV, GETOP, and SEP.

OPNFIL

Dynamically open afile. Refer to the section "Dynamic Accessto Files' for a description of thisroutine.

PANFLD

This routine queries infomation about PANEL fields.

Calling Sequence: CALL PANFLD(PANEL,RC,FLD,ROW,COL,FLDLEN,PROT,

INTENSHIDE,SKIP,ATTR,TOTLEN)

506 PANFLD - MUSIC/SP User's Reference Guide

Arguments:

PANEL isthe panel name whose info isto be queried. Note that PANEL must be declared as exter-
nal in the calling program.

RC isthe return code.
0 normal return, instructions followed as specified.
linvalid field number, ifield <0 or > than highest
field number available for this panel.
3 wrong number of arguements. thefirst 3 are required
but no more than 12 arguments can be present.

Thefollowing are only given if FLD=0

4 No field on this row, no parameters updated

5 After thelast field of arow, no parameters updated

6 before the first field of arow information returned is about
thefirst field

7 in between fields of arow information returned is about
the next field

FLD isthe field number whose info isto be queried. If FLD is0, then ROW and COL are used to
guery the field and can be anywhere in the field.

ROW isthe row on the screen of the field.

COL is starting column of the field on output, or is any column in the field on input if FLD=0.

FLDLEN isthe length of the panel field.

PROT isthe protection flag:

= 0 Field is unprotected
= 1field is protected

INTENS istheintensity flag:
= Ofield islow intensity
= 1fieldishigh intensity

HIDE isthe hideflag:
= Ofield isnot hidden
= 1fieldishidden
SKIP isthe skip flag:
= O Fieldisnot skipped
= 1field is skiped
ATTR isthe attribute byte of the field.
TOTLEN isthe offset of thisfield from the beginning of the data portion of the COMMON bl ock.
PARM

This subroutine is used to retrieve the parameter string which was passed to the calling program by a/PARM
statement or by a parameter string specified on the /EXEC command.

Chapter 9. System Subroutines- PARM 507

Calling Sequence: CALL PARM (buf,buflen,prmlen)

Arguments:

buf isthe receiving area which is blanked out prior to receiving the parameter string. Leading
and trailing blanks of the parameter string are not transferred to buf.

buflen isthe length of the receiving area which can have a maximum length of 256 characters.

prmien is set (by the routine) to the actual length of the parameter string that is moved to buf. If
prmlen islonger than buflen then only the leftmost "buflen bytes of the parameter string are
moved to buf.

PAUSE

A call to this subroutine cancels the effect of acall to NOPAUS.

Calling Sequence: CALL PAUSE

PROCOP

This subroutine processes an option item in the format abc(xyz).
The following option forms are accepted:

abc
abc(xyz)
abc=xyz
abc(xyz)
abc= xyz

Calling Sequence: CALL PROCOP(a,len,kwlen,subpos,sublen,numval)

Arguments:

a isthe option string. It should not have leading or trailing blanks.

len isthe length of a.

kwlen isthe (output) length of keyword part (abc), i.e. length up to first (or = or end of string.

subpos isthe (output) position in aof start of suboption (xyz), or O if no suboption.

sublen isthe (output) length of suboption (xyz), or O if none.

numval is the (output) numeric value of mmm (if mmm is 1 to 8 digit chars), otherwise-1. mmmis
xyz (ignoring leading and trailing blanks) if there is a suboption, otherwise mmm is abc.

Examples:

508 PROCOP - MUSIC/SP User's Reference Guide

CALL PROCOP('123',3, N1, N2, N3, Nd) --> 3,0, 0, 123

CALL PROCOP(' 12X , 3, N1, N2, N3, d) --> 3,0,0, -1

CALL PROCOP(' AB(257)',7,NL, N2, N3, Md) --> 2,4, 3,257
CALL PROCOP(' AB=257',6, N1, N2, N3, \d) --> 2,4, 3, 257
CALL PROCOP(' AB(257)',9,NL, N2, N3, N4) --> 2,5, 3,257
CALL PROCOP(' AB= 257',7,NL1, N2, N3, Md) --> 2,5, 3,257
CALL PROCOP(' AB(25X)',9,NL, N2, N3, N4) --> 2,5,3,-1
CALL PROCOP(' AB(-257)',8,NL, N2, N3, \4) --> 2,4,4,-1

See also: NXWORD, ABBREV.
PROMPT

Cancels the effect of the NPRMPT subroutine.

Calling Sequence: CALL PROMPT
PURGE

This routine deletes afile from the Save Library.
Calling Sequence: CALL PURGE(filename,irc)

or

CALL PURGE(-1,longname,irc)
Arguments:

filname isafile name, with or without the userid prefix. If the nameislessthan 22 characterslong,
it must be followed by at least 1 blank. The maximum length is 22 characters.

-1,longname isalong file name, up to 64 characters. If the nameis not the maximum length, it must be
followed by ablank.

irc isan integer return code, 0 meaning the file was deleted successfully. For the meaning of
nonzero return codes (file not deleted), see the topic "Dynamic Accessto Files' of this
guide. Also, HELP is provided with the topic ERRORS. (For example, 30 meansfile not
found, 33 meansfilein use)

Note: Thisroutine does not preserve RO, R1.

Example:

CALL PURGE(' MYFILE ', K)
QFOPEN

Opens afile and defines a buffer area. Refer to the section "Dynamic Accessto Files' for a description of
this routine and QFCLOS, QFREAD, QFRBA, QFREW, and QFBKRD.

Chapter 9. System Subroutines - QFOPEN 509

REREAD

(FORTRAN (G1) only) - allows rereading records as many times as desired, without the expense of physical
I/0. Therecord can be read with the same or different formats and lists. REREAD must be called only once
at the beginning of the FORTRAN program. Thereafter aformatted or list-directed read from unit 99 rereads
the record read by the last formatted read. No other I/O statement may appear between the two READ state-

ments.

The FORMAT and list should specify single record input, or the results are undefined. The following isan

example of a case that should be avoided:

READ(99, 200) I , J
200 FORVAT(| 4)

Calling Sequence: CALL REREAD
Example:

*CGo
list sanple
*In progress
CALL REREAD
8 READ(5, 1, END=10) |
1 FORMAT(I 1)
GO TO (2, 3), |
2 READ(99, 4)J
4 FORVAT(1X, 110)
VWRI TE(6, 5)J

5 FORVAT(' OFORVAT 4 WAS USED, J=',110)

G0 TO 8

3 READ(99, 6) A

6 FORMAT(1X, F10. 2)
WRI TE(6, 7) A

7 FORVAT(' OFORVAT 6 WAS USED, A=', F10.2)

GO TO 8
10 STOP

END
/| DATA
1 4
2 4
*End
*Go
sanpl e
*In progress
MAIN = 000250
003668 BYTES USED
EXECUTI ON BEG NS

FORVAT 4 WAS USED, J=

FORVAT 6 WAS USED, A=
STOP 0

*End

*CGo

0. 04

510 REREAD - MUSIC/SP User's Reference Guide

RJUST

Thisroutine right justifies a substring, within a 1 to 256 character string, defined as, the first non-blank char-
acter from the left and the last non-blank character.

Calling Sequence: CALL RJUST(string,strlen,sublen,start,pad)

Arguments:

string isalto 256 character string to be right justified.

strlen isthe length of the string, an integer in the range of 1 to 256. When strlen =0 no action is
taken by RJUST.

sublen isthe length of the character string defined by the first non-blank from the left and the first
non-blank character from the right.

start thisisthe starting byte of the substring justified on string.

pad al leading blanks in the string are converted to the pad character, after the text isjustified.

Example:

Given that:

STRI NG --> ' bb12345b'
STRLEN --> 8
PAD -->"'p

CALL RJUST(STRI NG, STRLEN, SUBLEN, START, PAD)
Returns:

STRING --> ' bbb12345'

STRLEN --> 8

SUBLEN --> 5
START --> 14

RSTART

A call to this subroutine initializes a general purpose random number generator routine. The basic technique
used is a combination of a multiplicative congruential generator and a shift-register generator. Eachtimea
random number is requested, two new numbers are generated and then combined to form the next uniformly
distributed number of the sequence (or the number from which anormal or exponentialy distributed number
is derived).

Calling Sequence: CALL RSTART(i,j)
Arguments:
[is an integer which becomes the starter of the multiplicative congruential generator sequence. If i is

zero then the sequence of numbersthat it startsis zero, so that CALL RSTART (0,j) provides a pure
shift register generator.

Chapter 9. System Subroutines- RSTART 511

] is an integer which becomes the starter of the shift-generator. If j is zero then the sequence of
numbersthat it startsis zero, so that CALL RSTART(i,0) provides a pure multiplicative generator.

After calling RSTART, callsto functions UNI, VNI, RNOR, REXP, IUNI, and VNI can be made to get the
next random number in the sequence.

u=UNI(0) provides a normalized floating point variate uniformly distributed on (0<=u<1).
v=VNI(0) provides a normalized floating point variate uniformly distributed on (-1<=v<1).

r=RNOR(0) provides anormalized floating point variate from the standard normal distribution, with a
mean of 0.0 and avariance of 1.0.

a=REXP(0) provides a normalized floating point variate with the standard exponential density e** (-y)
where (y>=0).

i=IUNI(0) provides an integer variate uniformly distributed in the range (0<=i<2**31).
i=IVNI(O) provides an integer variate uniformly distributed in the range (-2** 31<=i<2**31).
Example:

C DI SPLAY 50 RANDOM NUMBERS UNI FORM.Y DI STRI BUTED BETWEEN 0 AND 1
REAL X, UNI
CALL RSTART(12345, 98765)
DO 10 N=1, 50
X=UNI (0)
10 WRITE(6, 20) X
20 FORMAT(1X, F10. 5)
STOP
END

Notes:

1. If RSTART(0,0) isused, every number generated will be zero. If CALL RSTART isnot used, built-in
starting values are used.

2. Because the basic random number is a combination of multiplicative and shift-register generators, the
resulting sequence has avery large period (approximately 5 x 10**18). The random variables returned
from the RNOR and REXP routines have exactly the required distribution, normal and exponential

respectively. Both the RNOR and the REXP procedures are extremely fast, generating avariate in less
than twice the time required to generate the uniform variate.

RVRS

This routine reverses a 1 to 256 character string by swapping the characters end to end.

Calling Sequence: CALL RVRS(string,strlen)

Arguments:
string isalto 256 character string to be reversed.
strlen isthe length of the string, an integer in the range of 1 to 256. When strlen =0 no action is

512 RVRS- MUSIC/SP User's Reference Guide

taken by RVRS.
Example:
Given that:

STRI NG --> ' abcdef gh'
STRLEN --> 8

CALL RVRS(STRI NG, STRLEN)
Returns:

STRI NG --> ' hgf edcha’
STRLEN --> 8

SAVREQ

A call to this subroutine schedules a/SV name command to be scheduled for execution. The command is

executed automatically as soon as the program terminates execution, whether it terminates normally or

abnormally. The saveis not be executed if the job is canceled by the system because of excessive output, or
if acall to SIGNOF is made after the call to SAVREQ, or if thejob is canceled by a/CANCEL command.

Calling Sequence: CALL SAVREQ('name ')
Arguments:

name isthefile name to be used and must be six charactersin length.

SEP

This subroutine separates out fields separated by 1 or more blanks/commas.

Calling Sequence: CALL SEP(a,alen,maxnum,num,pos(i),len(i))

Arguments:

a isthe string to be processed (input).

alen isthe length of the string (input).

maxnum isthe size of arrays pos and len (input).

num is the number of fields found (0 to maxnum) (output).

pos(i) isthe position of thei'th field (output). (Position 1 isthefirst character of the string.)
len(i) isthe length of thei'th field (output).

Chapter 9. System Subroutines - SEP

513

Notes:
1. If there are more than maxnum fields, the extra ones are ignored.

2. If the string contains only blanks or commas, or if alen=0, numis set to O.

SETINF

Specify information about a new file to be opened by OPNFIL. Refer to the section "Dynamic Access to
Files' later for adescription of this routine.

SHOWIN

A call to this subroutine cancels the effect of a previous call to the NOSHOW subroutine.

Calling Sequence: CALL SHOWIN

SIGNOF

A call to this subroutine schedules a/OFF command which is executed automatically as soon as the program
terminates execution, whether it terminates normally or abnormally, unless acall to SAVREQ is made after
the call to SIGNOF. (See NSGNOF.)

Calling Sequence: CALL SIGNOF

SRTMUS

Generalized disk sort subroutine. For information see " Sorting Routines" in Chapter 10. Utilities.

SSORT

This subroutine is an efficient means of sorting an array (or any table of contiguous, equal-length entries)
into ascending order based on a control field within each entry. Comparison is character-type rather than
numeric.

Calling Sequence: CALL SSORT (array,num,len,keylen,{ keypos})

Arguments:

array isthe table of entriesto be sorted. If array isalogica* 1 2-dimensional array, the dimen-
sions of it would be (Ien,num). If array is afullword integer array, the dimensions of it
would be (Ien/4,num).

num isthe number of entriesin array. If numislessthan 2, the subroutine returns since no sort is

required.

514 SSORT - MUSIC/SP User's Reference Guide

len isthe length in bytes of each entry and must be a number from 1 to 256 inclusive.
keylen isthelength in bytesif the control field to be used for the sort.

keypos isthe starting position (byte number, counting from 1) of the control field within each entry.
If keyposis omitted, 1 is assumed.

STATUS

This subroutine returns a formatted line consisting of time of day, current date, service units used, and
number of users currently signed.

Calling Sequence: CALL STATUS(stline,work)

Arguments:
stline a 79 byte character string returned.
work area*8 array of dimension 4 (real*8 work(4)).

Note: Thisroutineis re-entrant.

STOPSK

A call to this subroutine terminates the effect of a/SKI1P nnn command entered by the user. That is, lines
written to the workstation after the call to STOPSK display regardiess of any previous /SKIP nnn command.
The normal effect of /SKIP nnn isrestored after the first such line begins to display.

Calling Sequence: CALL STOPSK

SYSINE

A call to this subroutine indicates the status of the current job stream input file (default unit 5 from
FORTRAN).

Calling Sequence: CALL SYSINE(mcod)
Arguments:
mcod is set by this subroutine to a value depending on current status:

0 No error conditions were associated with the last read operation from the job stream file.

1 End-of-file was encountered at the line read by last read operation.

2 Prabable programmer error: for example, /INCLUDE nesting level exceeds 5, or an improper
/INCLUDE command was found on the last read.

3 Lossof fileintegrity caused by an I/O error or some other problem. This could be caused by
trying to read aload module file which was created with record format FC (the default). Load
modul es should be created with record format F. The MUSIC Systems Support Group should
be advised if this error persists.

4 (or higher) Fileisnot accessible. The file does not exist or is defined as private or execute only.

Chapter 9. System Subroutines- SYSINE 515

A user program is limited to 10 occurrences of error code 4 before the user's job is automati-
cally terminated.

SYSINL

This subroutine can be used to find information about the current job stream input file (unit 5 from
FORTRAN).

Calling Sequence: CALL SYSINL(fn,In,nest,mcod,k,IIn,maxdep)

Arguments:

fn isthe file name currently being read, returned as 8 characters with the last two always blank.

In is returned as the line number within the current file of the last line read, with 1 being the
first line of afile (line number O may occur if the first line has not been successfully read).

nest isreturned as the current /INCLUDE nest level, if the user sets nest to zero before calling the
subroutine. If the user sets nest to a value between 1 and the current nesting level before
calling the subroutine, then information about the specified nesting level isreturned. (If nest
is outside this range, the results of the call are undefined).

mcod returns the same result asa call to SY SINE.

k returns the flags at the current nest level, as defined for subroutine SY SINR. A value of 256
isadded to k if the fileis owned by the person running the program.

[In specifies alimiting line number, and if specified as-1, then no limit is set.

maxdep returns the maximum nest level the system can handle.

Note: File names beginning with a slash (/) character can be returned in the fn argument. The name
/INPUT refersto the /INPUT file, ITRANX refersto the alternate input file used with /EXEC and
/TRMIN means the conversational read spool file.

SYSINM

A call to this subroutine causes a message to be printed on 1/O unit 6, of the form

**AT LINE nnnn of FILE xxxxxx where nnnn isthe current line number of the current input file
xooxx. (This subroutine cannot be called from COBOL or VS Fortran programs as it is not compatible with
the OS/MUSIC interface.)

Calling Sequence: CALL SYSINM

SYSINR

This subroutine allows the user to dynamically control the system input file (default unit 5 from FORTRAN).

Calling Sequence: CALL SYSINR(fn,In,lIn,nc,k)

516 SYSINR - MUSIC/SP User's Reference Guide

Arguments:

fn is an eight character file name specified by the user, with the last two characters blank. The special
name of /TRMIN ' is used to request spooled conversational reads. For more information see Chap-
ter 4. File System and 1/O Interface of this guide.

In specifies the line number to be read by the next operation.

[In specifies the limiting line number at which an end-of-file condition is to be reached. A value of -1
specifies no limit.

nc isacontrol argument. If nc=1, the nest depth is advanced by one and the named input fileis set to
be read at line number In (with In=1 specifying the first line of the file). When the specified fileis
completely read (or up to linelIn) the next read operation reads from the following linein the next
higher level; i.e the next linein the file being processed at the time of this subroutine call. If the last
read operation resulted in an end-of-file condition (including error conditions) then nc=1 is assumed
to be nc=0. You can make successive callsto SY SINR if you wish to set up an input file nest, and
then your first read statement reads as specified by the last call. Successive cals, cannot in any case,
exceed the maximum nesting depth of 5.

If nc=0 is specified, reading of the current file is terminated and the next read operation reads from
linen of filefn. If thefile name fn is specified as numeric O then the file name is not changed from
its current value. Thisfunction could be used to skip linesin the current file, although it is more effi-
cient to skip lines by actually reading them.

k is avariable which specifies control flags allowing specification of the same options allowed on the
/INCLUDE command. These options are coded in numbers, and the sum of these option numbers
form the contents of variable k completely replacing those options currently in effect at the specified

level.
Option Option Number
NEST 1
EOF 2 (an end-of-file return is always taken when there is no input left to be read)
ERRS 4

Notes:

1. A CALL SYSINR(0,0,0,0,0) can be used to prematurely stop the reading from the current file. The next
read will then start with the next file in the stack or one specified in a subsequent call to SY SINR.

2. If nc=-99is specified, al nesting levels aretotally cleared.

3. Errorsresulting from callsto SY SINR are given only at the time of the next read operation. For exam-
ple, if aninvalid file nameis specified, no indication will occur until the program actually attemptsto
read from that file.

4. Cadlsto SYSINL and SY SINM after acall to SY SINR without any intervening reads can affect the
result obtained from these subroutines.

Chapter 9. System Subroutines- SYSINR 517

SYSMSG

This subroutine may be used to control system messages associated with scheduled commands resulting from
callsto subroutines SAVREQ and SIGNOF. |f the subroutineis called, all system messages associated with
the scheduled command (except the final * End message) are suppressed. Messages issued by the program or
processor are not suppressed.

Calling Sequence: CALL SYSMSG(1)

TABS

This subroutine is used to specify input or output tab settings from within a program. Its effect isthe same as
that of a/TABIN or /TABOUT command. The tab settings remain in effect after the end of the job. The
physical TAB stops on the workstation are not set by this routine.

Calling Sequence: CALL TABS(num,tab {,&n})

Arguments:

num specifies the number of tab positions being set and must be positive if input tabs are to be set, and
must be negative if output tabs are to be set.

tab is an integer array containing the column numbersto be used, in ascending order. These are the
same numbers that would be used in a/TABIN or /TABOUT command.

n is astatement number to return to in the event of an error. This argument is optional.

TBAS64

This subroutine converts text to base 64 (3 bytes --> 4 bytes) Thisisthe "base 64" encoding scheme used for
e-mail mime, asdefined in RFC 1521. It encodes any 8-bit text to printable characters, producing 4 output
charsfor each 3 input bytes. seethe trandate table in this routine for the 64 printable characters used. An
additional character "=" is used for padding at the end of the output if the input length is not amultiple of 3
(see notes below); this allows the original exact length to be determined when decoding. (Thisroutineis
re-entrant.)

See also: FBAS64 - decode from base 64; and UUENC - uuencode-style encode.

Calling Sequence: CALL TBASB4(intxt,inlen,outtxt,outlen)

Arguments:

intxt input data.

inlen length of input data. If O or less, outlen is set to 0 and no other action is taken.

outtxt areato receive output data. Size must be at least (n/3)* 4 bytes, where nisinlen rounded up
to amultiple of 3.

outlen this routine sets outlen to the length of the output data, including pad charactersif any. itis

always amultiple of 4.

518 TBAS64 - MUSIC/SP User's Reference Guide

Output pad characters:

If the input length is not amultiple of 3, the last input triple is padded on the right with binary zeros before it
is converted, and the last 1 or 2 bytes of the last output quartet are set to the pad character ("="). If input
length is 3m+1, there are 2 pad chars; if 3m+2 thereis 1 pad char. thislets the decode routine determine the
exact length of the origina inpuit.

Notes:

1. Other 3-to-4 encoding schemes may use a different trandlate table and pad character, and may handle
lengths which are not amultiple of 3 differently.

2. Thisroutine generates ebcdic (not ascii) printable charactersin the output. if ASCII characters are
desired, the caller must convert the output to ASCII after calling this routine.

Examples:
intxt=x"12", inlen=1: outtxt="eg==", outlen=4
i ntxt=x'1234"', inlen=2: outtxt="ejq=", outlen=4

i ntxt=x"'123456', inlen=3: outtxt="ejrw', outlen=4

i ntxt=x'12345678"', inlen=4: outtxt="ejrwea==", outlen=8

TBIT

This FORTRAN INTEGER function may be used in conjunction with BITON, BITOFF, and BITFLP. It
returns the current value of abit. Your program must declare this function as INTEGER.

Calling Sequence: n=TBIT(ak)

Arguments:
a isthelocation of the byte.
k isthe position of the bit. k may havethevalues0,1,2,... Thefirst bit position isreferred to as bit O.

For example, if kis 24, the value of thefirst bit of the fourth byte of aisreturned. If kisnegative, a
value of zero is returned.

TEXTLC

This subroutine turns off the translation of lower case charactersto their upper case equivaents for future
reads from a workstation during the current job. Thiscommand is similar in effect to the /TEXT LC
command.

Calling Sequence: CALL TEXTLC

Chapter 9. System Subroutines- TEXTLC 519

TEXTUC

This subroutine turns on the trand ation of lower case charactersto their upper case equivalents for future
reads from a workstation during the current job. This command is similar in effect to the/TEXT UC
command. This mode isthe default unless changed viaa CALL TEXTLC or by a/TEXT LC command.

Calling Sequence: CALL TEXTUC

TIMCON

This subroutine converts the time of day, in the form of a character string or an integer value, from one
format to another. The second parameter argl is converted from aformat specified in nl to aformat speci-
fiedinn2 andisreturned in arg2. There are 16 format types listed below. Formats 0 to 13 are character
string formats and format 14 and 15 are integer values where time is expressed in seconds and minutes
respectively.

When input format type nlis 0 (zero), the TIMCON subroutine tries to find a correct time sequence by test-
ing all formats. If amatch isfound, the correct timeis converted into arg2 in format n2.

Calling Sequence: CALL TIMCON(nl1,argl,n2,arg2,irc{ ,itype})
Arguments:

nl isthe input format type. The format type can be any number from 0 to 15 as defined below.

Type (n1/n2) Format (argl/2) Length Example
O(argl only) ? 12 any below
1 HH 4 15
2 HH?M 8 3pm
3 HHMM 4 1512
4 HHMM?M 8 312 pm
5 HH.MM 8 15.12
6 HH:MM 8 15:12
7 HH.MM?M 8 3.12 pm
8 HH:MM?M 8 3:12 pm
9 HHMM.SS 8 1512.55

10 HH.MM.SS 8 15.12.55
11 HH:MM:SS 8 15:12:55
12 HH.MM.SS”M 12 3.12.55 pm
13 HH:MM:SS”M 12 3:12:55 pm
14 integer time in seconds 4 54775

15 integer time in minutes 4 912

argl istheinput character string if typeis 0-13, otherwise for type 14 and 15 an integer* 4 is expected.
The length of the field must be at least as large asisindicated in the table above. When the input
type of Ois specified, the format argl can be any form including "noon™ and "midnight" in English,
Dutch, French, German, Italian, Portuguese, and Spanish.

n2 is the output format type (see nl above). Type Oisnot alowed.

arg2 istheoutput character string if typeis 1-13, otherwise for 14 and 15 an interger*4 isreturned. The
length of the field must be at least as large asisindicated in the table above.

520 TIMCON - MUSIC/SP User's Reference Guide

irc is the return code describing the conversion. The following return codes are possible:

blank input field

invalid integer in time specification

invalid delimiter

timeis not inside 0-2400 hours

invalid am/pm specified

invalid format type (n1 was not 0-15 or n2 was not 1-15)

invalid format (wrong number of characters for conversion) or when input type is zero, the input
field fit no recognizable format.

CD(JW-b(/L.)I\.)Iﬂ“A

itype (optional) echoes the input type format when types 1-15 are used. When input type is 0, the format
type assumed by TIMCON isreported here. itype=0 indicates that 1 of the keywords, hoon or
midnight was used.

Examples

The following examples using input type 0 and output type 11, 13, and 14.

sample input output as output as tinsecs returned
using type O 13 format 11 format 14 format itype

13 01:00:00 pm 13:00:00 46800 1

3pm 03:00:00 pm 15:00:00 54000 2

512 am 05:12.00am 05:12:00 18720 4

12:12 12:12:00 pm 12:12:00 43920 6
345.59 03:45:59am 03:45:59 13559 9

noon 12:00:00 pm 12:00:00 43200 0

TIMDAT

This routine gets the time of day (by TSTIME) and date (by TSDATE). This routine handles the problem of
midnight occurring between the callsto TSDATE and TSTIME. It alwaysreturns avalid time and date pair.

Calling Sequence: CALL timdat(n,time,m,datel,[date2,]...)

Arguments:

n isthe type of time wanted (asin TSTIME).
time is the output time of day.

m isthe type of date wanted (asin TSDATE).

datel,date? are the output dates.
Example:

CHARACTER TI ME* 8, DATE* 16
CALL TI MDAT(5, TI ME, 1, DATE)

Chapter 9. System Subroutines - TIMDAT 521

TIMOFF

A call to this subroutine can be used to display a message giving the computer time used (in service units)
since TIMON was called. If however, TIMON was not previously called, the time displayed by TIMOFF is
the time from the beginning of execution of the program.

Calling Sequence: CALL TIMOFF

TIMON

A call to this subroutine is used to reset the job time counter used in the TIMOFF subroutine.

Calling Sequence: CALL TIMON

TOLC

This subroutine tranglates a string of charactersto lower case.

Calling Sequence: CALL TOLC(string,strlen)

Arguments:
string isastring of any length to be converted to upper case.
strlen isthe length of string.
Example:
Given that:

STRING --> ' ABC123'
STRLEN --> 6

CALL TOLC(STRI NG, STRLEN)
Returns:

STRI NG --> 'abcl123'
STRLEN --> 6

TOUC

This subroutine tranglates a string of characters to upper case.
Calling Sequence: CALL TOUC(string,strlen)
Arguments:

string isastring of any length to be converted to upper case.

522 TOUC - MUSIC/SP User's Reference Guide

strlen isthe length of string.
Example:
Given that:

STRI NG --> 'abcl123'
STRLEN --> 6

CALL TOUC(STRI NG, STRLEN)
Returns;

STRING --> ' ABC123'
STRLEN --> 6

TPCLSE

A call to this subroutine cancels the effect of a previous call to the TPOPEN subroutine. This subroutineis
for ASCII terminals only.

Calling Sequence: CALL TPCLSE

TPOPEN

This subroutineisfor ASCII terminals only. When the print line exceeds the terminal line length, MUSIC
usually splitsthe line into two parts. This feature causes problems when users are directing the output to a
paper tape. A call to this subroutine suppresses this line splitting.

Calling Sequence: CALL TPOPEN

TRANSL

This routine modifies characters according to a 256-byte trandation table. The machine instruction TR
(trandlate) is used.

Calling Sequence: CALL TRANSL (alen,table)

Arguments:
a represents the characters to be modified.
len isthelength in bytes. Len may have any value. If itisO or less, no action is taken.

table isthe 256-byte trandation table supplied by the caller. For each of the 256 possible values of a byte
in the argument a the table must have a replacement byte.

Chapter 9. System Subroutines- TRANSL 523

TRIN

This subroutine cancels the effect of acall to the NOTRIN subroutine. Normal terminal input trandlation is
resumed.

Calling Sequence: CALL TRIN

TSDATE

This subroutine returns the current date in one of several forms as specified by the first argument n. The date
is returned in the remaining argument(s) x, y... The calling sequence must contain the correct number of
arguments depending on the value of n: See also TIMDAT.

Calling Sequence: CALL TSDATE(n,x,y...)

Arguments:
n isanumber from 1 to 14 specifying the format of the date.
1 16-byteprintable datez WED MAR 06, 1985
2 8-byteU.SA. format: mm/dd/yy for example 03/06/85
3 8-bytedate: ddmonyyb for example 06MARS85b (b represents a blank)
4 x=integer year (e.g. 1985),

y = integer day of year (e.g. 65)

integer day of week, 1to 7 (Sunday is 1, Monday is 2, etc.)

X = integer month (e.g. 3),

y = integer day of month (e.g. 6),

Z=integer year (e.g. 1985)

7 8-byte European format: dd/mm/yy for example, 06/03/85

8 8-bytesortable: yymmddbb for example 850306bb (b represents a blank)

9 8-byte European, no dashes: ddmmyybb for example 060385bb (b represents a blank)
10 4-byte packed decimal: 00yydddC for example hex 0055041C (for Mar.6/85)
11 4-byte sortable binary: yymd for example hex 07C10306 (for Mar.6/1985)
12 10-byte sortable: yyyy/mm/dd for example 1985/03/06

13 8-byte sortable: yyyy/ddd for example 1985/065

14 integer in file system date format: integer day+(integer year-1970)* 366

o Ol

X is the variable name where the date i s returned.

y is the second variable name where the date is returned and must be specified if nisequal to 4 or 6.
z isthe third variable name where the date is returned and must be specified if nisequal to 6.
TSTIME

This subroutine returns time of day or job execution time as specified by n. See also TIMDAT.

Calling Sequence: CALL TSTIME(n,arg)

524 TSTIME - MUSIC/SP User's Reference Guide

Arguments:

n isanumber from 1 - 8 specifying the format or the time as follows:

OO WN P

8-byte time of day in the form HH.MM.SS for example, 15.04.09

integer time of day in seconds

integer job execution time since the beginning of execution, in units of /100 service unit.
Integer time of day in units of 1/300 seconds.

8-byte time of day in the form HH:MM:SS for example 15:04:09

11-byte time of day in the form HH:MM:SS.TH, where TH is hundredths of seconds, for exam-
ple 15:04:09.73

7 8-bytetime-of-day clock, as a 64-bit unsigned integer, obtained by executing a Store Clock
(STCK) ingtruction. Note that the time-of-day clock is the elapsed time since afixed date in the
past.

8 Time-of-day clock, converted to number of microseconds by shifting right 12 bits, as an 8-byte
REAL*8 normalized floating-point value. Obtained by a Store Clock (STCK) instruction.

arg isthe variable name where the timeis returned.
TSUSER

This subroutine returns information about the user as specified by the first argument n.

Calling Sequence: CALL TSUSER(h,arg)

or

CALL TSUSER(n,arga,argb) (for n=11 only)

Arguments:
n isanumber from 1 to 15 indicating the type of information required.
1 integer workstation type:

~No orhw N

(o]

0 batch

1 2741,3767 EBCD code

2 2741,3767,CMCST Correspondence code

3 TTY, narrow carriage (72 characters or less)

4 TTY, wide carriage (more than 72 characters)

5 1050

6 3270

99 other

First 8 characters of the user'suserid. If the userid islonger than 8 characters, the 8th character
isreturned as plus sign (+) to indicate truncation. See also n=8, 10.

4 character terminal number (always"01 ".) nn

integer TCB number (session humber)

terminal primary line length (132 for batch)

terminal line speed as preset by installation, in bits/sec (0 for batch)

1if terminal accepts 3270 data streams, 0 otherwise. For example, for PCWS, n=7 returns 1
even though n=1 may return 4.

16-character userid of the user. It endsin trailing blanksif the userid is lessthan 16 characters
long.

Length of the file ownership part of the userid (1 to 16). Thisisthe length of the userid without
the subcode, if any.

Chapter 9. System Subroutines- TSUSER 525

10 16-character file ownership id of the user. Thisisthe userid without the subcode, if any.

11 3270 screen size: number of rowsisreturned in arga (e.g. 24); number of columnsisreturned in
argb (e.g. 80).

12 4 bytes of workstation (terminal) information isreturned in arg. Thefirst 2 bytes are as set by
call to Q3270 subroutine at sign-on, giving 3270 characteristics:

1st byte: all Oif batch or not 3270-capable.

bit x'40";
bit x'20";
bit x'10";
bit x'08":
bit x'04";
bit x'02";

2nd byte:

bit x'80":
bit x'40";
bit x'20";
bit x'08":
bit x'04";
bit x'02";

PCWS connected viaan ASCII line.
NET3270.

3270 using a protocol convertor (e.g. 7171).
16 colors.

standard 7 colors (extended color).
monochrome, or only the base 4 colors.

blink (extended attribute) is supported.
reverse video (extended attribute) supported.
underline (extended attribute) is supported.
reply mode: extended field mode supported.
reply mode: character mode supported.

workstation allows entry of DBCS SO/S| chars.
3rd and 4th bytes: reserved.
13 Integer national language number in effect.
=1 English
=2 French
=3 Kanji (Japanese)
=4 Portuguese
=5 Spanish
=6 German
14 Integer national language display mode. Test result by looking at bits.
= 1if in double byte display mode (ex: Kanji)
15 Integer userid type humber.

arg is the variable name where the information is returned.

UUDEC

This subroutine converts text from UUENCODE form (4 bytes --> 3 bytes). Thisisthe UUENCODE encod-
ing scheme used by the UNIX and DOS utility uuencode/uudecode. It encodes any 8-bit text to printable
characters, producing 4 output chars for each 3 input bytes. see the trandate table in this routine for the 64
printable characters used.

This routine decodes the printable data, back to the original data. (Thisroutineisre-entrant.)

See also: UUENC - encode; TBAS64 - encode to base 64 (mime); and FBA S64 - decode from base 64
(mime).

Calling Sequence: CALL UUDEC(intxt,inlen,outtxt,outlen,retcod,displ)
Arguments:
intxt input data (encoded as by uuencode utility). It isassumed to start on a quartet (group of 4

bytes in the encoded text) boundary. Note: intxt is destroyed by this routine (tranlated in
place), so the caller should pass a copy of the original data, if it isto be used again. intxtis
destroyed only up to (not including) the first blank or invalid character or to the end of the
last full input quartet.

526 UUDEC - MUSIC/SP User's Reference Guide

inlen length of input data. If O or less, this routine sets outlen=0, retcod=0, and displ=0 and no
other action is taken.

outtxt areato receive output (decoded) data. It must be large enough to hold the output data.
Maximum possible output is ((inlen+1)/4)* 3 bytes, where/ isinteger dividei.e. discard the
remainder.

outlen this routine sets outlen to the length of the output data. Thisisamultiple of 3. outlenis

always the number of bytes stored into outtxt.

retcod,displ the routine sets these integer arguments to indicate various cases, errors, and ending condi-

tions. retcod isareturn code and displ is a displacement within intxt, usually indicating how

many input characters have been processed. Scanning stops when a blank isfound, or an

invalid character is found; thiswe call the "scan end".

1. if the scan end immediately follows a quartet, retcod=0 and displ=displacement to scan
endi.e. 4*(number of quartets processed). outlen=3* (number of quartets processed).

2. if scan end iswithin a quartet, retcod=number of of charsin last quartet before the scan
endi.e. 1to 3, and displ=displacement to end of the last complete quartet.
outlen=3* (number of complete quartets processed). Only thefirst displ bytes of intxt
are destroyed; the partial quartet at the end isintact, and can be concatenated with later
data and passed to a subsequent call to this routine.

3. if aninvalid character isfound, retcod=4 and displ=displacement to the bad character.
any preceding complete quartets are processed, and outlen=3* (the number of them).

Notes:
1. intxt argument ismodified by thisroutine. See description of intxt above.

2. thisroutine assumes the encoded text contains EBCDIC (not ASCII) printable characters. If theinputis
ASCII, the caller must convert the input to EBCDIC before calling this routine.

UUENC

This subroutine converts text to uuencode form (3 bytes --> 4 bytes). Thisis the encoding scheme used by
the UNIX and DOS utility UUENCODE. It encodes any 8-hit text to (ebcdic) printable characters, produc-
ing 4 output chars for each 3 input bytes. see the trandate table in this routine for the 64 printable characters
used. (Thisroutineisre-entrant.)

See also: UUDEC - decode; TBAS64 - encode to base 64 (mime); FBAS64 - decode from base 64 (mime).

Calling Sequence: CALL UUENC(intxt,inlen,outtxt,outlen)

Arguments:

intxt input data.

inlen length of input data. If O or less, outlen is set to 0 and no other action istaken. Note: if inlen
isnot amultiple of 3, theinput datais considered to be extended at the end with 1 or 2
binary 0 bytes (x'00"), so asto be amultiple of 3, and the original input length is not recorded
in the encoded data.

outtxt areato receive output data. Size must be at least (n/3)* 4 bytes, where nisinlen rounded up

to amultiple of 3.

Chapter 9. System Subroutines- UUENC 527

outlen this routine sets outlen to the length of the output data. 1t is always a multiple of 4.

VERALL

Thisroutine performs a variation of the VERIFY routine. It verifiesthat all the characters of a string are one
of the group of characters specified by areference character string. All non-reference characters located
will have their relative position in the string returned, as well as a count of al mismatches.

Calling Sequence: CALL VERALL(string,strlen,refstr,reflen,pos,numpos)

Arguments:

string is acharacter string of length strlen that is to be verified.

strlen isthelength of string.

refstr isthe group of character(s) that constitute the range of acceptable characters that can be
found in string. This character string can be called the reference string and the characters
reference characters.

reflen isthe length of the refstr in the range of 1 to 256.

pos isaninteger array where the relative character positions of all non-refstr characters are
returned. pos should be dimensioned to the byte length of string, that is pos(strien). If a
character is detected in string, that is not one of the reference characters, its relative position
isreturned in pos (i).

nuUMpPOos is an integer where the number of relative character positions of all non -refstr charactersis
returned.

Example:

Given that:

STRI NG --> ' bb12t 45b'
STRLEN --> 8

REFSTR --> ' 0123456789’
REFLEN --> 10

CALL VERALL(STRI NG STRLEN, REFSTR, REFLEN, PGS, NUMPOS)
Returns:

STRI NG --> ' bb12t 45b'

STRLEN --> 8

REFSTR --> ' 0123456789’

REFLEN --> 10

PCS -->1, 2,5 8 0, 0, 0,0
NUMPCS --> 4

528 VERALL - MUSIC/SP User's Reference Guide

VERIFY

Thisroutine verifies that all the characters of a string are one of the group of characters specified by arefer-
ence character string. If anon-reference character islocated, its relative position in the string is returned.

Calling Sequence: CALL VERIFY (string,strlen,refstr,reflen,pos)

Arguments:

string isacharacter string of length strlen that is to be verified.

strien isthe length of the string, in the range of 1 to 256.

refstr isthe group of character(s) that constitute the range of acceptable characters that can be
found in string. This character string can be called the reference string and the characters
reference characters.

reflen isthe length of the refstr, in the range of 1 to 256.

pos isaninteger returned that is set to O if al characters of string are also in the reference string
refstr. If acharacter is detected in string, that is not one of the reference characters, itsrela-
tive position is returned in pos.

Example:

Given that:

STRI NG --> ' bb12t 45b'

STRLEN --> 8

REFSTR --> '0123456789b'

REFLEN --> 11
CALL VERI FY(STRI NG STRLEN, REFSTR, REFLEN, PCS)
Returns:

STRI NG --> ' bb12t 45b'

STRLEN --> 8

REFSTR --> ' 0123456789b'

REFLEN --> 11
POS -->5

WORD

This routine parses a string by isolating substrings (words) delimited by a specified character (usualy a
blank). It returns the number of words or substrings found, aswell astheir positions and lengths.
Calling Sequence: CALL WORD(string,strlen,number,pos,lens,delim)

Arguments:

string is acharacter string to be parsed of length strien.

Chapter 9. System Subroutines- WORD 529

strien isthe length of the string. When strlen =0 no action is taken by WORD.
number is the number of words found in the string.

pos isan array where the relative positions of the words found in string are returned. The array
dimension should be as large as the expected number of words to be found in string. For
example, astring of length 80 can only have 40 individual words since the delimiters would
occupy 40 bytes.

lens is an array where the relative lengths of the words found in string are returned. The array
dimension should be as large as the expected humber of words to be found in string. For

example a string of length 80 can only have 40 individual words since the delimiters would
occupy 40 bytes.

delim isaone byte string (usually ablank specified as' ') which serves as the word delimiters.
WORD scans string and reports, as words, the substrings separated by the delim characters.
Consecutive multiple occurrences of the delim character are ignored.
Example:
Given that:
STRING --> "Mary had a little | anb.
STRLEN --> 25
DELIM -->"
Note: POS and LEN are dinensioned to 12, for this exanple.
CALL WORD(STRI NG, STRLEN, NUMBER, PCS, LEN, DELI M
Returns
STRING --> "Mary had a little | anb.

STRLEN --> 25
NUMBER --> 5

DELIM --> '
PS -->16 10 12 19
LEN =-->43 1 6 5
XGCOFF

(Fortran G1 only) A call to this subroutine cancels the effect of a previous call to the XGCON subroutine.

Calling Sequence: CALL XGCOFF

XGCON

(Fortran G1 only) A call to this subroutine permits use of an extended form of G format conversion which
permits free format input. The extended form remains in effect until a subsequent call to XGCOFF is made.

In the extended form, the field width specified is used as a maximum field width. However, the field width
is considered smaller if the number ends before the specified field width. 1f no number is found within the

530 XGCON - MUSIC/SP User's Reference Guide

specified field width, then it isset to O.

Calling Sequence: CALL XGCON

Example:

This facility allows an input line to be scanned totally in free format or parts can be in fixed
format as well, as in the following example.

CALL XGCON
1 READ(9, 2) A |
2 FORMAT(2G80. 0)

The format statement is interpreted as meaning that the two numbers expected may appear
anywhere on the data statement, as long as they are separated by at least one blank. Any
number not found on the data statement is assumed to be zero.

X2C

This routine converts hexadecimal strings to character equivaents (EBCDIC).

Calling Sequence: CALL X2C(hexstr,hexlen,string,irc,badchr)

Arguments:

hexstr is acharacter string of length hexlen which hasin it only hexadecimal digits 0-9 and A-F.
These must be paired, e.g. F1IF2F3.

hexlen isthe length of the hexstr. Thislength must be an even integer.

string is the character string to be returned, in the range of 1 to 256. The string should be at |east
half the length of hexstr.

irc is the return code describing the conversion.
irc=-1 the HEXSTR length was 0.
irc=0 conversion was successful.
irc=1l anillegal character was found in the string.
irc=3 conversion not possible, odd number of hex digits were found.
Note: Whenircisnot O string remains unchanged by X2C.

badchr aone byte variable where the bad character (characters not in the range A-F, 0-9) is returned
whenirc=1.

Example:

G ven that:

HEXSTR --> ' CLC6F3F4F5F6F7F8F960'
HEXLEN --> 10

CALL X2C(HEXSTR, HEXLEN, STRI NG, | RC, BADCHR)

Ret ur ns:

Chapter 9. System Subroutines- X2C 531

HEXSTR --> ' CLC6F3F4F5F6F7F8F960'
HEXLEN --> 10

STRING --> ' AF123456789/"'

| RC -->0

BADCHR --> 'b'

X2l

This routine converts a hexadecimal character string to afour byte integer value.

Calling Sequence: CALL X2l (hexstr,hexlen,i,irc,badchr)

Arguments:
hexstr is acharacter string of length hexlen which hasin it only hexadecimal digits 0-9 and A-F.
hexlen isthe length of the hexstr. Thislength must be an integer less than or equal to 8 bytes.
[isthe integer to be returned.
irc is the return code describing the conversion.
irc=-1 the HEXSTR length was 0.
irc=0 conversion was successful.
irc=1l anillegal character was found in the string.
irc=2 conversion not possible, length of hexstr was greater than 8.
Note: If ircisnot O, then: i isset to zero.
badchr aone byte variable where the bad character (characters not in the range A-F, 0-9) is returned
whenirc=1.
Example:
Given that:

HEXSTR --> ' EOE
HEXLEN --> 3

CALL X21 (HEXSTR, HEXLEN, I, | RC, BADCHR)
Returns;

HEXSTR --> ' EOF'

HEXLEN --> 3

| --> 3598

| RC -->0
BADCHR --> 'b'

ZERO

This subroutine sets bytes of main storage to zero. The user should use this routine to zero large sections of
storage (eg. arrays with more than 500 elements).

532 ZERO - MUSIC/SP User's Reference Guide

Calling Sequence: CALL ZERO(am {,n})

Arguments:

a isthe starting location of the bytesin main storage.

m is the number of wordsto turn to zero. If mislessthan 1 no action istaken.

n isthe length of each word. If nisomitted, 4 is assumed so that the subroutine sets m full words of

main storage to zero.

Chapter 9. System Subroutines- ZERO 533

Dynamic Accessto Files

FORTRAN programs on the MUSIC system can read and write files without having to predefine the file
names on /FILE statements. This dynamic style of access allows more program flexibility. For example, at
execution time a program can prompt the user to specify the name of afile to be read or written. Input/out-
put is done using the standard FORTRAN statements (READ, WRITE, REWIND, ENDFILE, etc.)

Dynamic accessis controlled by four system subroutines: OPNFIL (open afile), CLSFIL (close afile),
SETINF (specify information about a new file to be created), and FILM SG (get error message text corre-
sponding to an error number). Some usage examples are given at the end of this article.

OPNFIL Subroutine (Open aFile)

This routine associates a file name with a FORTRAN unit number (1 to 15 for FORTRAN GL1, or 1 to 99 for
VS FORTRAN. Both the file name and the unit number are specified by the user. Various option keywords
may also be specified, indicating a new or existing file, read or write access, etc. The system attemptsto
open the file, and passes a return code back to the user. A zero return code indicates a successful open, and
the user may then do FORTRAN 1/O operations on the unit number, just asif the unit had been defined by a
/FILE statement.

An 8-character MV S DDname (data definition name) can be specified instead of a unit number. In that case,
the DDname is added to the job's DDname table (if not already there) and it is associated with the SL file.
This alows programs running in OS simulation mode (such as PL/I, COBOL and VS ASSEMBLER
programs) to access files dynamically. OPNFIL giveserror code 31 if it is unable to define the DDname
because the DDname tableisfull.

When a program running in OS simulation mode calls OPNFIL with a unit number, the corresponding
FORTRAN DDname (FTnnF001) is also defined, in addition to the unit number. Thisfeature alowsVS
FORTRAN programs to use OPNFIL. Refer to the section on VS FORTRAN for further information.

CLSFIL Subroutine (CloseaFile)

The CLSFIL routine closes a unit number previously opened by OPNFIL. The system closes the corre-
sponding file, and the unit number becomes undefined. The unit may be redefined by alater call to OPNFIL.
CLSFIL givesareturn codeto the user. Zero indicates a successful close.

A 8-character MV S DDname can be specified instead of aunit number. Thiswould be a DDname previ-
ously defined by acall to OPNFIL.

SETINF Subroutine (Set | nformation for a New File)

When anew file is created by OPNFIL, the attributes of the file must be supplied. Theseinclude file size,
record length, record format, and access control (public, private, etc.) They are specified by caling SETINF
before calling OPNFIL. SETINF stores the information in acommon block which is then available to
OPNFIL.

534 MUSIC/SP User's Reference Guide

FILMSG Subroutine (Get Error Description)

When an open or close is unsuccessful, a nonzero return code indicates the reason for the error. The error
codeistypicaly a2-digit number. If the program wishesto display an error message at this point, descrip-
tive text corresponding to the error code can be obtained by calling FILMSG. Optionaly, FILMSG can
display a message itself (including the unit number) and terminate the job.

Calling Sequences
Some of the arguments may be omitted, as indicated in the descriptions below. Note that all numerical argu-
ments are of type INTEGER* 4.
Calling Sequence: CALL OPNFIL (unit,retcod, shorthame ','options.")
or
CALL OPNFIL (unit,retcod,-1,'longname*,'options.")
or

CALL OPNFIL(UNIT,retcod,TY PE)

Arguments:

unit FORTRAN unit number (1 to 99), or an 8-character DDname enclosed in single quotes. For
FORTRAN G1, the unit number must be 1 to 15.

retcod Error number returned by the routine. Zero means successful open.

‘shortname' The name of the file to be opened. It may include the userid prefix (usrd:). A blank must
follow the name, unlessit is the maximum length (22 characters). Special names'& & TEMP
' (temporary new file) and /INPUT ' (MUSIC Input File) may be used. If atemporary fileis
to be kept, use the RENAME or REPL option when closing it.

'longname’ Same as shortname except that the maximum length of the file name is 64 characters (can
include directory prefixes). The option "-1" must be present in the calling sequence before
the longname.

'options.’ (Thisargument isoptional.) Thisisacharacter string containing option keywords. The

keywords are separated by one or more blanks and the last one is followed by a period.
They are described below. If thisargument is omitted, 'OKOLD RDOK.'isassumed, i.e. an
existing fileisto be read.

TYPE A special unit identifier may be specified instead of afile name. The allowable values are:
TYPE =0 Undefined file.
5 Input stream (card reader if batch).
6 Printed or displayed output.
7 Punched output.
8 Dummy file (read gives EOF, writes ignored).
9 Conversational reads.
10 Special holding file (output).

Calling Sequence: CALL CLSFIL (unit,retcod,'options.")

Chapter 9. System Subroutines 535

Arguments:

unit

retcod

'options.’

'newname’

or

CALL CLSFIL (unit,retcod,'options.’,'newname ")

FORTRAN unit number (1 to 99), or an 8-character DDname enclosed in single quotes. For
FORTRAN G1, the unit number must be 1 to 15.

Error number returned by the routine. Zero means successful close.

(Thisargument isoptional.) Keyword options, in the same format asfor OPNFIL. The
keywords for close are described below.

This optional last argument is used only when the RENAME or REPL option is specified. It
is the new name to be given to thefile.

Calling Sequence: CALL SETINF(PRIMSP,SECSP,LRECL ,RECFM,'options.")

Arguments:

PRIMSP

SECSP

LRECL

RECFM

‘'options.’

Initial spaceto be alocated for the new file, in units of 1K = 1024 bytes. If the argument is
omitted or O, 32 is assumed.

Secondary space to be allocated whenever more spaceis needed in thefile. It is specified
either as an absolute amount (in units of 1K = 1024 bytes) or as-n, meaning n% of the exist-
ing space. If the argument is omitted or 0, 50% is assumed.

Logical record length of thefile, 0 to 32760. If omitted, 80 is assumed. Specify Oif the
record format isV or VC.

Record format, as a 2-character item:

'FC' Fixed-length compressed (the default).

'F' Fixed-length uncompressed.

'VC' Variable-length compressed.

V' Variable-length uncompressed.

'U" Undefined.

If the argument is omitted or O, 'FC' is assumed.

Keywords defining the access control options for the file, in the same format as the options
for OPNFIL. The keywords are described below. If omitted, 'PRIV." (privatefile) is
assumed, i.e. only the owner may read or write thefile.

Calling Sequence: CALL FILMSG(errcod,buffer,length)

Arguments:
errcod
buffer

length

or

CALL FILMSG(errcod,unit)

An error number returned by OPNFIL or CLSFIL.
An array to receive the error description.

The length of BUFFER, in bytes. A length of 70 or more is adequate, but any length can be

536 MUSIC/SP User's Reference Guide

unit

OKOLD

OKNEW

RDOK
WROK

APPOK

POSEND

ENQSHR

ENQEXCL

RLSE

RENAME

REPL

DEL

TCLOSE

CTAG

specified. Unused bytes are set to blanks by the routine.
If FILMSG is called with only two arguments, the second is assumed to be the unit number
associated with the error. If errcod is nonzero, a message is displayed (containing the error

number, unit number, and error description) and the job isterminated. If errcodis0, no
message is displayed and the job continues.

Option Keywordsfor Open

Thefile may already exist.

A new file may be created. SETINF must be called to define the attributes of the new file.
Note: at least one of OKOLD, OKNEW must be used.

Read operations will be allowed.
Write operations will be allowed.

Append (adding to the end of the file) will be allowed. Thefile will be positioned to the end
of existing data. WROK must also be used.

Position to the end of thefile's data.

Force enqueue for shared control of the file. Normally shared control is used only when
WROK is not specified.

Force enqueue for exclusive control of the file.

Option Keywordsfor Close
Release any unused space. This option isrecommended if writes were done to the file, espe-
cialy when creating a new file.

Rename the file to the name specified in the 'newname’ argument.

Rename the file to the name specified in the 'newname’ argument. Thisis similar to
RENAME, except that if afile already exists with the new name, it is deleted.

Delete the entirefile.

Specifies that the CLOSE function is to be performed but that the file is to remain open for
further requests. The current end of data pointer is updated in the file's directory. RLSE is
the only other option that can be given when TCLOSE is used.

Set anew tag field when the file is closed.

Note: For RENAME and REPL, new access control options are used for the new file, and these should be
specified by calling SETINF before calling CLSFIL. Inthiscase, thefirst 4 arguments of SETINF
may be specified as 0.

Chapter 9. System Subroutines 537

Keywordsfor SETINF Access Control Options

Accessis defined for two classes of users: (1) an owner of the file (the user's userid matches the file's userid),
and (2) non-owners (all other users). The default is a private file, meaning that an owner has unrestricted
access while non-owners have no access at all. The suffix "(OWN)" indicates that the keyword applies to
access by an owner.

PUBL A publicly readable file. Non-owners may read the file but not modify it. Also, thefileis
placed in the common index (see COM below).

PRIV A privatefile (the default). Non-owners can neither read nor write thefile.

SHR Non-owners may read thefile.

COM Thefileis placed in the common index, so that non-owners can refer to it without having to

include the file's userid in the file name.

RD Same as SHR.

NORD Non-owners may not read the file.

WR Non-owners may modify thefile.

NOWR Non-owners may not modify thefile.

X0 Thefileis execute-only for non-owners. Execute-only means that the file may be executed

as aprogram, but not read as data.

AO The only type of write access for non-ownersis append. This means that non-owners may
add data to the end of the file, but not overwrite existing data. Thisis useful for log files.

RD(OWN) Owners may read thefile.

NORD(OWN) Owners may not read thefile.

WR(OWN) Owners may modify thefile.

NOWR(OWN) Owners may not modify thefile.

XO(OWN) Thefileis execute-only for owners.

AO(OWN) The only type of write access for ownersis append.

Thefollowing are assumed by default: NORD, NOWR, RD(OWN), WR(OWN). The specification '‘PUBL.'
isequivaent to'RD COM.'

Common Blocks Used

Several named common blocks are used for communication among the calling program and the system
subroutines. For most applications, the user need not be aware of them.

[FILINF/ (20 bytes) This area contains information about a new file to be created (set by SETINF

538 MUSIC/SP User's Reference Guide

[FILTAG/

[FILEFP/

[FILRGX/

10
11
12
19
20
21
22
23
24
25
26
27
30
31

32
33
34
35
36
40
41
42
43
44
45
46
47
48
50
51
52
60
61
62
63

subroutine), and also receives information when an existing file is opened.

(64 bytes) Thisisthe 64-character tag field. To assign atag to anew file, placethetagin
this area before calling OPNFIL, but after calling SETINF. Any call to SETINF zeros this
area. Also, when an existing file is opened, itstag is put here.

(10 bytes) End-of-fileinformation is placed here when afileis opened.

(12 bytes) When OPNFIL or CLSFIL iscalled, the first 12 bytes of the system request argu-
ment (after the request isissued) are placed here. The 10th byte has bit X'80' on whenever a
new fileis created. After aclose with RENAME or REPL, thisbit is off if an existing file
was replaced.

Error Codesand Descriptions

END OF DATA SET ENCOUNTERED

I NCORRECT LENGTH

| N\VALI D REQ

I NVALI D REQ PARAMETER

FI LE NAME | NVALI D

I NVALI D ARGUMENTS I N CALL TO SERVI CE SUBROUTI NE
TOO MANY OPEN FI LES

NOT YOUR LI BRARY

NOT YOUR FI LE

VI OLATI ON OF WRI TE RULE

ATTEMPT TO READ BEYOND END OF WRI TTEN | NFO

WRI TE THEN READ SEQ | NVALI D

YOUR USERI D CANNOT CREATE FI LES ACCESSI BLE BY OTHERS
YOUR USERI D CANNOT CREATE FI LES I N THE COMMON | NDEX
FI LE NOT FQOUND

DDNAME NOT FOUND

(For a call to OPNFIL to define a DDnanme, error 31
neans there is no nore roomin the DDnane table.)
FI LE ALREADY EXI STS

FILE I N USE

COMWON NAME USED BY SOMVEONE ELSE

UNI T NUVBER NOT DEFI NED

SUBDI RECTORY DOES NOT EXI ST

SPACE QUOTA EXCEEDED FOR THI S USERI D

SPACE QUOTA EXCEEDED FOR THI' S FI LE

CANNOT ADD SPACE TO THI' S FI LE

REQUESTED ACCESS OR OPERATI ON NOT ALLOWED

REQ BEYOND EXTENT OF FI LE

FI LE RECFM NOT DEFI NED

FI LE CANNOT BE READ SEQUENTI ALLY

I NSUFFI Cl ENT SPACE FOR BUFFER ALLOC

M N RECORD LEN IS 80 FOR THI S FI LE TYPE

FI LE NOT ONLI NE

NOT ENOUGH FREE DI SK SPACE

NOT ENOUGH FREE DI SK SPACE (| NDEX)

RD 1/O ERROR IN FILE

WR I /O ERROR I N FI LE

RD 1/ O ERROR | N SYSTEM AREA

WR 1/ O ERROR I N SYSTEM AREA

Chapter 9. System Subroutines 539

64
65
66
67
70

I NDEX | N ERROR
HEADER | N ERROR

MAP | NTEGRI TY ERROR

| NDEX/ HEADER M SMATCH
SYSTEM FI LE ERROR

Examples

1. Thisexample opensan existing file JULY.DATA as unit 1, readsiit, and closesit.

CALL OPNFIL(1, K, "JULY. DATA ')
CALL FI LMSG K, 1)
READ(1, . .. (read the file)

CALL CLSFIL(1,K)

This sample program opens a new temporary file as unit 12, with asize of 100K, and writes some data

toit. It then closesthefile, renaming it to afile name supplied by the user. Any unused spaceis
released. The new fileis made public.

10

20

30

40

LOGI CAL*1 NAME(22)

| NTEGER UNI T/ 12/

CALL SETI NF(100)

CALL OPNFIL(UNIT, K, ' &&TEMP ', ' OKNEW WROK. ')
CALL FILMBG(K, UNIT)

WRI TE(UNI T, 10)

FORMAT(' DATAL...'/' DATA2...")

WRI TE(6, 20)

FORMAT(' ENTER NAME OF NEW FILE')

READ(9, 30) NAME

FORMAT(22A1)

CALL SETINF(0,0,0,0,"' PUBL.")

CALL CLSFIL(UNIT, K, ' RLSE RENAME. ', NAME)
CALL FILMBG(K, UNIT)

WRI TE(6, 40)
FORMAT(' SAVED)
STOP

END

540 MUSIC/SP User's Reference Guide

QFOPEN, QFCLOS, QFREAD, QFBKRD, QFRBA, QFREW

These routines allow quick record-by-record read of a sequentia file. Disk reads are done by UIO request,
several blocks at atime. QFREAD deblocks and decompresses the logical records itself, thus avoiding the
overhead of SVC and MFIO processing for each logical record. Thefile's record format must not be U.
QFBKRD reads the previous logical record. Currently, only supported for RECFM=FC,VC files.

Note: These routines are re-entrant (read-only)

QFOPEN - Open afileand define buffer area

QFOPEN opensthefile (by name or ddname, etc.). The caller provides awork area, where the routines store
control information and UIO buffers. The same work area must be used in al subsequent calls for that file,
until thefileis closed by QFCLOS. The caller should not change the contents of the work area between
calls. Each concurrently open file needsits own work area.

Calling Sequence: CALL QFOPEN(retcod,wkarea,wklen,shortname,options,
phys,info,eofp,tag,uinf xinf)

Calling Sequence: CALL QFOPEN(retcod,wkarea,wklen,-1,longname,options,
phys,info,eofp,tag,uinf xinf)

The"options"' argument is optional (can be omitted) unless phys, etc. are present. phys,info,... are optional
and are the areas to be used in place of the common block areas /QFPHY &/, etc. All these arguments must
be present if the routine is part of are-entrant module, to avoid storing into the common blocks (which are
part of the module). The arguments are described in detail below.

QFCLOS- Close afileand realease buffer area

Calling Sequence: CALL QFCLOS(retcod,wkarea)

QFREAD - Read next logical record

Calling Sequence: CALL QFREAD(retcod,wkarea,recbuf,lenbuf)

QFBKRD - Read previouslogical record
Calling Sequence: CALL QFBKRD(retcod,wkarea,recbuf,lenbuf)
Currently only supports RECFM=FC,VC files. Give EOF (RC=1) if attempt to read backwardstoo far. You

can use the QFRBA to set avery high number for the RBA and the next call to QFBKRD will read the last
record in the file.

QFRBA - Set RBA (Relative Byte Address) for next read

Calling Sequence: CALL QFRBA(retcod,wkarea,rba)

Chapter 9. System Subroutines 541

QFREW - Rewind thefile

Calling Sequence: CALL QFREW(retcod,wkarea)

Equivalent to call QFRBA (retcod,wkarea,512 or 514).

Arguments

retcod

wkarea

wklen
shortname

or
-1,longname

options

MFIO return code. These routines may set return code 19 ("invalid argumentsin call to
service subroutine”) for invalid calls, e.g. work areatoo small or not initialized by open.

Thework areafor thefile. See QFWRK DSECT. Contains control information followed by
1 or more 512-byte buffers. Must be on afullword or doubleword boundary. Minimum size
is about 700 bytes. Recommended size (for maximum speed) is about 10k+200. Maximum
sizeis (2**24)-1. A very big work area should be avoided, unless the entire file will fit into
the buffer area, because each 1/0 triesto read the greatest number of buffers possible and
this could cause excessive |/O for random accessin abig file.

Length of the work area, in bytes.

File name (or ddname, etc.) for the open. Maximum length is 22 for a short name and 64 for
along name. If an actual file name is provided and it is shorter than the maximum, it must
be followed by ablank.

If the"LU" option is used (see below), the file name is actually a 4-byte logical unit number.

Special provision for using afile that is aready open: If the options argument contains the
keyword "IU", then the name argument is a 4-byte interna unit number (IU), and thefileis
assumed to be already open. Other option keywords areignored if present. At the time of
the call to QFOPEN, common blocks /QFINFO/ and /QFEIOP/ (or their replacements) must
contain data as set by the original open. For the IU option, QFOPEN does not do an open,
so it does not fill in any common blocks.

(Optional) a character string of the form 'keyword keyword ... keyword.' The keywords are
separated by blanks and the last oneis followed by aperiod. String'." specifies no option
keywords. The keywords specify MFIO options for the open:

DDNAME
DDORDS
MEMBER

LU

NODATE
ENQEXCL
PGMP

IU (seeabove)

OPEN, OKOLD, RDOK

(these are allowed but ignored; this gives compatibility with MFACT) In all cases, the open
uses MFIO options okold and rdok.

phys,info,eofp,tag,uinf,xinf

These optiona arguments specify replacement areas for the common blocks
IQFPHY &,/QFINFO/,etc. The phys argument must be 8 bytes long, the info argument 20

542 MUSIC/SP User's Reference Guide

byteslong, etc. When an argument is present, it is used instead of the corresponding
common block area. Thisisuseful for cobol programs (which cannot access common
blocks) and for a re-entrant module (where the common blocks are part of the module and
must not be used).

recbuf Buffer to receive the logical record. Truncation or blank padding occurs if needed.

lenbuf The length of the caller logical record buffer (recbuf). it may be any length, including zero.

rba The MFIO RBA (Relative Byte Address) of the next record to be read. use of gfrbais
optional.

Common Blocks Defined:

IQFINFO/ (20 bytes) infout from the open.

IQFTAG/ (64 bytes) tag from the open.

IQFUINF/ (46 bytes) uinfo from the open.

IQFXINF/ (40 bytes) xinfo from the open.

IQFEOFP/ (20 bytes) eofpt from the open.

IQFPHY S (8 bytes) phys set after each call to QFREAD.

Note: If QFOPEN provides areplacement areafor acommon block, that areais used instead, and the
common block is not modified.

Chapter 9. System Subroutines 543

| TS Subroutines

MUSIC's Indexed Text Search (ITS) facility provides an efficient method of locating words in large docu-
ments. The ITSRET utility provides away to locate and display the results of a search. The subroutines
described in this section provide an aternate to ITSRET. The subroutines allow you to write programs that
call the search routines and check the results directly.

These routines require awork area. Thiswork area can be obtained dynamically by acall to ITSFID or a
work area can be supplied by acall to ITSFIW.

The search routines require access to an index data set built by the ITSBLD or ITSBLD2 utility. The calling
sequences allow for multiple index and text data sets, however, currently only one "search set" is supported.

ITSFID
This subroutine initializes using dynamic (Getmained) storage.
Calling Sequence: CALL ITSFID(rc,mhits,nss)
Arguments:
rc 4 bytes are returned:
=0if ok
=1if not enough storage available
=2 number of search setsisinvalid
mhits (4 bytes) is the maximum number of hitsto handle. This routine does a Getmain for the work area.
Intermediate results also use this area so make it quite large. Typically 2,000 or 4,000. Each item
needs 24 bytes. So MHITS=2,000 needs 48,000 bytes.

nss is the maximum number of search sets (4 bytes). Should be = 1.

I TSFIW

This subroutine initializes using caller's work area.

Approximate amount needed is about 6,000 for fixed work space that supports 1 search set. Add to this24
bytes per hit wanted. The fixed work space may increase in future to 10,000 or more.

Calling Sequence: CALL ITSFIW(rc,lhits,nss,work,Ilwork,mhits)
Arguments:
rc 4 bytes are returned:

=0if ok

=1if not enough storage available

=2 number of search setsisinvalid

=3 Workarea not on double word boundary.

lhits isthelimit to number of hitsto handle (4 bytes). May not be able to do this amount due to size of
input work area. If number set to -1, then take as many as will fit in area.

nss is the maximum number of search sets (4 bytes). Should be = 1.

544 MUSIC/SP User's Reference Guide

work istheinput work arealocation (variable length). Must be on double word boundary.

Iwork isthelength of work areain bytes (4 bytes).

mhits 4 bytes are returned for the number of hits that will be done. It will be the maximum number that fits

in area or number as limited by Ihits.

I TSFOP

This subroutine opens a search set.

Calling Sequence: CALL ITSFOP(rc,ss,fnidx,fntext,debidx,debtext,endmark,endml)

Arguments:
rc 4 bytes are returned:
=0 If ok
=1 If Search Set number invalid or in use.
=2 If Index data set not created by right version of ITSBLD.
=3 Prablem opening index component.
MFIO error code 256 added to return code.
=4 Praoblem opening text component.
MFIO error code 256 added to return code.
=5 Problem reading index component.
MFIO error code 256 added to return code.
ss isthe search set number (4 bytes). Must be = 1.
fnidx isthe 64 character file name of the index, or isthe 1 word deb number (format used if
already opened).
fntext isthe 64 character file name of the text, or isthe 1 word deb number. Format used if:
a) file already open by caller
b) =0 if text file will not be used by these subroutines.
debidx isthe 1 word deb number of the index file returned after open.
debtext isthe 1 word deb number of the text file returned after open.
endmark isthe 8 character item ending string used on this search set (returned).
endml isthe 4 byte count of the ending marker (returned).
I TSFSS

This subroutine searches for a character string.

Calling Sequence: CALL ITSFSS(rc,sstr,lsstr,nhits)
Arguments:

rc 4 bytes are returned:

=0 OK, something found.
=1 No hitsfound. Thereisfurther information in 3rd byte of RC.

Chapter 9. System Subroutines

545

1 Only stop words looked for
2 Hits found but after boolean logic nothing left
3 Not even intermediate hits found
=2 Too many items found. Some hits missing.
=3 Problemswith search string. Thereis further information in 3rd byte of RC.
1 Search string al blanks
2 Search word greater than maximum length (of 64)
3 Search string has quotes, periods
or other special chars around them.
4 Syntax errors
=4 Input search string length too long.
=5 Praoblem reading index component. MFIO error code 256 added to return code.

sstr is the search string.

Isstr isthe length of search string (maximum is 256).
nhits is the number of hits found (returned).
ITSFOR

This subroutine re-orders the matches of the last search. resulting list.
Calling Sequence: CALL ITSFOR(rc,s0)
Arguments:

rc 4 bytes are returned:
=0if ok
=1 invalid sort order request

so isthe sort order combination of the file order and weight order wanted. Add the following optionsto
give the sort order.
0 orderinfile(default if ORDER was not called after last search).
1 reverseorder of file (last found item will be first).
2 weighted order (highest weight first).
4 reverse weighted order (highest weight last).

ITSFRE

This subroutine retrieves results.
Calling Sequence: CALL ITSFRE(rc,hn,buff,nhits,layout,txtl,nent)
Arguments:

rc 4 bytes are returned:

=0 OK

=1 Starting hit number too large.

=11/O error reading from text component.
MFIO error code 256 added to return code.
(Can aso include end-of-file.)

=2 Prablem opening text component.
(Delayed open option used.)

546 MUSIC/SP User's Reference Guide

MFIO error code 256 added to return code.

hn is the hit number to start with. First oneis number 1.
buff is the buffer to return results.
nhits is the number of hits wanted.
layout isthe layout of each return item, made up of the following optional fields. Each field will be
length 4 if selected and will be in the following order:
Search set number
RBA
Weight

Oneline of text from text file
Length of text line

Calculate a number made up of the sum of the following wanted.

1 Return search set number
2 Return RBA
4 Return weight
8 Return length of text string. Thislength is obtained from the file system and may be
greater than the number in txtl. This option should not be selected if txtl=0.
txtl is the maximum length of text from the text fileto be read. If O, nothing will be read. If

non-zero, then use this length to read 1 logical record from the text file starting at the RBA.
If therecord is less than this length pad with blanks only if return length field is not given.

nent is the number of entries returned.

I TSFCL

This subroutine closes the search.

If close all request, then storageisfreed and acall to ITSFID or ITSFIW will be required if more searching
wanted.

Calling Sequence: CALL ITSFCL(rc,ss)
Arguments:

rc 4 bytes are returned:
=0if ok

ss is the search set number to close or =0 for all. If search set number given as negative number then
just remove search set from list but do not closeiit.
Sample Program - I TS Subroutines

/ LOAD VSFORT
C SAMPLE PROGRAM SHOW NG THE USE OF SOVE OF THE | TS SUBRCOUTI NES

C (REAL PROGRAMS SHOULD CHECK RETURN CODES AFTER ALL THE SUBROUTI NE

Chapter 9. System Subroutines 547

C CALLS)

| MPLI CI T | NTEGER (A- Z)

C VAR ABLES TO HOLD FI LE NAMES
CHARACTER *64 FNI DX, FNDAT

C VAR ABLE TO HOLD ENDI NG STRI NG
CHARACTER *8 ENDM

C VAR ABLE TO HOLD SEARCH STRI NG
CHARACTER *80 SSTR

C VAR ABLE TO HOLD TEXT LI NE FROM FI LE
CHARACTER * 80 BUFFER

C -- INITIALI ZE USI NG DYNAM C STORAGE AREA AND ALLOW FOR 2000 HI TS.
CALL | TSFI D(RC, 2000, 1)
WRI TE(6, 100) VHI TS

100 FORMAT(' | NI TIALIATION CALL. NI TS=',16)

C -- OPEN THE SEARCH SET
C SPECIFY FI LE NAMES FOR WORD | NDEX AND DATA COVPONENT
FNI DX=" $MAN: UR. W DX
FNDAT=" $MAN: UR. TOTAL'
FLGS=0
CALL | TSFOP(RC, 1, FNI DX, FNDAT, DEBI DX, DEBDAT, FLGS, ENDM ENDM.)
VWRI TE(6, 110) DEBI DX, DEBDAT, ENDM ENDML
110 FORMAT(' OPEN SS. DEBNUMF', 214,' ENDMARK=', A, ' L=",12)

C -- DO A SEARCH. (SEARCH STRING G VEN | N VAR ABLE SSTR)
SSTR=' SENDFI LE'
LSSTR=80
CALL | TSFSS(RC, SSTR, LSSTR, NHI TS)
WRI TE(6, 120) NHI TS
120 FORMAT(' SEARCH FOUND' , I5, ' HITS)

C -- RETURN THE FIRST LINE OF EACH SECTI ON THAT HAD A MATCH.
C (TO READ MORE OF SECTI ON, ASK FOR RBA AND USE QFREAD OR MFI O
C SUBROUTI NES.)

DO 40 HN=1, NHI TS
LAYOUT=0
CALL | TSFRE(RC, HN, BUFFER, 1, LAYOUT, 80, NENT)
WRI TE(6, 140) BUFFER
140 FORMAT(1X, 1A80)
40 CONTI NUE

CALL EXIT
END

548 MUSIC/SP User's Reference Guide

Chapter 9. System Subroutines 549

