Chapter 10. Utilities

Chapter 10. Utilities 549

Summary of Utility Programs

This chapter describes various utility programsthat are available to the user. First, the programs are listed by
function, with a short description of each. Once you have decided which program you need, use the Index or
Table of Contents to locate the detailed description of that utility.

ARCHIV

EXARCH
EXREST
FILARC

FILCHK

FILRST

RETREV
UDSARC
UDSRST

AMS
ENCRYPT
DECRYPT
LBLIST
VIEW

VMPRINT

AMS
DSCHK

DSCOPY
DSLIST
DSREN
UDSARC
UDSRST

Archiving

Archives (dumps) agroup of filesto tape. Note: it isrecommended that FILARC or
EXARCH be used rather than ARCHIV.

Archives (dumps) a group of files to tape for exporting to a non-MUSIC installation.
Restores one or more files from a dump created by EXARCH.

Archives (dumps) agroup of filesto tape. Thisisthe recommended utility to use for creat-
ing backup copies of files or for transporting files to other MUSIC installations.
Reads and checks a dump produced by FILARC. It can produce alist of file names
contained in the dump.

Restores one or more files from a dump created by FILARC.

Restores one or more files from a dump created by ARCHI V.

Archives (dumps) a set of UDSfiles to tape.

Restores a UDS file from a dump created by UDSARC.

Working with Files

Supports the MUSIC/SP Virtua Storage Access Method (VSAM).

Encrypts (codes) files for added security.

Restores encrypted files back to areadable form.

Displays the contents of all the user'sfiles.

Allows viewing on a full-screen workstation of files of any record length or type and of any
size.

Prints the contents of files on a specified printer.

Working with UDS Files

Supports the MUSIC/SP Virtua Storage Access Method (VSAM).

Reads and checks a dump produced by UDSARC. It can produce alist of the data set names
contained in the dump.

Copies from one UDS file to another.

Displays alist of the names of all the UDS files you own.

Renames a UDSfile.

Archives (dumps) a set of UDS files to tape.

Restores a UDS file from a dump created by UDSARC.

550 MUSIC/SP User's Reference Guide

Sorting

MNSORT Sorts the records of a specified file into ascending or descending order, using various parts
(fields) of the records as keys. Other sorting facilities are described in the same section.
These include subroutines DSORT, SSORT and SRTMUS, and sorting in Cobol and PL/I
programs.

Batch Utilities

The following utility programs are described in Chapter 3. Using Batch.

OUTPUT Manages print filesin the MUSIC print queue.

PQ Displays what is queued to print on the various printers.
PRINT Prints afile on adesignated printer.
SUBMIT Submits ajob to MUSIC batch or to other processors.

Miscellaneous Utilities

DEBUG Enables you to debug programs running on MUSIC at the machine language level.
FTP Transfers files with computers on the TCP/IP Internet.
PANEL Provides easy access to full-screen 1/0 from high-level languages.

POLYSOLVE Can be used as desk calculator and solves polynomial equations.
PROFILE Changes or displays your sign-on userid attributes, passwords, and limits.

TAPUTIL Dumps or summarizes selected files from atape, and copies files from one tape to another.
TELNET Establishes workstation sessions with computers on the TCP/IP Internet.
UTIL Facility for listing, punching, copying, and merging datarecords. The records can bein

sequential files on disk, tape, or cards. Record lengths up to 133 bytes can be processed.
ZERO.FILE Provides an efficient way of writing binary zeroesto al blocks of afile or UDSfile.

Chapter 10. Utilities 551

MUSIC/SP Access Method Services (AMYS)

MUSIC/SP Access Method Services (AMS) is a utility program that supports the MUSIC/SP Virtual Storage
Access Method (VSAM). It implements a subset of the command language described in the IBM publication
OV/VS Access Method Services, GC26-3841.

Access Method Servicesis used to alocate, manipulate, and generally maintain VSAM datasets. VSAM
datasets cannot be created using /FILE statements. Aswell, the editor and variousfile utility programs
should not be used to update or modify VSAM files. These functions are provided by Access Method Servi-
ces.

Since MUSIC/SP VSAM does not support VSAM catalogs, AM S does not support commands that manipu-
late the catalog. None of the modal commands are supported in MUSIC/SP AMS. A subset of the func-
tional commands are supported; see below for a complete list.

MUSIC/SP AMS can be run interactively at the workstation, or submitted to MUSIC batch. AMS
commands can be entered directly from the keyboard, or they can be stored in afile and executed.

Definitionsand Basic Concepts

This section defines some common terms used in the processing of VSAM files. Following this, some basic
concepts are explained. These terms and concepts should be understood prior to using Access Method Servi-
cesto manipulate VSAM datasets. Access Method Services allocates VSAM clusters, which are more than
simple datasets. A VSAM cluster is one of the following:

» akey sequenced file (KSDS) consists of aMUSIC dataset for the data component and another MUSIC
dataset for the index component. These files are maintained by VSAM in logical key sequence and can
be accessed directly viaalogical key.

e anentry sequenced file (ESDS) consists of asingle MUSIC dataset for the data component. Entry
sequenced datasets can be regarded as "sequential” datasets. Records can be accessed by relative byte
address (displacement from the beginning of the dataset).

o arelativerecord file (RRDS) consists of asingle MUSIC dataset for the data component. These files
allow you to store information into slots, and to access data by slot number. A dlot isthe number of a
fixed length record relative to the beginning of the VSAM file.

A key sequenced cluster has afield designated as the primary key. Thiskey field must contain unique
values; otherwise, VSAM will indicate an error condition. VSAM attempts to keep the data stored in the key
sequenced cluster in the order of this primary key. Dueto the patterns of additions and deletions, this may
prove to be impossible. However, VSAM aways presents the datain akey sequenced dataset in key-se-
guence order when processed sequentially.

An alternate index cluster is an auxiliary index built over somefield in aVSAM base cluster. The base
cluster and the aternate index cluster are logically related to each other by Access Method Services. VSAM
automatically updates an alternate index when updates are made to the associated base cluster. Note that an
aternate index has no meaning if the base cluster over which it is defined has been del eted.

Alternate indexes can be built over both KSDS files and ESDS files, but not over RRDSfiles. The cluster
with which the alternate index is associated is termed the base cluster.

A path isasmall MUSIC dataset that pointsto an aternate index to be used asif it were the primary key of a
VSAM cluster. That is, when a path is opened, VSAM allows a processing program to make key sequenced

552 AMS- MUSIC/SP User's Reference Guide

reguests to the alternate index, and returns to the processing program records from the data component of the
base cluster (refer to the diagram).

VSAM VSAM VSAM ([<----alternate index

Base <--->| Alternate [<---> key

Cl uster | ndex Path |---->base cluster data
record

A unique key is akey that cannot have duplicate values. Usually, names of people do not result in unique
key values, whereas Socia Insurance Numbers do result in unique key values. VSAM key sequenced data
sets (base clusters) must have unique keys; thisis optional with alternate indexes.

The upgrade set of a base cluster ssimply consists of al aternate indexes that have been built over the base
cluster, and have been flagged for upgrade processing (viathe UPGRADE parameter which is the default).
Whenever abase cluster is opened for output processing, each member of the upgrade set is opened as well.

Toillustrate some of the above concepts, consider a program processing aVSAM path. It may require up
to 5 MUSIC datasets (more if there are several members to the upgrade set). The following list enumerates
them:

A KSDS base cluster requires 2 datasets, one for the data component and one for the index component.
The dternateindex is a special type of KSDS and thus requires 2 datasets, one for the data component
and one for the index component.
A path requires 1 MUSIC dataset.

File sharing involves some special considerations. To allow any user to have READ accessto aVSAM file,
the SHARE attribute must be specified when the fileis defined. To alow any user to have WRITE accessto
aVSAM file, the WRITE attribute must be specified when the file is defined. To actually OPEN afile for
WRITE access by two or more users simultaneously, the WSHR option must be specified on the /FILE state-
ment defining thefile.

For more information on file sharing with VSAM files, refer to Chapter 4. File System and 1/0O Interface
"MUSIC/SP Virtual Storage Access Method".

Command L anguage Syntax

Each Access Method Services command has the following genera syntax:

comand posi tional - paraneter keywordl keyword2 ... keywordn

Positional parameters may or may not be required. Thisis dependant upon the particular command.
Keyword parameters are usually optional. However, certain information may be required by a particular
command. Aswell, keywords which do not require a value do not have parentheses.

A command may be continued onto a subsequent line by using a continuation character. In Access Method

Services, the hyphen ("-") is used as a continuation character. It must be placed after the text on aline,
surrounded by blanks, and indicates that the command is to be continued on the next line. Note that values

Chapter 10. Utilities- AMS 553

may not be continued. Therefore, complete any name or other value on the same line that it starts. A maxi-
mum of 50 continuation linesis allowed.

Comments may be inserted anywhere within an Access Method Services command. Comments must be
surrounded by the"/*" and "*/" sequence, similar to PL/1. Thusthe string "/* comment */" istreated asa
valid comment. Comments are treated as "white space” and may appear anywhere that a blank may appear.
If acomment is not ended on aline, it is considered to continue onto the next line. Comments are contin-
ued until terminated by a"*/".

For example, the DELETE command requires a positional parameter, which is the dataset name to be
deleted. If an alternate index isto be deleted, then this must be indicated viathe AIX or
ALTERNATEINDEX keyword. Since this keyword has no value (simply providing information to AMS),
parentheses are not used, and the command is specified as shown. Note that the comment can be placed in
the middle of the command.

DELETE -

filename [/* this is a comment */ -
Al X

I nvoking Access M ethod Services

Access Method Servicesisinvoked by entering AMS when in *Go mode. On workstations that can accept
3270 data streams, Access Method Services displays a full-screen menu. On workstations that cannot
support full-screen applications, a conversational interface is presented.
The full-screen interface has the ability to save the generated AMS commandsin afile. By pressing afunc-
tion key, these commands can be re-executed. An option is available to either append generated commands
to thisfile, or to replace the current file each time a command is generated.
If for some reason you do not want to use the full-screen interface, you can suppress it by using the parame-
ter NOFS when you invoke AMS. For example, the command AMS NOFS entered in * Go mode never
invokes the full-screen interface to AMS.
Y ou can directly execute afile of AMS commands by typing:

ANS fil ename

where filename is the name of the file containing your AMS commands. Doing thisimplies that the full-
screen interface to AMS will not be invoked.

Note that AMS command stream files may also be submitted to MUSIC/BATCH.

Standard input ison logical unit 5, and standard output is on logical unit 6. Either unit number may be re-de-
fined to refer to files as required, using /FILE statements.

In particular, to save the output of AMS to afile, use the following control lines:
/| FILE 6 NAME(your-file) NEW REPLACE) RECFM VC)

/I NCLUDE AMS
/1 NCLUDE your - AMS- commands- st ream

554 AMS - MUSIC/SP User's Reference Guide

Access M ethod Services Commands

The following Access Method Services commands are supported:
ALTER: modifies various attributes of a VSAM file.
BLDINDEX: constructs an aternate index for a base cluster.
DEFINE CLUSTER: definesaVSAM cluster.
DEFINE ALTERNATEINDEX: definesaVSAM alternate index.
DEFINE PATH: definesaVSAM path.
DELETE: deletes VSAM objects.
LISTCAT: displays the attributes of aVVSAM cluster, and any associated files.
REPRO: copies VSAM or non-VSAM filesto VSAM or non-VSAM files.
The following sections describe each command and the parameters that are supported. Many parameters

described in the OS/VS Access Method Services are not supported. If these are specified, Access Method
Services issues warning messages. Additionally, parameters specific to MUSIC/SP have been added.

ALTER

Usage

ALTER entrynane
[FREESPACE(CI - percent)]
[| NDEXBUFFERS(nunber)]
[I NDEXPO NTER(newnane)]
[NEWNAMVE(newnane)]
[PRI VATE| SHARE| PUBLI C| COWON]
[RECORDSI ZE(aver age nmaxi mun)]
[RESETUPGRADEL| ST]
[UNI QUEKEY| NONUNI QUEKEY]
[UPGRADE| NOUPGRADE]

The ALTER command allows you to modify some of the attributes of aVVSAM file. A single positional
parameter specifying the name of the file to be atered isrequired. All other parameters are optional. Note
that ALTER writesto the VSAM file, and thus changes the date that the file was last written.

Thetablein Figure 13.1 indicates all of the options available with ALTER, and the types of VSAM object
that they can be used with.

Abbreviation: ALT

Chapter 10. Utilities- AMS 555

ALTERNAME | NDEX CLUSTER
Data | ndex Data | ndex

COVIVON X X X X
FREESPACE X X

| NDEXBUFFERS X X

I NDEXPO NTER X
NEVWANE X X X X
NONUNI QUEKEY X

NOUPGRADE X

PRI VATE X X X X
PUBLI C X X X X
RECORDSI ZE X X
RESETUPGRADELI ST X

SHARE X X X X
UNI QUEKEY X

UPGRADE X

Figure 10.1 - Alter Keywords Used with VSAM Objects

The following describes each of the parameters.

entryname
COMMON

FREESPACE

INDEXBUFFERS

INDEXPOINTER

specifies the name of the VSAM file to be altered.
(COM) specifiesthat the entryname should be placed in the common index.

(FSPC) specifies the percentage of a controlinterval's space that VSAM will main-
tain as freespace in future insertions. Note that this parameter does not cause every
control interval in the data component to have the designated percentage of free-
space.

(IDXBUFS) specifies the number of index buffers that VSAM allocates when the
VSAM dataset is opened. This parameter can affect performance. By maintaining
more of the index in memory, more virtual storage may be required, but the prob-
ability that VSAM must access DASD to locate an index block may be lessened.

(IDXPTR) specifies that the newname is to replace the index pointer name contained
in the first block of the data component. When you rename an index component,
you must also update the index pointer field within the associated data component
file. Notethat the index component isrequired if the data contained within a

556 AMS- MUSIC/SP User's Reference Guide

NEWNAME

NONUNIQUEKEY

NOUPGRADE

PRIVATE

PUBLIC

RECORDSIZE

key-sequenced data set isto be retrieved.

(NEWNM) specifies that the VSAM object is to be renamed to newname. If the
new nameisinvalid, then the rename operation is not performed. Associated
V SAM objects are updated as required with the new name.

(NUNQK) specifies that duplicate values should be allowed in the key field of an
alternate index.

(NUPG) specifies that the alternate index should not be opened and updated to
reflect changes made to the base cluster when it is opened for output processing. In
other words, the alternate index is removed from the upgrade set of the base cluster.

(PRIV) specifiesthat the attribute flags for this file should be changed to PRIVATE
(only the userid's owner can accessthe file).

(PUBL) specifiesthat the attribute flags for this file should be changed to PUBLIC
(any user with any userid can access thefile).

(RECSZ) specifies the maximum recordsize for thisfile. Note that the average
recordsize value isignored and may be specified as zero.

RESETUPGRADELIST

UNIQUEKEY

SHARE

UPGRADE

ALTER Examples

(RESETLST) specifies that the upgrade list within aVSAM cluster is to be emptied.
This means that those objects are logically not to be associated with the base cluster,
although they may still exist physically.

The intended use of this parameter is in the situation where VSAM files are being
copied from one userid to another userid, perhaps by an archival and restore process.
In this case, rather than change all pointersin all datasets (all of which may have
different names due to the restore process), the recommended procedure is the
following.

Delete all alternate indexes and paths, using the MUSIC/SP PURGE command.
Then the list of members of the upgrade set contained in the data component of the
base cluster should be emptied by using this parameter. Finally, the required VSAM
objects previously deleted should be DEFINEd and any required indexes constructed
using BLDINDEX. Refer to Example 2 for an illustration of this.

(UNQK) specifies that duplicate values should not be allowed in the key field of the
aternate index. Note that this parameter is not allowed if the alternate index is non-
empty.

(SHR) specifies that the attribute flags for this file should be changed to SHARE
(file can be accessed with the userid and name by anyone).

(UPG) specifiesthat the alternate index isto be placed in the upgrade set of the asso-
ciated base cluster. Note that this parameter is not allowed if the alternate index is
not empty. Thus, this parameter should be specified with an ALTER command prior
to performing a BLDINDEX function upon it.

Example 1: Renaming aVSAM KSDS.

Chapter 10. Utilities- AMS 557

ALTER xxx NEWNAME(yyy)
Example 2: A VSAM KSDS and alternate index have been copied to another userid. The following
steps will render the files usable from this userid (if these steps are not performed, VSAM
OPENs will fail).
DELETE xxx. ai X ALTERNATEI NDEX
ALTER xxx RESETUPGRADELI ST
DEFI NE Al X(NAME(xxx. ai X) . ..)
BLDI NDEX | DS(xxx) ODS(xxX. ai X)
Example 3: Changing the maximum recordsize and freespace parameters.

ALTER xxx RECORDSI ZE(4089) FREESPACE(5)

BLDINDEX

Usage

BLDI NDEX | NDATASET(ent r ynamne)
OUTDATASET(ent r ynane)

The BLDINDEX command builds an Alternate index over aVVSAM base cluster. Both theinput file and
the output file must be specified. The INDATASET parameter must name avalid VSAM base cluster, and
the OUTDATASET parameter must name avalid VSAM dternate index.

BLDINDEX constructs an aternate index by reading all of the data records in the base cluster, then sorting
them, and finally writing sorted alternate index data records to the alternate index.

The cost of running BLDINDEX can be minimized in several ways. First, since BLDINDEX performs a
virtual storage sort if possible, specifying alarger REGION size on the /SY S statement can avoid access to
DASD for temporary storage. Avoiding unnecessarily large key sizes will reduce overhead, since only the
prime and alternate keys are used in constructing a temporary sort record.

BLDINDEX uses two work files for sorting the alternate key/primary key pairs. They are SORTWK1 and
SORTWK?2. You can over-ride the default files (SORTWK1 and SORTWK 2) with job control statements.

Abbreviation: BIX
The following describes each of the parameters.

INDATASET (IDS) specifies the name of the VSAM base cluster over which the alternate index is
to be built. Thismust beaKSDS or ESDS VSAM cluster. Note that this base clus-
ter may not be aUDS file; alternate indexes over UDS files are not supported.

OUTDATASET (ODS) specifies the name of the VSAM alternate index which isto contain the alter-

nate key information. Note that this file must previously have been defined using
the DEFINE ALTERNATEINDEX command.

558 AMS- MUSIC/SP User's Reference Guide

BLDINDEX Examples
Example 1: Building an aternate index using defaults

/I NCLUDE AMS

BLDI NDEX
| NDATASET(BASEFI LE. DAT)
OUTDATASET(BASEFI LE. Al X)
Example 2: Building an aternate index, using files, and specifying alternate work files

/ FILE SORTWKL UDS(XXXXWK1) OLD VOL(MJSI C1)
/ FILE SORTWK2 UDS(XXXXWK2) OLD VOL(MJSI C1)

/ 1 NCLUDE ANB

BLDI NDEX
| DS(BASEFI LE. DAT)
OUTDATASET(BASEFI LE. Al X)

Chapter 10. Utilities- AMS 559

DEFINE ALTERNATEINDEX

Usage

DEFI NE ALTERNATEI NDEX

(NAME(ent rynane)

RELATE(ent r ynane)

[CYLI NDERS(pri mary[secondary]) |
RECORDS(pri mary[secondary]) |
TRACKS(pri mary[secondary])]

[CONTROLI NTERVALSI ZE(si ze| 4096)]

[FREESPACE(Cl - percent[CA-percent]|0 0)]

[KEYS(l ength of fset| 64 0)]

[PRI VATE| COVWON| SHARE| PUBLI C| WRI TE]

[RECORDSI ZE(aver age nmaxi mumn 4089 4089)]

[REPLACE]

[SPACE(pri mary| 40)]

[SECSPACE(secondary| 0)]

[UNI QUEKEY| NONUNI QUEKEY]

[UPGRADE| NOUPGRADE])

[DATA

([CONTROLI NTERVALSI ZE(si ze| 4096)]

[CYLI NDERS(pri mary[secondary]) |
RECORDS(pri mary[secondary]) |
TRACKS(pri mary[secondary])]

[KEYS(l engt h of fset)]

[NAME(ent rynane)]

[RECORDSI ZE(aver age nmaxi mumni 4089 4089)]

[SPACE(pri mary| 40)]

[SECSPACE(secondary| 0)]

[UNI QUEKEY| NONUNI QUEKEY])]

[1 NDEX

([CONTROLI NTERVALSI ZE(si ze| 512)]

[CYLI NDERS(pri mary[secondary]) |
RECORDS(pri mary[secondary]) |
TRACKS(pri mary[secondary])]

[NAME(ent rynane)]

[SPACE(pri mary| 10)]

[SECSPACE(secondary| 0)])]

The DEFINE ALTERNATEINDEX command creates a VSAM aternate index associated with an already
existing base cluster. This consists of a data component and an index component.

Keywords that occur in both the ALTERNATEINDEX clause and the DATA clause apply only to the
DATA clause. Those keywords need not be specified in both clauses. |f akeyword appearsin both
clauses, the keyword in the DATA clauseis used. Thereason for thisisthat if AMS command streams
from other systems are used, the specification intended for the data component will be used for the data
component. Abbreviation: DEF AIX

560 AMS- MUSIC/SP User's Reference Guide

The only required parameters are the NAME and the RELATE subparameters in the CLUSTER keyword.
The following describes each of the parameters.

COMMON

(COM) specifiesthat the file names for the alternate index are to be placed in the
common index.

CONTROLINTERVALSIZE

CYLINDER

FREESPACE

KEYS

NAME

NONUNIQUEKEY

NOUPGRADE

PRIVATE

PUBLIC

RECORDS

RECORDSIZE

RELATE

REPLACE

(CISIZE) specifiesthe controlinterval size to be used for the DATA and/or INDEX
component of the VSAM alternate index (default: 4096 for data component, 512 for
index component).

(CYL) specifies the alocation of space for the data component in terms of cylinders
of a 3330 disk pack (thisis 19 tracks of 20 512-byte blocks each).

(FSPC) specifies the freespace percentages for control intervals. Note that although
the control area freespace percentage is scanned, it isignored.

specifies the length and offset of the key of the VSAM alternate index. Note that the
offset isrelative to O, so that if the key startsin column 1, the value that you provide
should be 0.

(NA) specifies the name of the VSAM dternate index. When used in the
ALTERNATEINDEX keyword, it specifies both the name of the VSAM data
component and the default root for the index component of the alternate index. Note
that the data component name is the one used when opening the file or when using
the file name on a/FILE statement. In the special case of a name specified in the
ALTERNATEINDEX keyword as "name.DAT", Access Method Services provides
adefault name for the index component of "name.IDX". Otherwise, Access Method
Services appends ".IDX" to the name of the data component by default.

(NUNQK) specifies that the alternate index key can have repeating valuesin the
base cluster data records (thisis the default).

(NUPG) specifies that the alternate index being defined should not be placed in the
upgrade set for the associated base cluster.

(PRIV) specifiesthat the VSAM objects are to be given afile attribute of PRIVATE,
and therefore cannot be shared with other users (thisis the default).

(PUBL) specifiesthat the VSAM objects are to be given the file attributes of COM
and SHR, meaning that non-owners can read from the file, and that the owner's
userid need not be prefixed to the file name.

(REC) specifies the space allocated to the data component in terms of the maximum
logical recordsize (default: CISIZE - 7) and a secondary allocation in terms of the
maximum logical record size.

(RECSZ) specifies the average logical recordsize and the maximum logical record-
size for the data component. Note that the average logical recordsize is scanned but
ignored.

(REL) specifies the base cluster over which the alternate index is being defined (note
that thisfile must exist).

(REPL) specifiesthat if the VSAM objects being defined already exist, then they are
replaced (note that thisis NOT the default; in other words, if the VSAM objects

Chapter 10. Utilities- AMS 561

SECSPACE

SHARE

SPACE

TRACKS

UNIQUEKEY

UPGRADE

WRITE

being defined exist, the DEFINE command terminates with an error condition).

(SECSP) specifies the MUSIC secondary space alocation in units of 1024 bytes (K)
for the data or index component. If Ois specified (the default), this means that a
secondary space allocation will be 50% of the current file size.

(SHR) specifies that the VSAM objects being created are to be given the SHR attri-
bute, meaning that non-owners can read from and write to the alternate index.

(SP) specifies the MUSIC primary space allocation, in units of 1024 bytes (K) for
the data or index component.

(TRK) specifies the primary and secondary space allocations in terms of 3330 disk
pack tracks (twenty 512-byte blocks per track).

(UNQK) specifies for aternate index keys that repeating values are not allowed in
the base cluster.

(UPG) specifiesthat the alternate index being defined is to be placed in the upgrade
set of the associated base cluster.

(WR) specifiesthat the alternate index is to be given the WSHR attribute, meaning
that non-owners can read from and write to the aternate index.

DEFINE ALTERNATEINDEX Examples

Example 1:

Example 2:

Defining an alternate index, specifying the alternate key position as length 15 and offset 5,
and the related base cluster "BASE.ESDS". Note that "BASE.ESDS' must previously have
been defined.

/1 NCLUDE AVS
DEFI NE ALTERNATEI NDEX -
(NAME(AI X1. DAT) RELATE(BASE. ESDS) -
KEYS(15 5))

Defining an alternate index specifying that key values can repeat (NONUNIQUEKEY) and
that when changes are made to the base cluster, they should not be reflected in the alternate-
index.

/I NCLUDE AMS
DEFI NE Al X -
(NAME(Al XFI LE) REL(BASEFI LE) NOUPGRADE NONUNI QUEKEY)

562 AMS- MUSIC/SP User's Reference Guide

DEFINE CLUSTER

Usage

DEFI NE CLUSTER

(NAME(ent rynane)

[CYLI NDERS(pri mary[secondary]) |
RECORDS(pri mary[secondary]) |
TRACKS(pri mary[secondary])]

[CONTROLI NTERVALSI ZE(si ze| 4096)]

[FREESPACE(Cl - percent[CA-percent]|0 0)]

[1 NDEXED| NONI NDEXED| NUVBERED]

[KEYS(l ength of fset| 64 0)]

[PRI VATE| COWON| SHARE| PUBLI C| WRI TE

[RECORDSI ZE(aver age nmaxi muni 4089 4089)]

[REPLACE]

[SPACE(pri mary| 40)]

[SECSPACE(secondary| 0)])

[DATA

([CONTROLI NTERVALSI ZE(si ze| 4089)]

[CYLI NDERS(pri mary[secondary]) |
RECORDS(pri mary[secondary]) |
TRACKS(pri mary[secondary])]

[KEYS(l engt h of fset)]

[RECORDSI ZE(aver age nmaxi mun)]

[SPACE(pri mary| 40)]

[SECSPACE(secondary| 0)])]

[1 NDEX

([CONTROLI NTERVALSI ZE(si ze| 512)]

[CYLI NDERS(pri mary[secondary]) |
RECORDS(pri mary[secondary]) |
TRACKS(pri mary[secondary])]

[NAME(ent rynane)]

[SPACE(pri mary| 10)]

[SECSPACE(secondary| 0)])]

The DEFINE CLUSTER command creates aVSAM cluster. This consists of a data component, and in the
case of akey sequenced data set, an index component.

User Data Set files are supported only for the data components of base clusters. A base cluster withaUDS
for the data component may not have alternate indexes built over it (this restriction is enforced simply by
not recognizing the UDS specification in the DEFINE ALTERNATEINDEX command).

To use aUDS as the data component of a base cluster, you must include a/FILE statement that defines the
UDSfile. Inthethe NAME keyword of the DATA clause, instead of the file name, you specify "/FILE#",
where "#" is the unit number of the /FILE statement that defines the UDSfile (for example, /FILEL). Note
that avalid cluster name may still be included in the NAME parameter in the CLUSTER clause. Thiswill
then determine the form of the name for the index component, if that nameis not explicitly specified.

Chapter 10. Utilities- AMS 563

Keywords that occur in both the CLUSTER clause and the DATA clause apply only to the DATA clause.
These keywords need not be specified in both clauses. If akeyword appears in both clauses, the keyword
inthe DATA clauseisused. Thereason for thisisthat if AMS command streams from other systems are
used, the specification intended for the data component will be used for the data component.

Abbreviation: DEF CL

The only required parameter is the NAME subparameter in the CLUSTER keyword. The following
describes each of the parameters.

COMMON (COM) specifies that the file names for this VSAM object are to be placed in the
common index

CONTROLINTERVALSIZE
(CISIZE) specifiesthe controlinterval size to be used for the DATA and/or INDEX
component of the VSAM file (default: 4096 for data component, 512 for index

component)

CYLINDER (CYL) specifies the alocation of space for the data component in terms of cylinders
of a 3330 disk pack (thisis 19 tracks of 20 512-byte blocks each)

FREESPACE (FSPC) specifies the freespace percentage for control intervals. Note that although
the control area freespace percentage is scanned, currently it isignored.

INDEXED (KSDS) specifiesthat the VSAM cluster is akey sequenced data set (KSDS). Note
that thisis the default

KEYS specifies the length and offset of the key of the VSAM object. Note that the offset is
relativeto 0, so that if the key startsin column 1, the value that you provide should
be 0.

NAME (NA) specifies the name of the VSAM object. When used inthe CLUSTER

keyword, it specifies both the name of the VSAM data component and the default
root for the index component. Note that the data component name is the one used
when opening thefile.

In the specia case of a name specified in the CLUSTER keyword of "name.DAT",
Access Method Services provides a default name for the index component of
"name.IDX". Otherwise, Access Method Services appends".IDX" to the data
component name by default.

NONINDEXED (ESDS) specifiesthat the VSAM cluster is an entry sequenced dataset. Notethat in
this case, ho index component exists.

NUMBERED (RRDS) specifiesthat the VSAM cluster is arelative record data set.

PRIVATE (PRIV) specifiesthat the VSAM objects are to be given afile attribute of PRIVATE,

and therefore cannot be shared with other users (thisis the default).

PUBLIC (PUBL) specifies that the VSAM objects are to be given the file attributes of COM
and SHR, meaning that non-owners can read from the cluster and need not prefix the
file name with the owner's userid.

RECORDS (REC) specifies the space allocated to the data component in terms of the maximum
logical recordsize (default: CISIZE - 7) and a secondary allocation in terms of the

564 AMS- MUSIC/SP User's Reference Guide

maximum logical record size.

RECORDSIZE (RECSZ) specifies the average logical recordsize and the maximum logical record-
size for the data component. Note that the average logical recordsize is scanned but
ignored.

REPLACE (REPL) specifiesthat if the VSAM objects being defined already exist, they are

replaced (note that thisis NOT the default; in other words, if the VSAM objects
being defined exist, the DEFINE command terminates with an error condition).

SECSPACE (SECSP) specifies the MUSIC secondary space alocation in units of 1024 bytes (K)
for the data or index component. If Ois specified (the default), this means that a
secondary space allocation will be 50% of the current file size.

SHARE (SHR) specifies that the VSAM objects being created are to be given the SHR attri-
bute, meaning that non-owners can read from the cluster.

SPACE (SP) specifiesthe MUSIC primary space alocation, in units of 1024 bytes (K) for
the data or index component.

TRACKS (TRK) specifies the primary and secondary space allocations in terms of 3330 disk
pack tracks (twenty 512-byte blocks per track).

WRITE (WR) specifies that the cluster isto be given the WSHR attribute, meaning that
non-owners can read from and write to the cluster.

In generd, this attribute is not recommend for the average application because it
places heavy responsibility upon the application program to guarantee the integrity
of the data.

DEFINE CLUSTER Examples

Example 1: Defining a cluster using all of the defaults. Note that this is not recommended since the
default key size and offset (64 and 0) is unlikely to meet the requirements of your applica-
tion.

/1 NCLUDE AN
DEFI NE CLUSTER -
(NAVE(BASEFI LE. DAT))

Example 2: Defining a key-sequenced cluster, specifying the space in terms of K bytes (multiples of
1024 bytes), that it should replace any existing file of the same name, that the maximum
recordsize should be 80 bytes, that the controlinterval size for the index component should
be 1024 bytes, that the files created should be SHR (other users can access them), and that
the keysize and offset should be 20 and 10, respectively. Note that the name of the index
component defaultsto: "BASEFILE.IDX".

/1 NCLUDE AVS

DEFI NE CLUSTER -
(NAMVE(BASEFI LE) REPLACE SHR) -
DATA(RECORDSI ZE(1 80) KEYS(20 10)) -
| NDEX(CONTROLI NTERVALSI ZE(1024))

Example 3: Defining a key-sequenced dataset, specifying explicit names for both the data component
and index components.

Chapter 10. Utilities- AMS 565

/1 NCLUDE ANB

DEFI NE CLUSTER (| NDEXED)
DATA (NAVE(DATAFILE)) -
INDEX (NAVME(| NDEXFI LE))

Example 4: Defining arelative record data. Note that the abbreviations KSDS, ESDS, and RRDS may be
used for INDEXED, NONINDEXED, and NUMBERED, respectively. The space hereis
specified in tracks of a 3330 disk, which is converted into a space allocation in the
MUSIC/SP file system.

/1 NCLUDE AMS
DEFI NE CLUSTER (NAME(BASEFI LE. DAT) RRDS) -
DATA (TRACKS(10 1))
DEFINE PATH
Usage

DEFI NE PATH

(NAME(ent rynane)

PATHENTRY(ent r ynamne)

[PRI VATE| COWON| SHARE| PUBLI C| WRI TE]
[REPLACE])

The DEFINE PATH command creates a path between an alternate index and its associated base cluster.
The only required parameters are the NAME and the PATHENTRY subparameters of the PATH keyword.

Abbreviation: DEF PATH

The following describes each of the parameters.

COMMON
NAME

PATHENTRY

PRIVATE

PUBLIC

REPLACE

WRITE

(COM) specifiesthat the path filename is placed in the common index
(NA) specifies the name of the VSAM path. This parameter is required.

(PENT) specifies the alternate index which is used to access the base cluster. This
parameter isrequired. Note that thisfile must have been previously defined.

(PRIV) specifies that the path isto be given afile attribute of PRIVATE, and there-
fore cannot be shared with other users (this is the default)

(PUBL) specifiesthat the path is given the file attributes of COM and SHR, meaning
that non-owners can read from the file, and need not prefix the file name with the
owner's userid.

(REPL) specifiesthat if the path being defined already exists, it is replaced (note that
thisisNOT the default; in other words, if the path being defined exists, the DEFINE
PATH command will be terminated with an error condition)

(WR) specifies that the path isto be given the WSHR attribute, meaning that
non-owners can read from and write to the file.

566 AMS- MUSIC/SP User's Reference Guide

DEFINE PATH Example

Defining a path, specifying that it isto be public. Note that all associated files (base cluster and alternate
indexes) need not be public for access to be successful, but they must at least be SHR (for write access they
must be WSHR).

/1 NCLUDE ANS
DEFI NE PATH (NAME(DATA. PATH1) PATHENTRY(BASE. Al X1) PUBL)

DELETE
Usage
DELETE entrynane|[(entrynane ... entrynane)]

CLUSTER| ALTERNATEI NDEX| PATH| NONVSAM

The DELETE command deletes afile (VSAM or non-VSAM). A single positional parameter specifying
the name of the file to be deleted must be specified.

Abbreviation: DEL
The following describes each of the parameters.

entryname specifies the name of the VSAM fileto be deleted. If no other parameter is speci-
fied, then an attribute of CLUSTER is assumed.

If thefileto be deleted isaVSAM cluster, then the following occurs. For each alter-
nate index associated with the cluster, all paths are deleted, and then the index and
data components of the alternate index are deleted. When all alternate indexes have
been deleted, then the index and data components of the base cluster are deleted.

If thefileto be deleted isaVSAM alternate index, then the following occurs. Al
paths are deleted, and then the index and data components of the alternate index are
deleted. The name of the alternate index is removed from the base cluster.

If thefileto be deleted isaVSAM path, then it isdeleted. The name of the pathis
removed from the associated alternate index.

If thefileto be deleted isanon-VSAM file, then it is opened and deleted. Note that
by saying NONV SAM, you mean that the file is not a component of aVSAM clus-
ter. If thefile happensto be aVVSAM object, the delete will not be performed. Thus
if for some reason only aportion of aVSAM cluster needs to be deleted, the AMS
DELETE command cannot be used. In this case, use the MUSIC/SP PURGE
command in *Go mode.

CLUSTER (CL) specifies that the entryname refersto aVSAM cluster. This parameter isthe
default.

ALTERNATEINDEX (AIX) specifies that the entryname refers to an alternate index. This parameter is
optional.

Chapter 10. Utilities- AMS 567

NONVSAM specifies that the entryname refersto anon-VSAM file. This parameter is optional.

PATH specifies that the entryname refersto a path. This parameter is optional.

DELETE Examples
Example 1: Deleting two VSAM clusters. Note that all associated files will be deleted as well.

/ 1 NCLUDE ANS
DELETE (XXX1 XXX2) CLUSTER

Example 2: Deleting aVSAM alternate index. Note that paths defined over this alternate index will be
deleted as well.

/I NCLUDE AMS
DELETE XXX1. Al X ALTERNATEI NDEX

Example 3: Attempting to delete anon-VSAM file and aVSAM cluster within the same command. In
this case, only the non-VSAM file will be deleted.

/I NCLUDE AMS
DELETE (XXX. KSDS XXX. NONVSAM NONVSAM

LISTCAT

Usage

LI STCAT ENTRIES(entrynane) -
[ALL]

The LISTCAT command displays the attributes of aVVSAM file. The names of filesthat are logically asso-
ciated with thisfile are reported. Physical attributes for both the DATA and INDEX components (where
applicable) are reported.
Abbreviation: LISTC
The following describes each of the parameters.

ENTRIES specifies the name of aVSAM object whose attributes are to be displayed.

ALL specifiesthat all information pertaining to the object specified by ENTRY isto be displayed.

The default is that only the associated files are listed.
LISTCAT Examples

Example 1. Listing the type of VSAM cluster aswell as the names of any associated files. No other attri-
butes will belisted.

/I NCLUDE AMS

568 AMS- MUSIC/SP User's Reference Guide

LI STCAT ENTRI ES(XXX. CLUSTER)

Example 2: Listing all of the information available for the VSAM cluster.
/1 NCLUDE AMS
LI STCAT ENTRI ES(XXX. CLUSTER)

REPRO

REPRO | NDATASET(ent r ynane) | | NFI LE(ddnane)
OUTDATASET(ent r ynane) | OUTFI LE(ddnane)
[COUNT(nunber)]
[NOREPLACENONVSAM]
[RELEASENONVSAMSPACE]
[SKIP(number)]

The REPRO command copies one file to another. The function performed is essentialy that of the
MUSIC/SP COPY command. The two commands are different in that the REPRO command performs
VSAM I/O whenever adatasetisaVSAM file.

The COPY command is recommended for copying non-V SAM files whenever you are in * Go mode.

When in AMS, the REPRO command may be used with similar results. Note that the REPRO command
does not prompt for permission to replace existing non-VSAM files.

The INDATASET parameter must name an existing VSAM or non-VSAM file containing data. Note that a
VSAM PATH fileisnot valid. Aswell, specifying the name of an index component of a KSDS or an alter-
nateindex isinvalid. (To copy these datasets separately, use the MUSIC/SP COPY command.)

The OUTDATASET parameter isrequired. If aVSAM fileis specified, avalid base cluster (KSDS, ESDS
or RRDS) file must be named.

Abbreviation: REP

The following describes each of the parameters.

COUNT specifies the number of logical records that are to be written to the output file. After
this number of records has been written to the output file, the REPRO operation is
terminated.

INDATASET (IDS) specifies the name of aVSAM base cluster or non-V SAM dataset to be copied

to the output file.

INFILE (INF) specifiesa DDNAME which isused to obtain the input. Thisis useful if read-
ing from aUDSfile.

OUTDATASET (ODS) specifies the name of aVSAM base cluster or non-VSAM file into which the
contents of the input file are to be copied.

OUTFILE (OUTF) specifiesa DDNAME which is used to write the output from REPRO. This
isuseful if the output fileisaUDSfile.

NOREPLACENONVSAM

Chapter 10. Utilities- AMS 569

specifies that REPRO is not to replace a non-vsam target file. Without this parame-
ter, thefileisreplaced if it exists.

RELEASENONV SAMSPACE
specifies that unused space in the non-vsam target file is to be released when the file
isclosed. The default is not to release unused space.

SKIP specifies the number of logical records from the input file that are skipped before
starting to write records to the output file.

REPRO Examples

Example 1: Copying input data into an output file. Note that REPRO automatically determines whether
the input and output files are VSAM or non-VSAM, and therefore this information is not
needed.

/I NCLUDE AMS
REPRO | NDATASET(| NPUT. DATA) OUTDATASET(OUTPUT. DATA)

Example 2: Copying input file to output file, skipping the first 100 input records and limiting the number
of records written to the output file to 500.

/1 NCLUDE ANB

REPRO -
| DS(| NPUT. DATA) SKI P (100) -
ODS(OUTPUT. DATA) COUNT(500)

570 AMS- MUSIC/SP User's Reference Guide

ARCHIV/RETREV

Archiving and Retrieving User Files

Note: TheFILARC, FILRST, and FILCHK utilities described later in this chapter are the recommended
programs to be used for dumping and restoring files, and they should be used rather than ARCHIV
and RETREV. FILARC can dump any type of file, and does so faster and more compactly than
ARCHIV. FILRST can restore directly to the Save Library. ARCHIV and RETREV are included in
this manual for the benefit of those users who may still have dump tapes created by ARCHIV, since
such tapes are not compatible with FILRST.

The user can cause al his own files to be copied to a magnetic tape by using the ARCHIV program. The
referenced files are not atered by this copy operation. Options are available to copy only those files that
have not been used for some time. Each fileiswritten on the tape in the form of a/SAVE job so that it can
be reloaded at alater time. This program features the ability to write to two tapes simultaneously thus giving
you two complete copies of your files on the two tapes. (To archive User Data Sets (UDS) files, refer to the
writeup on the utility UDSARC.)

Toretrieve afile or aset of filesfrom the tape, you can use the RETREV program.

The user should note that both the archive (ARCHIV) and the retrieve (RETREV) programs are run from
batch since they use magnetic tape.

ARCHIV Program

Files with record format U (undefined format) will not be copied to tape. Thiswould be the caseiif, for
example, thefileisaVS APL workspace. Fileswith record length longer than 80 bytes will be truncated to
80 bytes.

The following illustrates the control statements set up for the ARCHIV program:
/FILE n TAPE ... etc.

/1 NCLUDE ARCH V
....... par anet er statenent (see bel ow)

Par anet er St atenent:

TAPE=n[, PURGES=n] [, UDATE=" ddmmyy"]

TAPE=n isthe MUSIC I/O unit number to be used. n must be 1 or 2 for amagnetic tape, or 7 for the
card punch. If two tapes are to be written, the control statement would be TAPE=1,2 (up to
two unit numbers can be specified on the control statement). A /FILE statement must be
present for each tape to be used. Note that the record size (RSIZ) must be specified as 80
and the blocksize (BLK) must be amultiple of 80. A sample /FILE statement is given
below:

/ EILE 1 TAPE BLK(800) RSl Z(80) VOL(nylib)

Chapter 10. Utilities- ARCHIV/RETREV 571

PURGES=n

Causes a/PURGE job to be written on unit n (normally 7) for each file which is archived.

Thisfacilitates the purging of archived files. (Note: only the MUSIC Systems Administra-
tor is normally authorized to run purge jobs from batch.)

UDATE="ddmmmyy’

Causes only those files with the last used date of the specified date or earlier to be archived.

The dateis given as a 7-character day, month, year string such as UDATE='01JAN74'.

Retrieving Files RETREV

Files can be retrieved from the tape prepared by the ARCHIV program and punched on cards or written on a
magnetic tape or disk data set by running the following batch program.

/| FILE statenents as required
/1 NCLUDE RETREV
paranmeter statenent (see bel ow)
list of file nanes starting in col 1, 1 per card

Par anet er St atenent:

| NPUT=n[, OUTPUT=n{ [, PRI NT] [, SELECT=" ALL']

INPUT=n

OUTPUT=m

PRINT

SELECT='ALL'

This parameter specifies the MUSIC 1/0 unit number to be used to read the archive tape.
Unit 1 isassumed if INPUT=nisnot specified. A /FILE statement defining the tape must
be present and its unit number must be n. Y ou must make sure that the BLK parameter
on this /FILE statement matches the one used when the tape was created. The RSIZ must
be specified as 80 on the /FILE statement.

This parameter gives the MUSIC I/O unit number where the retrieved files are to be writ-
ten. The default of OUTPUT=0 is taken to mean that no output is to be generated. To
punch the files, use OUTPUT=7. If you just want the filesto be printed, you should use
the PRINT option documented below.

This option causes al retrieved filesto be printed. Normally the retrieved files are not
printed. This option isindependent of the OUTPUT option. For example, you can say
OUTPUT=0,PRINT tojust print the files.

This option will cause all the files on the input tape to be retrieved. Thelist of file names
will not be required in this case.

572 ARCHIV/RETREV - MUSIC/SP User's Reference Guide

Debug Facility

The Debug facility enables you to debug programs running on MUSIC at the machine language level. You
can scroll up and down through main storage. The Program Status Word, any of the 16 general purpose
registers, and main storage can al be modified. Y ou can single step through your program or set breakpoints
and run continuously. Y ou can set watchpoints and cause your program to be stopped when they are atered.

Debugging a program consists of being able to monitor the execution of the program, controlling the input to
the program, observing the results, and possibly atering memory while the programisin progressto affect
the manner in which it executes.

Debugging at the machine language level gives you complete access to the machine resources. A disadvan-
tage, of course, isthat high-level languages that have been translated to machine language by compilers
become unrecognizable. Many compilers, however, have the capability of displaying the machine language
code that they are generating. Y ou may find that Debug is most effective when used to debug Assembler
language programs. An exception is VS/FORTRAN. Debug runs co-operatively with TESTF, a
VS/FORTRAN debugger. In this mode, Debug displays the current VS/IFORTRAN statement being
executed in the message area. For more information, refer to the topic entitled "TESTF - MUSIC/SP
VS/FORTRAN Debugger” in Chapter 8. Processors.

Another function of Debug is to give you executable access to MUSIC's main memory and registers. With
this, you can look at various locations in memory, and set up sample instructions to discover how they work.
Debug provides an excellent vehicle to teach, and learn about, /370 architecture.

Some of the facilities of Debug (described below) are: single-stepping your program instruction by instruc-
tion: altering memory and valuesin both the general purpose and floating point registers; atering the
Program Status Word; searching for hexadecimal or character stringsin memory; setting break-points (places
where your program is halted and control is returned to the Debug facility); entering TRACE mode (where
you receive an instruction-by-instruction tracing of your program'’s execution); and setting watchpoints
(monitored storage that causes your program to be interrupted when it changes).

Keep in mind that some of MUSIC's main storage is read-protected. Thus some memory locations are inac-
cessible to you, unless you have the required high-level privileges. (These are granted only to the systems
programmers at your site for necessary systemswork.) Write-protected storage cannot be altered, unlessyou
again have the required high-level privileges. For example, you cannot change anything below location
X'1000" (hexadecimal 1000). Although you can type over these memory locations in the memory display,
your changes are not applied to the actual storage locations.

How Debug Works

To understand how to use Debug, and appreciate its limitations, you may wish to understand alittle bit about
how Debug does what it does. If not, then skip to the next section.

A Supervisor Call (SVC) instruction, in the /370 architecture, causes a transfer to the Operating System, and
usually the execution of some function or module within the operating system. Thisis done viathe media-
tion of both the /370 hardware and the control program (in this case, MUSIC/SP). An SVC may involve a
switch to supervisor state from problem state, or it may not. Generally speaking, your program interfaces to
the Operating System (MUSIC/SP) viathese Supervisor Call instructions, (SVCs).

Debug uses a special SV C defined in the MUSIC system. When you single-step your program, Debug
inserts this SVC just after the instruction to be executed, remembering what was there previously. Then, it

Chapter 10. Utilities- Debug 573

transfers control to the instruction to be executed. Y our instruction is executed normally, and then following
that, the Debug SV C instruction is executed. When this Debug SV C is executed, Debug re-gains control,
and re-displays the memory display panel, after restoring the contents of memory where the Debug SV C was
placed.

When a conditional BRANCH instruction is to be single-stepped, there are two possible target addresses:
when the BRANCH is "taken" (successful), and when it isnot. Debug checks both of these addresses and
places a Debug SV C at both locations, so that when your program reaches one of them, it will re-gain
control.

Recalling that some of MUSIC's main storage is Write-protected, you can appreciate that if one of the possi-
ble targets of aBRANCH instruction isin protected storage, then Debug cannot ater that location to place a
Debug SVC there. Consequently, Debug issues a message stating that the branch location isin protected
storage. At this point, you cannot single-step your program any more, and must issue the GO command.

How can you re-gain control after issuing the GO command? There are two ways: first, by pressing PA1
when Debug is executing and second, by placing "break-points" within your program.

In the first case, when the execution of your program is suspended by MUSIC to give other users of the
system a chance to do some work, it will not be given control again at the place where it was interrupted.
Instead, Debug will gain control. Effectively, you have "broken out" of whatever your program was doing
by pressing PA1, and re-entered Debug. This can be useful in the case of so-call "infinite" loops, or similar
circumstances.

In the second case, you must plan ahead. Y ou set break-points using the BREAK command (see below).

Y ou indicate in this command an address that Debug will remember (and display in the module map on the
memory display panel). Whenever you issue the GO command to Debug, it takes al of the break-points
fromitslist and places Debug SV Cs at those |ocations, remembering the previous contents of memory.
Then, whenever control reaches one of those locations, the Debug SV C is executed, and Debug re-gains
control.

I nvoking Debug

Debug can beinvoked in several ways, depending what you want to do with it. It can be invoked in "stand-a-
lone" fashion, or as an option on certain /L OAD processors. Y ou may have a program that you wish to debug
using Debug, or you may simply wish to gain access to MUSIC main storage and registers.

Command Line Invocation

Simply typing Debug at the * Go prompt will start up the facility with the memory display initially positioned
at hexadecimal location x'4800". Obviously, thisisarbitrary, and you can display any other location in
memory to which you have access.

To Debug a program in object module format, you can specify aMUSIC file name as a parameter. For
example,

debug program obj

will invoke Debug with the program contained in "PROGRAM.OBJ' loaded into memory. The memory
display will be positioned at the first Control Section (CSECT) found in the object module.

There are additional parameters that you can specify in order to further control how Debug loads your
program. These are keyword parameters (not dependant upon the order on the command ling) which require

574 Debug - MUSIC/SP User's Reference Guide

avalue. Specify the valuein parentheses, like this: PARMS(hello). Note that to specify parameters without

non

specifying an object module, type aperiod (".") in place of the object module name. For example:

debug .

parms(hel | o)

The parameters for Debug are:

EPNAME

PARMS

REGION

FILES

TRACE

the CSECT (entry-point) name where the memory display should be positioned. Note that
thisis where the program will be started when you issue a STEP or a GO command, so be
careful when you specify the name (you can change the starting address manually within
Debug, of course).

aparameter string that will be passed to the program via an addressin register 1. Note that
this follows standard calling conventions

anumerical value which isthe region size to be used when your application programis
loaded with Debug. Sometimes for larger programs, aregion size that is larger than the size
normally used by your program aloneis required, since the code for Debug resides in the
user region as well.

aMUSIC file name containing /FILE definitions to be used by your program. Debug scans
thisfile and extracts /FILE Job Control Statements at the beginning of the file. Other control
statements are not used, but /FILE statements are replicated when your program is loaded
with Debug.

aMUSIC file name which is used to capture output on unit 6; specifically, output from
instruction tracing. This enables you to debug full-screen applications more easily, as well
as providing an easy way to view long trace sequences.

Invoking XM ON

OS mode load modules can be debugged "as-is' by specify Debug as an option on the parameter statement,
when using /LOAD XMON. An example follows:

/ FI LE LMOD NAVE(PROGRAM LMOD) SHR
/ LOAD XNMON
PGWAME LMOD DEBUG

Invoking Debug from /SY S

Usually when your program is executed, quite a number of other modules have already been loaded into your
user region and called in the process of starting and running your job. However, for some reason you may
wish to give Debug control as the the first user program in your user region.

Y ou can do this by specifying a/SY S statement like this:

/ SYS Debug

Thistells MUSIC/SP that Debug is to be brought into memory and given control before any other program
gains control in the user region. Note that your user region has already been set up for execution to
commence at the first instruction (usually at hexadecimal location x'1000". Keep in mind that if you are
running a compiler, not only has the compiler not been started but OS simulation has not even begun.

In most cases, this method of invoking Debug is not very useful, as too much remains to be done before your

Chapter 10. Utilities- Debug 575

application program gets loaded into memory.

The command "DBG" in *Go mode uses/SY S DEBUG. Running DBG causes Debug to be brought into
memory very quickly. Itisequivalent to typing "DEBUG" except for the start-up speed.

Invoking a Compiler

When using a compiler you can Debug your program by specify Debug as an option on the /JOB statement.
After your program is compiled and loaded into memory, but prior to the execution of your program, Debug
isinvoked. An examplefollows.

/ LOAD ASM
/JOB GO, Debug
| EFSRBR CSECT

SR 15,15
BR 14
END

Screen Display

The following diagramsillustrate the two major display modes of Debug. F4 (Flip) is used to go from one
display to the other.

--------------------------- Debug Facility -------------------"------------
Command ==> _
Program St atus Wrd: FF250000 40004800 Condition Code: 00 Prev Addr: 000000

R0O: 00000000 00005334 00000000 00000000 00000000 00000000 00000000 00000000
R8: 00000000 00000000 00000000 00000000 00000000 00005500 00004A60 00004800

Instruction: STM Oper 1: 000000 Oper 2: 00482C
004800 : 900FF02C 4100F00C 47FO0F014 CAC5C2E4 : ..0. ..0. .00. DEBU
004810 : C7404040 1B110A08 18EF18F0 980DEO2C : G oo ...0q.\.
004820 : 50FOE028 47FOEO70 000048C8 000025D0 : &O\. .0\. ...H...]
004830 : 00000C1C 000048C7 00080000 000025DO0 :G.... ...u
004840 : 00080000 000048C7 00004800 00001120 :G.... ...
004850 : 0000466C B08813AC 00880850 00000000 : ...%.h.. .h. & ...
004860 : 000042D8 400041C0 00004800 00000000 : ...Q ..[
004870 : 1B1105EF OAFFO000 00000000 00000000 :

1

5

9

13

------------- 1:Help 3:End 7: UpMenory 8: DownMenory 4:Flip PAL: Watch-—-------
2:Run 5: StepPast 12:Step 10:PtData 11:Ptinst 9:SetBreak 6:PrevScr

Figure 10.2 - Debug Memory Display

576 Debug - MUSIC/SP User's Reference Guide

Program St atus Word: FF250000 40004800 Condition Code: 00 Prev Addr: 000000

R0O: 00000000 00005334 00000000 00000000 00000000 00000000 00000000 00000000
R8: 00000000 00000000 00000000 00000000 00000000 00005500 00004A60 00004800

Addr ess Instruction Storage Operand 1 Operand 2

---> 004800 ST™M 900FF02C 000000 00482C

004804 LA 4100F0DC 000000 00480C

004808 BC 47F0F014 00000F 004814

00480C 2?77 (07103)

00480E ??7?7? C2E4

004810 ??7?7? C740

004812 STH 40401B11 000004 005E45

004816 SvC 0A08 000000 004808

004818 LR 18EF 00000E 00480F
brk> 00481A LR 18F0 00000F 004800

00481C LM 980DE02C 000000 004A8C

004820 ST 50F0E028 00000F 004A88

004824 BC 47F0E070 00000F 004ADO

------------- 1:Help 3:End 7: UpMenory 8: DownMenory 4:Flip PAL: Watch-—-------
2:Run 5: StepPast 12:Step 10:PtData 11:Ptinst 9:SetBreak 6:PrevScr

Figure 10.3 - Debug Instruction Display

COMMAND: Command Line

The Command Line field is used to enter Debug commands, as well as MUSIC commands. MUSIC
commands are distinguished from Debug commands by prefixing them with aslash. Thus, DISPLAY F will
display memory at hexadecimal location 00000F, but /DISPLAY F will attempt to display afile called "F"
on the screen.

PSW: Program StatusWord

The Program Status word is used in /370 architecture to keep track of the address of the next instruction, as
well as various flags such as the condition code, etc.

Program Status Word
Ct | Mode Inter- Addr ess of
Channel |Extr PSW MachChk rupt ILC Cond | Prog Next
Mask Mask | Key Wi t St at Code Code |[Mask |lInstruction
ProbSt at
0->6 7 8->11 12->15 16->31 32- >33 34->35 36->39 40->63
Bit Positions

When a program interrupt occurs, usually the address in the PSW points to the address of the instruction
FOLLOWING the offending instruction. Thus the Instruction Length Count (ILC) can be used to determine
how far backwardsto step. ThelLC is1 for a2-byteinstruction, 2 for a4-byte instruction, and 3 for a 6-byte
instruction.

Chapter 10. Utilities- Debug 577

Condition Code Field
Thisfield displays the condition code found in the PSW (Program Status Word).

The condition code is set by avariety of /370 instructions, particularly those that are intended to perform
comparisons. Generally speaking, the condition code reflects the completion status of the instruction that set
it. Not all instructions set the condition code, and when one of these instructions are executed, the condition
code remains unchanged.

Instructions that operate on the condition code settings are typically BRANCH instructions. Within these
instructions, there is usually a mask field that corresponds to the various condition code settings.

Previous Address Field

Thisfield displays the previous address that was known to Debug. Various Debug commands cause this
field to be updated. Notethat it is not necessarily the address of the previousinstruction. However, ititis
sometimes useful, asthe POINT command can be used on thisfield to re-position the memory display.

General Purpose Registers

These fields display the contents of the 16 general purpose registers. These registers are used for arithmetic,
addressing, comparisons, etc. Y ou can change the valuesin the registers. You can use valuesin the registers
to "point" (see below) to memory to be displayed. Aswell, the valuein aregister can be treated as an
address, and a"break-point" can be assigned to that address using a function key.

When your program is given control the contents of the registers will be set to the updated values. Any
address calculations performed by various instructions are displayed when the instruction is displayed, asin
the Instruct Display mode. Note that RO is never used in an address calculation.

Memory Display Partially Decoded I nstruction

Thisfield displays an instruction that has been partially decoded. The operation code is displayed, and oper-
ands 1 and 2 are shown. Whenever the operand is aregister, then register number is displayed. When the
operand is an address reference, then the computed address is displayed.

Note that the displayed address prior to execution may not be the one that is actually used. The address that
is actually used depends upon the contents of any registers involved in the address calculations, and if these
values change, then of course the address will, too.

Memory/Character Display

These fields are used to display main storage and the character equivalent of main storage. Each line repre-
sents 16 bytes of main storage, with 8 linesin total. Thus there are 128 bytes of storage represented on the

display.

The column of hexadecimal numbers on the left-hand side represents the starting address for each line of
data. The 16 bytes are broken up into words of 4 bytes each. The right-hand side of the display shows the
EBCDIC character equivalents of the hexadecimal information in the middle. This, too, is broken up into 4
character chunks for easy alignment.

The location of the next instruction is highlighted, if it is within the 128 bytes of main storage displayed on
the screen. Thisinstruction is determined by the value in the PSW.

578 Debug - MUSIC/SP User's Reference Guide

Note: You cannot modify the character representation of the data, but you can modify the hexadecimal
representation. Only valid Hex digits are acceptable. |f you are viewing memory that you are not
allowed to modify, any changes that you make to the screen will be ignored.

Map Table Entries

These fields display the Map Table entries. Each entry is a name/address pair that can be used with the Point
function key to position the Memory Display to that address.

Entries can be made in several different ways. First, at start-up time, symbols known to the Loader are
placed into the Map Table. Running from object modules resultsin all external symbols being placed into
the Map Table, while using the Debug option with XMON results in only the main entry point being placed
into the Map Table.

Second, whenever modules are loaded using the LOAD SV C, their name and address are placed into the Map
Table. Thisisdone automatically by Debug.

Third, you can make explicit entriesinto the Map Table with the ENTRY command.

Floating Point Registers

These fields display the contents of the 4 floating point registers. These registers are used for floating point
arithmetic exclusively, and since most machine language programs rarely use them, their display is optional.
They are displayed in place of the Map Table, when the FLOAT command is issued.

Aswith the general purpose registers, you can ater the valuesin the floating point registers. When your
application program resumes, the updated values will be placed in floating point registers.

Note that whatever values are placed here are NOT normalized. In order to do this, you must input them as
such, or use an instruction that doesthis, if you so desire.

Instruction Display

These display partialy disassembles instructions and displays them, one per line. Aswell, operands 1 and 2
aredisplayed. In the case of a storage to storage instruction, the source and target addresses of the instruc-
tion are displayed. You can alter theinstruction, and pressing ENTER will display the new instruction. This
display modeisidea for learning about instructions at the machine level, and stepping through a program
instruction by instruction.

An arrow points to the next instruction to be executed. If abreakpoint isvisible on the display, it isindicated
by "brk>" (seefigure 10.3).
Other Topics

Hex Addresses and Numbers

Hexadecimal numbers consist only of the hexadecimal digits O through 9 and A through F. Using any other
charactersin a hexadecimal parameter constitutes an error. Leading zeros need not be used. Floating point
and general purpose registers must, however, be completely filled with hexadecimal digits. This also applies
to memory fields. No leading or embedded blanks are acceptable.

Chapter 10. Utilities- Debug 579

Hexadecimal addresses have a maximum length of 6 digits, due to the 370 architecture. Examples:

0b312f and 000100 are valid addresses
but 0x0359 is not valid: 'x' is not a hexadecimal digit
0067359 is not valid: it is greater than 6 digits in length

Commands where hexadecimal parameters are used: Break, Delete, Display, Entry, Find, and Go.

Calculator Function

Debug has a built-in hex calculator function. Aswell as maintaining a separate arithmetic symbol table, it
will search the Map Table, and use any symbolstherein calculations. Addition, subtraction, multiplication
and division are supported. Decimal to hexadecimal conversion can also be performed. You can use
constants or symbols, and can create new symbols. The Program Status Word and registers are automatically
entered in the calculator symbol table, so that you can use them in calculations. (Note that only the address
portion of the PSW is used.)

Y ou can either use the CALC command (described below) or simply enter an arithmetic expression. |If
Debug doesn't recognize text entered on the command line as a command, it checksto seeif itisavalid
arithmetic expression or assignment statement. If so, it will perform the indicated operation.

This function can be extremely handy. Y ou can calculate an address and store it. With a number of
commands that refer to memory, you can use a stored symbol instead of a hexadecimal constant.

PI: Program Interrupts

Program interrupts are error conditions that the machine cannot handle. For example, an operation exception

means that the operation code wasn't recognized by the processor. Here are the program interrupts that
Debug recognizes:

01- operation exception 09- fixed point divide exception
02- privileged operation exception 10- decimal overflow exception
03- execute exception 11- decimal divide exception

04- protection exception 12- exponent overflow exception
05- addressing exception 13- exponent underflow exception
06- specification exception 14- significance exception

07- data exception 15- floating point divide exception

08- fixed point overflow exception

The causes of Pls are sometimes easy to determine, and sometimes difficult Usually, a protection exception
is easy, since the instruction obvioudly references protected memory. Debug displays the offending instruc-
tion. However, an operation exception may be more difficult, as you may have branched to location O
(usually abad address in your program).

Format of Integer Numbers

The general purpose registers are used to store the 2's complement representation of integer numbers. On
/370 computers, integers are represented in a binary code that incorporates the sign of the number. The lead-
ing bit istermed the "sign bit" and is 0 for a non-negative number and 1 for a negative number. The remain-
ing 31 bits determine the absolute value of the number, in 2's complement.

580 Debug- MUSIC/SP User's Reference Guide

sign
bi t bi nary representation of the nunber

For example, the number "-1" is represented in hexadecimal by "FF FF FF FF", while the number 1 is repre-
sented by "00 00 00 01".

Format of Floating Point (Real) Numbers
The floating point registers are used to store the binary representation of real numbers. On /370 computers,

real numbers are represented in a manner akin to scientific notation, whereby the significant digits are repre-
sented in fixed precision and the position of the decimal point is determined by an exponent.

sign 7 bit 56 bit nmantissa giving
bi t

exponent the significant digits

If the number is negative, the sign bit is 1; otherwiseitis0. The 7-bit exponent is a biased exponent with 64
or X'40' being the zero point. When the exponent is x'40' then no shift in the position of the decimal point
occurs. For example, 40 10 00 00 00 00 00 00 represents the number 1.

The mantissais usually normalized leftwards to the nearest hex digit although there exist instructions which
perform unnormalized arithmetic.

Command Files

A Debug "command file" is simply afile containing Debug commands. Debug can read these files and
execute the commands automatically. Debug can have an initial command file for running at start-up and
other command files can be executed during debugging.

Comments are denoted by an asterisk in the first column. Debug commands can be in either upper or lower
case. MUSIC commands may be issued as well.

Although you cannot change the memory display in this mode, you can assign values to registers (eg. R2 =
AOA), change the PSW, and alter memory viathe REP command (see below).

Initial Command File
When Debug starts up, it checks for a/FILE statement with a ddname of "DBGCMD". If found,
commands read from this file are executed prior to passing control to the user. Thus, thisfile can be
used to perform a number of repetitive tasks prior to the user gaining control.

Command Files
Debug can execute a file containing Debug commands as well as executing them at start-up. At
start-up, if Debug findsa DDNAME "DBGCMD", it reads this file and executes each command,
before passing control to the user. With the command file facility, you can cause Debug to go out to
aMUSIC file and dynamically execute the commands contained in that file. Y ou instruct Debug to
do this by prefixing the file name with a percent sign (‘%) asfollows:

Chapter 10. Utilities- Debug 581

Comand ===> %gor k

This causes Debug to read and execute the commands contained in GORK.

Function Keys

F1: Help provides context sensitive and field sensitive help

F2: Run execute program: break-points are honoured, and errors are intercepted and
displayed

F3: End immediate exit back to * Go mode: the program that is currently being debugged is
terminated, and al files are closed.

F4: Flip flips display mode from INSTRUCT to MEMORY

F5: StepPast the instruction pointed to by the PSW is executed, but the BAL and BALR instruc-

tions are not treated as branches. The effect is that all instructionsin a subroutine
executed using StepPast are not traced. Break-points are honoured, and errors are
intercepted and displayed. Placing the cursor on an instruction in the Instruction
Display causes the application program to run until it reaches that point.

F6: PrevScr displays the previous user program screen. Pressing Enter returns to the Debug
display.

F7: MemUp previous page of memory locationsis displayed

F8: MemDown next page of memory locationsis displayed

F9: Break abreak-point isinstalled at the indicated storage location or at the indicated address
if the cursor is placed on aregister; if a break-point is aready set for that address it
isdeleted

F10: Point Data value at the cursor position becomes the start of the display, in the Memory Display
mode

F11: Point Instruction value at the cursor position becomes the start of the display, in the Instruction

Display mode
F12: Step the instruction pointed to by the PSW is executed
PA1: Attn When your program is running (when you are not displaying a Debug panel) your

workstation enters Attention Mode. By pressing PA1 again, your application
program is suspended and Debug is given control. However, the exact point at
which your program will be interrupted is unpredictable.

PA1: Watch when in Debug, this switches to the watch display. See the discussion on Watch
Variables for more about this.

582 Debug - MUSIC/SP User's Reference Guide

Debug Commands

Most Debug commands provide some sort of message. Commands are not remembered unless you prefix
them with an asterisk ("*"). In this case, the command remains on the command line and can be re-issued
repeatedly.

The following lists Debug commands in a phabetical order.

Attn This command allows you to enable or disable the PA1 interruption facility of Debug.
ATTN causes Debug to honour PA1 interruptions and to seize control from the application.
NOATTN disables this, so that if your program is looping, you cannot re-gain control in
Debug.

Break This command allows you to specify where execution of your program should be inter-
rupted, with control being passed to the Debug facility. Y ou specify the address of the
BEGINNING of the instruction; prior to executing this instruction you are placed into the
Debug display. At this point, you can alter storage, PSW, and registers, if youwish. To
resume execution, usethe GO, Step, or the StepPast commands.

In the Instruction Display, the characters Brk> are displayed next to a breakpoint. Usage:
break xXXxxxx

where xxxxxx is the hexadecimal address or symbol where execution isto be interrupted, or a
Map Table label.

Y ou can set a break-point by placing the cursor at the memory location and pressing F9. As
well, the value in aregister can be used to set a break-point viaF9. In this case, the address
valuein the register is used.

Cdc Hexadecimal calculations can be performed using the CALC command. Additionally, vari-
ables can be set and used in calculations. Pre-defined variables for the PSW and registers
are: PSW, RO, R1, ..., R15. Expressions can be evaluated and the results displayed.

The syntax of ahex calculation issimple. An expression consists of 1 or 2 operands. The
allowed operators are: +, -, *, /. A decimal value can be indicated by a number sign (#) for a
decimal constant. No parentheses are allowed. Y ou can assign either a constant, a variable,
or an expression to avariable. Note that either or both operandsin an expression may be
variable. Examples of valid commands are:

calc PSW= 5000 + R15
calc R2 + #100

calc R4 = R + R3
calc 48F0 + CD

In some cases you can leave out "calc". Debug recognizes that you are requesting a calcula-
tion when you use an equal sign (=) or an arithmetic operator (+, -, *, /) in the correct posi-
tion. In all of the above examples, "calc" was not necessary.

Delete This command allows you to remove a breakpoint that you have set using the Break
command. Thisis useful when you no longer wish control prior to executing the instruction
at this address; for example, you may have stopped execution within aloop and now wish to
stop after the loop has been completed. Usage:

del ete XXXXXX

Chapter 10. Utilities- Debug 583

Display

Down

Dump

End

Entry

Find

where xxxxxxx is the hexadecimal address of the breakpoint to be removed.

This command allows you to view memory starting at the address that you specify in the
command. Depending up the display mode that you are in the Debug display will present
you with either a memory/character display, or a partial disassembly display. When you
request that storage be displayed for which you are not allowed to see (typically system stor-
age after your user region), then the message "Display address out of range" will be
presented. Usage:

di splay xXXXXXx

where xxxx is the hexadecimal address of the beginning of storage to be displayed, or a
Map Table label or symbol.

This command allows you to scroll the memory display down by 4 bytes. That is, the start-
ing address will be incremented by 4 and the display updated. This can be useful in conjunc-
tion with the * operator; placing an asterisk (*) in front of the any command causes that
command to remain in the command area. In this case, it allows you to step through
memory 4 bytes at atime.

This command allows you to display storage, registers, or atraceback in line-by-line mode,
suitable for capturing viathe /RECORD command. The "instruction” option generates a
partial disassembly of storage instead of a storage dump. Usage:

dunp regs
t raceback
address |l ength (instruction)
addressl-address2 (instruction) - optiona

This command causes Debug to return control immediately to * Go mode in MUSIC. Thisis
equivalent to pressing F3 (Exit).

This command allows you to enter a named address into the Map Table. Y ou associate a
name of 8 characters or less and a hexadecimal address together, and this pair is placed in
the Map Table. You can use the Locate command to search for the name, aswell asthe
Point function key to display that address in the memory display. Once entered into the Map
Table, it cannot be removed. Usage:

entry nnnnnnnn XXXXXX

where nnnnnnnn is the name (max 8 characters) of the hexadecimal address xxxxxx to be
entered into the Map Table.

This command searches for character or hexadecimal stringsin memory. The default search
is carried out over 4096 bytes of memory, starting from the first address displayed. If you
wish, you can specify alength for the search (which can be greater or shorter than 4096
bytes). Character search strings must be enclosed in quotes; for example, find ‘program’. If
the search parameter is not enclosed in quotes, then it is assumed to be a hexadecimal string.

Usage:

find 'ssssss' length
or find XXX XXX | ength

where xo0xxxx is the hexadecimal search string, 'ssssss' is the character search string, and
length is an optional specification that controls how many bytes are searched

584 Debug - MUSIC/SP User's Reference Guide

First

Fixup

Flip

Float

GetMap

Go

Instruct

IntPSW

This command displays the first page of entriesin the Map Table. Y ou can also page up and
down using the MapUp and MapDown commands, but these commands are usually used
from the function keys. Usethe Last command to go to the bottom of the Map Table.

By default, if a program interruption occurs, Debug adjusts the Program Status Word to
point to the instruction in error. However, the /370 hardware architecture has the next
instruction address in the Program Status Word pointing after the instruction in error. In
most cases, you would want Debug to perform the address fixup for you.

In case you don't wish thisto be so (teaching /370 architecture, for example) issue the
FIXUP command. This command toggles the address fixup for program interruptions
between the default mode (Debug performing the address fixup in the PSW) and the /370
hardware architecture mode (the addressin the PSW is of the instruction after the instruction
inerror).

This command toggles the display mode from the Memory Display (which shows the
contents of main memory, the EBCDIC equivalents, and the Map Table), and the Instruction
Display (which shows a partial disassembly of machine language instructions), at the current
starting position. Thisisusualy used viaafunction key.

Theindividual commands that specify screen modes are; Memory, Instruct, and Float.

This command removes the Map Table and displaysinstead the floating point registers.
These may be altered just as the general purpose registers can be, but they may not be used
for addressing with Point. To restore the Map Table, use Map or Memory .

This command retrieves the symbols from a Linkage Editor map file, and places the symbols
into the Map Table. Y ou specify the filename and optionally an offset value which will be
added onto the address of each symbol entered into the Map Table. The default valueisO if
no offset is specified. Usage:

get map aaaaa nnnn

where '‘aaaad is the filename to be read and 'nnnn’ is the offset value. Note that you should
save the map file from the linkage edit by using a/FILE statement for unit 6 (see "Linkage
Editor" in Chapter 8 for more information about the Linkage Editor).

This command starts executing instructions either at the current addressin the Program
Status Word, or at an address that you can optionally specify on the command. Instructions
are executed without intervention from Debug, so that your program can "get away" from
you if you have not carefully set break-points. (However, you can always re-gain control by
using PA1.) All break-points are set prior to returning control to your application. Usage:

go XXXXXX

where xxxxxx is an optional hexadecimal parameter indicating where execution is to
commence, the default being the current instruction pointed to by the PSW

This command switches the display mode to the Instruction Display, featuring alist of
partially disassembled instructions instead of the hexadecimal/character memory display.
Although you can issue this command explicitly, it is usually easier to toggle the display
mode using the program function key defined for it.

This command allows you to specify whether the current instruction should be displayed on

the screen. It works slightly differently depending upon the display mode that you are in.
See the ScrUpd command as well, as this interacts with IntPSW.

Chapter 10. Utilities- Debug 585

Last

LdLibDir

Locate

LPADiIr

MapDown

MapUp

MemDown

Memory

MemUp

Nextlnstr

In the Memory Display IntPSW causes the current instruction pointed to by the PSW to be
partially disassembled, and placed on the line above the display of memory. NolntPSW
causes the first storage location display to be interpreted as an instruction, partially disas-
sembled, and placed on the line above the display of memory.

In the Instruction Display IntPSW causes the current instruction pointed to by the PSW to
be shown on the screen, when Debug initially re-gains control from the program being
debugged. NolntPSW causes the screen to remain "as-is'. Usage:

i nt psw
or noi nt psw

This command displays the last page of entries in the Map Table. Y ou can also page up and
down using the MapUp and MapDown commands, but these commands are usually used
from the function keys. Use the First command to go to the top of the Map Table.

This command sets the starting address of the memory display to the in-core System L oad
Library directory. Note that the CREAD privilege isrequired. If you do not have this privi-
lege, the message "lllegal Command" will be issued.

This command searches for a named address (symbol) in the Map Table. If found, the start-
ing position of the Map Tableis adjusted so that this name/address pair isin the top left-hand
position of the Map Table display. Note that you can use Point on any symbol in the Map
Table. Aswell, to make new entriesin the Map Table use the Enter command. Usage:

| ocate ccccececcc
where cccececc is the symbol name (max 8 characters) to be searched for in the Map Table

This command sets the starting address of the memory display to the in-core Link Pack Area
directory. Note that the CREAD privilege isrequired. required. If you do not have this
privilege, the message "lllegal Command" will be issued.

This command moves the Map Table display down by 1 page. Thisis useful to scroll down
among the map entries, break-points and ENTRY l|abelsin the Map Table display.

This command moves the Map Table display up by 1 page. Thisisuseful to scroll up among
the map entries, break-points and ENTRY labelsin the Map Table display.

This moves the Memory Display down by 128 bytes. In other words, hexadecimal 0x80 is
added onto the starting memory display address. This command is used to scroll down
through main memory.

This command switches the display mode to the Memory Display, featuring a hexadecimal/
character display of main storage, as well asthe Map Table at the bottom of the display.
Although you can issue this command explicitly, it is usually easier to toggle the display
mode using the program function key defined for it.

This moves the Memory Display up by 128 bytes. In other words, hexadecimal 0x80 is
subtracted from the starting memory display address. This command is used to scroll up
through main memory.

This command scrolls the display down by 1 instruction. This can be either 2, 4 or 6 bytes,
depending upon the current instruction in the starting position of the display. Thisis useful
when "stepping through" a program without actually executing instructions.

586 Debug - MUSIC/SP User's Reference Guide

NucMap

PITrap

Point

ReadBuf

REFLECT

REP

This command sets the starting address of the memory display to the in-core Nucleus Map.
Note that the CREAD privilegeisrequired. If you do not required. have this privilege, the
message "Illegal Command” will be issued.

A PI (Program Interrupt) occurs due to some condition that the machine is unable to handle,
such asadivision by 0, an invalid operation code (bad instruction), or invalid address.
PITRAP sets amode of operation that causes MUSIC/SP to transfer control to Debug when-
ever a program interruption occurs. Note that with some programming languages, this may
inhibit error recovery or localization, since the programming language may have its own
interruption handler (eg. VS/FORTRAN).

In this case, the NOPITRAP command should be used once at start-up. This causes Debug
to tell MUSIC/SP to pass control to any application interrupt handler, whether from a high
level programming language or not, when a program interruption occurs. Note that the
address for such aroutineis usually specified viaa SPIE (Specify Program Interrupt
Element) or STAE (Specify Task Abnormal Exit) Assembler macro instruction. to store and
keep its address there.

With judicious setting of break- points, you can debug an interrupt handler routine using
Debug. Simply set a breakpoint at the beginning of the interrupt handler, and specify
NOPITRAP. When your interrupt handler gains control, specify PITRAP again in order to
recover from any program interruptions within the interrupt handler.

This command is an extremely effective method of following address pointers to their
targets. The Point command requires that the cursor be placed upon a " pointable” item, such
as agenera purpose register, the PSW, the Previous Address field, aword in the memory
display, an address in the column of addresses, or aMap Table entry. The address at the
field where the cursor is positioned is used as the starting address for the Memory display.

In other words, the addressis used to "point" to the next address to be displayed.

This enables the refresh of the previous user program screen (by default, thisis enabled).
NOREADBUF disables this mode of operation. Use these commands in cases where you
need to control when this function is preformed (typically, on devices where thisis not
supported or is slow).

This command affects the manner in which Debug deals with SV C (Supervisor Call) instruc-
tions. "REFLECT" refersto a performance feature in OS simulation called "fast
REFLECT". Thisfeature inhibits presenting SV Cs numbered 126 and higher to the OS
simulation module, as these SV Cs are not standard OS SV Cs but rather are MUSIC/SP
SVCs. The REFLECT command sets this mode of operation.

NOREFLECT disables this mode of operation. In this operating mode, all SVCs are
presented to the OS simulation module, which in turn may decide to issue aMUSIC/SP
SVC. Basicaly, thismeansthat all SV Cs on MUSIC/SP can be seen by Debug, as opposed
to only OS SV Csduring OS simulation. This mode (NOREFLECT) is the default.

This command interacts with the TrapSV C command (see below).

This command allows you to ater storage, starting a specified location. The syntax is:

REP XXXXXX SSS...SS

where xxxxxx is the address in hexadecimal of where storage isto be altered, and sss...ssisa
hexadecimal string that will be placed in storage. Examples:

rep 4800 0700

Chapter 10. Utilities- Debug 587

Screen

ScrUpd

Step

StepPast

rep 005000 47000000
Both examplesinsert NO-OP instructions at locations 4800 and 5000 respectively.

Displays the previous user program screen, with afew restrictions. First, it will not display a
Debug screen. Second, if you are single stepping through your program, actions that your
program takes that alters the screen will not be preserved. Thislast restriction isintended to
avoid congesting the channel, and to keep Debug's response time low for single step mode.

If you TRACE your program, the last page full of traced instructions can be viewed. Press-
ing Enter returns to the Debug display. See also ReadBuf.

This command allows you to control the manner in which the screen is updated. The default
isthat ScrUpd isfalse; in other words, the memory display is atered only with the Display
or Point commands, in Memory Display mode. In the Instruction display, however, the
screen is updated when the current instruction is no longer on the screen. (However, the
IntPSW command a so interacts with the ScrUpd command.)

When ScrUpd is specified, Debug calculates the first memory display position as the address
in the PSW (Program Status Word). Therefore, when you are using Step or StepPast to step
through your program, the current instruction is always at the top of the memory or instruc-
tion display. This can be useful, but under most circumstances, the default settings are more
desirable.

This command allows you to single step through an application program being debugged.
Pressing the Step function key causes the instruction currently pointed to by the PSW to be
executed, with control immediately returning to Debug.

In certain cases, you need to understand how Debug doesthis. After theinstruction to be
executed, Debug inserts a special SVC. When that SV C instruction is executed, Debug
interceptsit and recognizes that a break-point has been encountered. This approach can
cause your application program being debugged to fail strangely, in the case where it
depends upon dataimmediately following the instruction. Note that if the instruction can
cause branching, Debug puts these SV Cs at both the success and failure targets of the
branch.

This command allows you to single step through an application program being debugged.
Pressing the StepPast function key causes the instruction currently pointed to by the PSW to
be executed, with control immediately returning to Debug. In certain cases, you need to
understand how Debug does this. After the instruction to be executed, Debug inserts a
specia SVC. When that SV C instruction is executed, Debug gains control and recognizes
that a break-point has been encountered. This approach can cause your application program
being debugged to fail strangely, in the case where it depends upon dataimmediately follow-
ing the instruction.

If you place the cursor on an instruction on the Disassembly Display panel, StepPast will
execute up until that instruction. Thus, multiple instructions can be skipped, in addition to
subroutine calls. This can be regarded as setting one temporary break-point. Note that
control has to reach that instruction, since placing the cursor in that position does not make
the program that you are debugging go there, if it would not normally go there. Thusyou
should be careful when subroutine calls and conditional branches are among the instructions
that you are skipping.

A situation where thisis useful is when you wish to pass quickly over debugged code.
Another situation might be the case of along loop which you wish to skip over; placing the
cursor at the instruction after the loop and issuing the StepPast command allows you to do
this.

588 Debug - MUSIC/SP User's Reference Guide

Top

Trace

TrapSvVC

Note that StepPast is similar to Step, except in dealing with BAL and BALR instructions.
These instructions are used for subroutines calls; Debug places breakpoint SVCs only after
the instruction (or where you place the cursor). Thus the subroutine is executed before
control returns to Debug.

scrolls the map display up to the 1-st entry

This command initiates "instruction tracing”, which basically displays a message about each
instruction as it executes on the workstation. Thisis useful in the case where you wish to see
the instructions that are being performed, but don't wish to use Step or StepPast due to the
number of instructions to be executed. An optional parameter allows you to specify how
many instructions are to be traced; the default is 20 instructions (a screen-full). 1f you spec-
ify O, then thereis no limit to instruction tracing and it will halt only on a Pl (Program Inter-
rupt) or when control transfers to protected storage (and therefore a break-point cannot be
set!).

An useful approach isto trace instructions with /RECORD NEW or ON. This provides you
with the opportunity to display the instruction trace and compare it with the program that
generated it. Usage:

trace nnnn

where nnnn is the number of instructions to trace. Use the TRACE parameter of the Debug
command to suppress the display of traced instructions on the display screen.

This command intercepts SV Cs (Supervisor Call instructions), and causes Debug to display
the current debugging screen with the message 'SV C Intercepted'. It functions only when
SV C trapping is operating (normally when OS simulation is active).

There are basically two forms of SV C trapping: selective and complete. Selective trapping
allows you to indicate that specific SVCs only are to be trapped. Complete trapping inter-
ceptsalmost all SVCs. Note that the REFLECT/NOREFLECT command interacts with this
command in that it controls which SV Cs can be seen by user region programs such as
Debug.

The TrapSV C command accepts various parameters. They are

trapsvc nn causes hexadecimal SV C number "nn" to be intercepted. In the case where
"nn" might not be interpreted as a hexadecimal number, prefix it with alead-
ing zero (eg. "0Onn"). Note that you can specify as many SV Cs as you wish
to be trapped; al of these selections will remain valid until you reset them.
This command implies "trapsvc on" and "trapsvc select".

trapsvc al causes all SVCsto betrapped. Note that "trapsvc on" isimplied. Seeaso
"trapsvc select".

trapsvc on causes SV C trapping to be turned on. This enables SV C trapping for all
SVCs. Thisimplies"trapsvc all".

trapsvc off causes SV C trapping to be turned off. Any SV Csthat were previously
selected remain selected, although they will not be trapped (your list of
SVCsto betrapped is still valid). To re-enable trapping of these SV Cs,
specify "trapsvc on". To completely reset trapping for al SV Cs, specify
"trapsvc reset”. The start-up state can be restored by specifying: reset, all,
off.

trapsvc select causes SV C trapping to be performed only for previously specified SVC

Chapter 10. Utilities- Debug 589

numbers. You can switch between trapping all SV Cs (trapsvc all) and trap-
ping only SV Csthat you have individually specified (trapsvc select). Note
that thisimplies "trapsvc on".

trapsvcreset causesthelist of previously selected SV Csto be cleared. Note that this does
not affect whether SV C trapping is enabled or note. To turn SV C trapping
off, specify "trapsvc off".

Up This command allows you to scroll the memory display up by 4 bytes. That is, the starting
address will be decremented by 4 and the display updated. This can be useful in conjunction
with the * operator; placing an asterisk (*) in front of any command causes that command to
remain in the command area. In thiscase, it allows you to step up through memory 4 bytes
a atime.

VIP This command informs Debug that it can take advantage of the user's VIP privilege. Note
that this privilege must be acquired prior to starting Debug. However, Debug will not allow
stores into protected storage until you specifically tell Debug to do so via this command.
This protects you from accidentally altering sensitive areas in storage without realizing it.

Normally, you enable VIP, perform your aterations, and disable VIP again by re-issuing the
VIP command. Debug tells you whether you are enabling or disabling VIP mode explicitly,
after you issue the command.

Watch This command switches the display to the WatchPoint panel. See the discussion on watch-
points for more information.

WatchPoint Facility

A "watchpoint” is an areain storage that is monitored, even when your program isrunning. Wheniitis
atered, your program isinterrupted. Debug has the ability to monitor watchpoints and to interrupt execution
when one changes. Y ou access the Display WatchPoints screen (Figure 10.4) via PA1 when in Debug's
instruction or data displays. Y ou can change the watched storage, in one of 3 formats: CHAR, INT, and
HEX. You can add, delete, and toggle the watchpoints between active and inactive. Y ou provide any name
for the watchpoint; Debug uses this name when it reports a change to the watchpoint.

Whenever Debug gains control, it automatically checks the watchpoints and informs you of the first watch-
point to have changed. Thus, Debug checks this on breakpoints, SV Cs, and traced instruction boundaries.
Execution of your program is suspended if it was in progress.

In order to check on awatchpoint, Debug must bein control. The process of being passed control and check-
ing the watchpoint may require several hundred machine language instructions (at least). Thiscan have a
significant effect on the execution speed of your program.

If you elect to check watchpoints after every instruction, then you will be slowing down your program by a
factor of several hundred or so. However, you will identify the exact instruction that changed the watch-
point.

If you elect to check watchpoints after ever branch instruction, given that branches occur on average every 5
to 10 machine instructions, your program may run 5 to 10 times faster than the preceding case. The disad-
vantage, of course, isthat you cannot identify precisely where the change to the watchpoint occurred (but it
will be within afew instructions).

Checking watchpoints at every SV C has essentially no impact on execution speed. However, you may find
that thisis of little help in pinpointing where the watchpoint changed. Keeping in mind that tens of

590 Debug - MUSIC/SP User's Reference Guide

thousands of instructions may be executed between SV C instructions, you can see that this option is some-

times usel ess.

The following screen is displayed when you press PA1 from the main Debug display:

Nare

I nspect WAt chpoints at each Instruction (one of: Instruction/Branch/ SVC)

2: Exi t/Run

Location Length Type Contents of Menory Location

3:Exit 9:Inspect 6:Del WP 10: Add WP 7:Up 8: Dowd: Act/ | nact

Figure 10.4 - Displaying Watchpoints

On the Display WatchPoints screen (figure 10.5) you can view and change the information that is displayed.
Up to 200 watchpoints can be added.

Function Keys

F2: Exit/Run
F3: Exit

F9: Inspect

F6: Del WP
F10: Add WP
F7: Up

F8: Down

F4: Act/Inact

executes your instructions immediately.

returns to the main Debug display.

instructs Debug when to check watchpoints; at each instruction, branch, or SVC. In terms of
CPU and elapsed time, the Instruction and Branch choices slow down your program signifi-
cantly.

del etes the watchpoint that your cursor points to.

goes to the Add Watchpoint panel for adding new watchpoints.

moves up by one screen.

moves down by one screen.

leaves a watchpoint definition there, but rendersit inactive. To re-activateit press F4 again.

Active watchpoints are highlighted on the screen, while inactive ones are not. When there
are no active watchpoints, Debug does not stop your program to check on them; and so

Chapter 10. Utilities- Debug 591

execution speed is not affected by inactive watchpoints.

Adding a WatchPoint

------------------------ Debug: Add WatchPoints ---------------------------
Command ==> _
Type in values and press ENTER

Requi r ed:
Vari abl e Nane ===> (name of the area of storage to watch)
Location ===> (address of the storage area in hexadeci mal)
Opti onal :
Length ===> (length of WatchPoint, in deciml or hex(xlac))
Type ===> (data type: INT, HEX, or CHAR)

Defaul ts: Hexadecimal, length 8

Ent er: Process new entry 3:Exit Enter Wt chPoi nt

Figure 10.5 - Adding Watchpoints

To add awatchpoint, enter an arbitrary name (Debug uses thisto report the status of the watchpoint) and
an address. Length and type are optional; the default is hexadecimal type of length 8. The length may be
entered in hexadecimal; in this case, preface the hex length with an x (i.e. X1AC). Press ENTER after you
have typed all of your specifications.

Repeat this for as many watchpoints as you require. Then press F3 to exit this panel, and return to the
Display Watchpoint panel (Figure 10.4), where you should see the watchpoints that you have just entered.
By default, they are set to "active” status.

592 Debug - MUSIC/SP User's Reference Guide

DSCOPY

Copyingone UDSFile To Another - DSCOPY

The DSCOPY utility program copies from one User Data Set (UDS) file to another. Both UDS files should
have the same record size (RSIZ). Usethe UTIL program to do the copy if the record sizes are not the same.

The input data set is defined on unit 1 and should be specified as SHR. The output data set is defined on unit
2 and must be specified as OLD or NEW.

The program isinvoked by:
/FILE 1 UDS(fromdsnane) VOL(vol une) SHR
/FILE 2 UDS(todsnane) VOL(vol une) OLD
/ 1 NCLUDE DSCOPY
The copy operation is done rapidly by copying multiple blocks of the file at atime, rather than record by

record. Normally the two data sets are equal in size. If the receiving data set is smaller, awarning isissued
and as many blocks as possible are copied. (A block is 512 bytes.)

Chapter 10. Utilities- DSCOPY 593

DSLIST

The DSLIST program is used to produce an alphabetical list of all the User Data Set (UDS) files that you
currently own. The listing can be displayed on your workstation or it can be written on unit 10 for subse-
quent saving asafile. (You can usethe LIBRARY command to get alisting of the files that you currently
own.)

The program isinvoked by:
DSLI ST
or through afile like the following, called SAMPLE

/ | NCLUDE DSLI ST
QUTPUT=n

where nisthe output unit number. (For example, OUTPUT=10.)
Examples

dsli st
*In progress

DATA SETS FOR CODE ABCD 31JUL73 3 DATA SETS 40 TRACKS
DSNANVE VOLUME LRECL TRKS NREC CREATED LASTREF

ABCDFI L1 MUSI C1 80 20 2400 25JUL73 31AUG/3
ABCDFI L2 MUSI C2 80 10 1200 01JUL73 15DEC74 BACKUP
ABCDLMOD MUSI C2 128 10 800 31JUL73 O7APR75

*End

*CGo

/i nput

linc dslist
out put =10

/ endr un

*In progress

DATA SETS FOR CODE ABCD 31JUL73 3 DATA SETS 40 TRACKS
*End

*Go

save nylist, sv

*In progress

SAVED, 3 RECORDS

*End

*Go

list nylist

*In progress

ABCDFI L1 MUSI C1 80 20 2400 25JUL73 31AUGT3

ABCDFI L2 MUSI C2 80 10 1200 01JUL73 15DEC74 BACKUP

594 DSLIST - MUSIC/SP User's Reference Guide

ABCDLMOD MUSI C2 128 10 800 31JUL73 07APR75
*End
*Go

Chapter 10. Utilities- DSLIST 595

DSREN

UDS Rename Program

The DSREN program allows users to change the name of their UDSfiles. This rename function for UDS
filesis similar to the RENAME command that appliesto your files. For system security reasons, you must
run this program from aworkstation and NOT from batch. Additionally, you can only rename files that
belong to you.

The contents of the UDSfileis not atered by the rename function. The new name that you assign to your
file must conform to the usual UDS naming conventions discussed under the /FILE statement. The rename
operation will be rejected if one of your files already exists with that name and is located on the same disk
volume.

Using DSREN

The rename program is invoked by simply typing DSREN when your workstation isin command (* Go)
mode. (Some installations may require you to type in the full command form of /EXEC DSREN.)

The DSREN facility will ask you to specify the disk volume name, and the old and new data set names.
These three items must be enclosed in single quotation marks as in the example shown below:

VOL=" MJSI C1' , OLDNAME' dshane' , NEVWNAME' dsnhane’

After the rename operation is completed, you may enter information for another rename operation. When
you are finished all the rename operations simply enter ablank line or type /CANCEL.

Non-Conver sational DSREN

Normally you run the DSREN program conversationally, that is, the rename information is typed in when the
program isrunning. Y ou may also use this facility with a previously prepared list of rename operations as
shown below:

/ | NCLUDE DSREN
VOL="MJSICLl'.... etc
VOL="MJSICLl'.... etc

The above control statements may be saved in afile for more convenient usage at alater time.

Y ou may also use aINPUT=n option to direct the rename program to read the rename data from MUSIC I/O
unit number n. This INPUT specification may be entered at the time you would normally enter the rename
information. This option is useful when the rename dataisto be read from aUDSfile. An appropriate
/FILE statement must appear before the/INCLUDE DSREN control statement if the input is being taken
fromaUDSfile.

596 DSREN - MUSIC/SP User's Reference Guide

ENCRYPT/DECRYPT

ENCRYPT and DECRY PT are two programs that respectively encrypt (code) and decrypt (de-code) files to
provide added security. When you encrypt your files you are prompted for a 1 to 8 character password. To
decipher the encrypted data you must use the identical password. Y ou must therefore keep careful track of
which password is associated with each file.

The ENCRY PT program randomly exchanges characters resulting in an unintelligible document. To restore
your fileto its original form, use the DECRY PT program aong with the encryption password for that file. If
you forget or lose the password for an encrypted file, you have essentially lost the contents of that file.

The files can have afixed or variable record format fixed and can be compressed or uncompressed. The
record length of the file can be from 1 to 32760 bytes.

Parameters
infile istheinput file to be encrypted.
outfile is the output file to which the encrypted datais written.

PW(password) isthe encryption/decryption key used to perform the respective function. The same pass-
word must be used for ENCRY PT and DECRY PT.

REPLACE(xx) where xxis ON or OFF. When REPLACE ison, the output file is replaced without verifica-
tion, if it exists. If no output file is specified then theinput isreplaced. The default is
REPLACE (OFF).

Note: For the replace keyword any abbreviation is acceptable, for example all of these are
correct:

r(on), re{on) repl(on), replace(on) etc...

Examples
1. Inthisexample WORK istheinput file and WORK 1 is the encrypted output file.
ENCRYPT wor k wor k1

After entering the above, you are prompted for a password, and if WORK1 aready exists you are asked
if it should be replaced.

2. Thisexample deciphers the datain WORK1 and creates WORK?2. Y ou will be prompted for the
encryption password, but will not be asked if you wish to replace WORK?2 should it exist.

DECRYPT wor k1 wor k2 REPL(ON)

3. Inthisexample an output file name is not provided and the password is added. In this case, you are not
prompted for a password, but you will be asked if you wish to replace the input file WORK.

ENCRYPT wor k PWt psecret)

Chapter 10. Utilities- ENCRYPT/DECRYPT 597

Return Codes

In order to assist you in using ENCRY PT and DECRY PT from programs such as REXX the following codes
are returned upon termination of the respective program.

0= normal return

1= error in opening input file or RECFM isU
2= error invalid parameter specification.

3= error in the encryption/decryption routine.

598 ENCRYPT/DECRYPT - MUSIC/SP User's Reference Guide

EXARCH and EXREST

EXARCH and EXREST are two programs that can be used to copy all or some of your MUSIC files to and
from tape. Both programs must specify RECFM (U) on the /FILE statement. Use of these programsis
primarily for exporting MUSIC filesto non-MUSIC installations. They are NOT substitutes for FILARC
and FILRST, which are used for archiving and restoring files for use solely on MUSIC installations.

EXARCH

To copy your MUSIC files to tape use EXARCH.
General Form
/FILE 1 TAPE VOL(vvvvvv) RECFM U)
/1 NCLUDE EXARCH
options

filenanel
filenane2

VYWY is the volume name of your tape (up to 6 characters).
options list of options, separated by comma:
CODE='userid' where userid is your ownership id (userid without subcode), in quotes.
Specify this option only if you wish to archive all the files belonging to your
userid.
HEADER=T to have header records at the start of each file on thetape. T isthe default.
HEADER=F suppresses the header records.
If HEADER=T, then a header record containing the file name, logical record
length, and length of fileiswritten. Thisis needed in order to run EXREST;
EXREST reads the information on this record, enabling it to restore the
desired files.
filenamel,filename2,etc...
are the filenames of your MUSIC files, one file name per line. Used when not all filesareto
be archived.

Examples:

1. This example copies your entire library (all files) to tape with header records.
/ FILE 1 TAPE VOL(MYTAPE) RECFM U)

/ I NCLUDE EXARCH
CCDE=' ABCD , HEADER=T

Chapter 10. Utilities- EXARCH/EXREST 599

2. This example copies files FRED, TESTPROG and TRY99 to tape without header records.

/ FILE 1 TAPE VOL(MYTAPE) RECFM U)
/ 1 NCLUDE EXARCH

HEADER=F

FRED

TESTPROG

TRY99

Notes:

1. Eachrun of EXARCH writes over any previous files on the tape.

2. Eachfile saved isaseparate file on the tape.

3. If EXARCH issuccessful the fileswill be copied in the order they are listed.

4. Thedifference between EXARCH and FILARC is that the latter does not produce tapes compatible with
non-MUSIC installations, and each fileisin a compressed form on the tape.

5. This procedure does not delete your filesfrom MUSIC.

6. After running EXARCH, aprintout of what is on the tape is produced. It isimportant to attach thisto
the tape when transporting it to another installation as it contains vital information (blocksize, logical
record length and record format) needed to read it. All tapes are created as non-labelled. Normal data
files are dumped in standard MV S type tape formats (VB or FBS). Details of these formats can be
found in OS/VS2 MV S Data Management Services Guide, IBM Form #GC26-3875.

7. 1f aMUSIC load module (created by the Linkage Editor) isto be dumped by EXARCH, it should be
created with RECFM (U) or RECFM(F), and for RECFM (F) the record length must be adivisor of 512,
for example LRECL (128). LRECL (80) must not be used.

EXREST

In order to copy your MUSIC files from tape use EXREST. EXREST can only be used for filesif copied on
to tape through EXARCH, and if HEADER was not specified asF.

General Form

/FILE 1 TAPE VOL(vvvvvv) RECFM U SHR
/1 NCLUDE EXREST

NAMVE=' nanmel' , TO=' nane2' , opti ons

NAVE=' namel' , TO=' nane2’

VYWY is the volume name of your tape (up to 6 characters).
namel is the name of the file on the tape.
name2 isthe desired MUSIC file name.

namel can be the same as name2, and can take on the following forms:

600 EXARCH/EXREST - MUSIC/SP User's Reference Guide

' nane'

"userid: namge'
"userid: prefix*'
"prefix*’

If the last character is an asterisk (*), al files whose names start with the specified prefix will be restored. 1f
the plus sign is used, namel must have the "*" aswell as name2, and al files with such a prefix will be
restored. |.e.:

NAME=" ABCD: TT*' , TO=" ABCD:. TEMP**

Thisrestores all files of the form ABCD:TTxxx to ABCD:TEMPxxx, where xxx is any character string.

options list of options, separated by commas, specified on the first parameter statement only:
ALL=T to copy al filesfrom the tape. The fileswould be restored with the same
file names they have on the tape.
ALL=F is used when the name parameter isused. Thisisthe default.
Repl=T to replace existing files.
Repl=F is specified if files are not to be replaced. Thisisthe default.

FIXUP="X' FIXUP isused for identifying FILES restored whose names already existed
asMUSIC files. xisthe character for fixup. The default fixup character is
"$". Thisisuseful when REPL=F yet you want the file to be restored. Iden-
tification of the file will be by the file name with the FIXUP character added
to theend. To disable the fixup character, use FIXUP="". If the fixup char-
acter was disabled, REPL=F was specified, and the file already existed, then
the file to be restored will not be copied into aMUSIC file, and the old
MUSIC file will be the only one that exists.

FILES=n1,n2,...
nl,n2,... are the tape file sequence numbers of those files you wish to restore
(in addition to those specified by name). The maximum number of file
numbers which can be specified is 200.

Examples:
1. This example restores al your tape files to MUSIC files, replacing any MUSIC files that
have the same name as those on the tape.
/ FILE 1 TAPE VOL(MYTAPE) RECFM U) SHR

/1 NCLUDE EXREST
ALL=T, REPL=T

Chapter 10. Utilities- EXARCH/EXREST 601

2. This example restores files with the prefix T, changing the prefix to AT, and restoring one
file (FRED) having the same name that was on the tape. If any of the file names exist

they are not replaced, but rather the character $ is added to the end of the name of the file
being restored.

/FILE 1 TAPE VOL(MYTAPE) RECFMU) SHR
/1 NCLUDE EXREST

NAME=' T*', TO=' AT*', FI XUP='$'

NAME=' FRED

3. This example restores a tape file (FRED) under a different name (WORK) than what was
on the tape.

/FILE 1 TAPE VOL(MYTAPE) RECFM U) SHR

/ 1 NCLUDE EXREST
NAME=' FRED , TO=' WORK'

602 EXARCH/EXREST - MUSIC/SP User's Reference Guide

FILARC/FILRST/FILCHK

Dumping and Restoring MUSI C Files

The programs FILARC and FILRST may be used to archive (dump) agroup of filesto cards or tape and later
restore one or more of the dumped files. The FILARC program copiesfiles to cards or tape, preserving all
attributes of the files such as record length, record format, and tag field. The original filesare NOT deleted
by the archive program. The FILRST program restores specified filesto the user's library, using as input the
dump produced by FILARC. FILRST can renamefiles asthey arerestored. A third program, FILCHK,
reads and checks a dump produced by FILARC. FILCHK isuseful for ensuring that a good dump exists
before purging the files, and also for finding what files are on an archive tape.

The archiveisin the form of card images (record length 80), but files of any record length may be archived
and restored. The datais dumped in a special format which only the MUSIC system can use. For this
reason, FILARC must not be used for transporting files to non-MUSIC systems. A dump produced by
FILARC isusable only by the FILRST program. If you wish to transport filesto anon-MUSIC installation,
use the UTIL program to dump them to tape in sequential, logical record form.

Control Statements

The sequential file containing the archive dump is defined by a/FILE statement for unit 1. Thelogical
record length of thisfileis80. Tape, aUDS, or afile may be used. The control statements shown below use

tape.

The /FILE statement is followed by a/INCLUDE for the desired program (FILARC, FILRST, or FILCHK),
then by a parameter statement which specifies the program options to be used. Options on the parameter
statements must be separated by commas, and are of the form KEYWORD=VALUE, where VALUE isa
number, or a character string enclosed in single quotes, or T (for true), or F (for false). Most options have a
default value, which isthe value used by the program if the option does not appear on a parameter statement.

File Archive (FILARC)

/FILE 1 TAPE VOL(vvvvvv) LRECL(80) BLK(nnnnn)

/1 NCLUDE FI LARC

par aneters separated by conmas (see bel ow)

fil enane DUVMPNAME=dnane)

fil enane DUVMPNAME=dnane) optional additional file names

)

CODE='userid' This specifiesthat all files of this userid are to be archived. userid must be the ownership id
(userid without subcode) of the user running the program. If the UDATE parameter is used,
only files satisfying the date requirement are archived. A list of additional filesto be
archived may follow the parameter statement. Each file name must start in column 1, and
may be of the form userid:name or name. If userid: isomitted from afile name, the user's
userid isassumed. If you only want to archive some of your files, omit the CODE parameter
and supply alist of the file names.

Normally, afileis copied onto tape using the name it has on the system. If thisis not

Chapter 10. Utilities- FILARC/FILRST/FILCHK 603

desired, then the DUMPNAME parameter can be given to specify another name. In any
case, the file's name is not changed on the system.

UDATE="ddmonyy"
This specifies adate in the form: 2-digit day, 3-character month abbreviation, and 2-digit
year (for example 08FEB89), to be used in conjunction with the CODE parameter. Only
fileswhose last-read and last-written dates are both less than or equal to UDATE are
archived. Thisgivesameans of archiving old files. The parameter CODE="userid" should
be specified when UDATE isused. The UDATE parameter does not apply to any specific
file names specified.

NAMES=n This requests the names of all archived files to be written to unit number n. Thisis useful if
you wish to later purge thefiles. If this parameter is omitted, the names are only displayed.

TAPFIL=n When archiving to tape, this parameter specifies the file sequence number to be written to on
thetape. Thedefaultis TAPFIL=1. Note that writing to file n does not disturb existing files
1 through n-1, but destroys any following files on the tape.

FileRestore (FILRST)

/FILE 1 TAPE VOL(vvvvvv) LRECL(80) BLK(nnnnn) SHR
/1 NCLUDE FI LRST

first paraneter statenent (see paraneters bel ow)
second paraneter statenent

Each parameter statement gives the name of afile (or group of files) to be searched for in the archive dump,
and optionally gives the name of the file (or group of files) to which thefile (or group) isto be restored. The
NAME and TO parameters are used for this. The first parameter statement has the first NAME/TO combina-
tion and also any other optionsto be used during the entire restore job (TAPFIL, REPL, etc.). The second
and following parameter statements specify additional NAME/TO combinations. See below for examples.

NAME="userid:name' or NAME="userid:prefix*"
This specifies the full file name (including user code) to be searched for in the archive. If
the last character is an asterisk (*), al files whose names start with the specified prefix will
be restored. NAME= may be abbreviated N=. Up to 2000 NAME parameters can be speci-
fied per job.

TO='"userid:name' or TO="userid:prefix*"
Thefull file name (including user code) to which the file isto be restored. The user code
must be specified, and must match the code of the user running the program. 1f the TO
parameter is omitted, the original file name will be used. If the last character is an asterisk
(*), then the NAME parameter must also have +, and the indicated name changes are made.
For example, NAME="ABCD:TT*', TO="ABCD:TEMP.*' restores d| files of the form
ABCD:TTxxx to ABCD: TEMP.xxx, where xxx is any character string. Resulting names are
truncated if too long. TO= may be abbreviated T=.

TAPFIL=n The tape file sequence number containing the archive dump to be used. The default is
TAPFIL=1. This parameter is needed only when reading from a multi-file tape.

REPL=T or REPL=F
REPL=T causesthe"TO" fileto bereplaced if it already exists. If REPL=F is used, the
existing file is not replaced and the restore program may try to use a different name (see
FIXUP below). The defaultis REPL=F.

604 FILARC - MUSIC/SP User's Reference Guide

FIXUP="X' This specifies a character x to be used for generating an aternate file name when the "TO"
file already exists (and should not be replaced), or cannot be written to. The fixup character
is added to the end of the filename, or replaces the last character if the nameis aready the
maximum length. At most three tries are made. The default fixup character is the dollar
sign ($). To prevent fixup attempts, specify ablank, asin FIXUP="".

Dump Checkout (FILCHK)

/FILE 1 TAPE VOL(vvvvvv) LRECL(80) BLK(nnnnn) SHR
/1 NCLUDE FI LCHK
par anet ers separated by conmas (see bel ow)

NAMES=T or NAMES=F
Use the NAMES=T parameter if you want alisting of all the file names contained on the
archivetape. The defaultisNAMES=F.

INFO=T or INFO=F
Use the INFO=T parameter to print the information line for each file contained on the
archivetape. Theinformation line has the file name, logical record length, record format
(e.g. FC for Fixed Compressed), access control options, total space allocated (units of 1k =
1024 bytes), the number of 512-byte blocks dumped, and the time and date the file was
archived. The default is INFO=F.

TAPFIL=n Use the TAPFIL=n parameter to specify that tape file n is to be checked for the archive
output. The default is TAPFIL=1, meaning the first file on the tape isto be checked. This
parameter is used only when reading from amultiple file tape.

Examples:

1. This example archives three files to tape. The files are assumed to be under the userid of
the user running the program.

/ FILE 1 TAPE VOL(ARCTAP) LRECL(80) BLK(4000) OLD
/1 NCLUDE FI LARC
<--- (blank line, no paraneters)
PROGL. SOURCE
PROGL. OBJECT
DATA. TEST1

2. This example is a batch job to archive al files for the userid ABCD which have not been
referenced since March 31, 1988. The names of these files are written to file
ARC. NAMES.

/FILE 1 TAPE VOL(MYTAPE) LRECL(80) BLK(4000) OLD
/ FI LE 2 NAVE(ARC. NAMES) NEW

/ 1 NCLUDE FI LARC

CODE=' ABCD' , UDATE=' 31MARS8' , NAMES=2

Chapter 10. Utilities- FILARC/FILRST/FILCHK 605

3. This example archives two files to punch cards. The files must be public files, or MM15
must be the userid of the person running the batch job. Note that the punched cards would
have to be copied to tape or to a UDS or file before they could be used by FILRST.

/FILE 1 PUN
/1 NCLUDE FI LARC
<--- (blank line, no paraneters)
MML5: DOCL
MML5: DOC2

4. This example reads and verifies an archive tape. The file names will be printed.

/ FILE 1 TAPE VOL(MYTAPE) LRECL(80) BLK(4000) SHR
/1 NCLUDE FI LCHK
NAMES=T

5. This example restores al files for userid ABCD, and renames the files by putting the charac-
ters "OLD. " at the beginning of the names. Any existing file ABCD: OLD. xxx will not be
replaced, since REPL=F is specified.

/ FILE 1 TAPE VOL(MYTAPE) LRECL(80) BLK(4000) SHR
/1 NCLUDE FI LRST
REPL=F, NAME=' ABCD: *' , TO=' ABCD: OLD. *'

6. This example restores four files from an archive tape. File PROG6 will be restored under
the new name PROG6X. The other files will be restored under their origina names, and
any existing files will be replaced (REPL=T) .

/FILE 1 TAPE VOL(MYTAPE) LRECL(80) BLK(4000) SHR
/1 NCLUDE FI LRST

N=' ABCD: FI LE35' , REPL=T

N=' ABCD: DATA. FI LE'

N=' ABCD: PROGS' , T=' ABCD: PROGGX'

N=' ABCD: FI LE13'

606 FILARC - MUSIC/SP User's Reference Guide

FTPand TELNET from MUSIC

FTPand TELNET are now available from MUSIC. TELNET alows you to establish sessions with comput-
erson the TCP/IP Internet. FTP alowsyou to transfer files. Many computers on the network maintain
libraries of public files that you can access through FTP. These filesinclude public domain software, graph-
icsand games. Check with your installation to seeif thisfacility is available at your site.

Connection

Each computer in the network is assigned a name which is used on the FTP, GOPHER, or TELNET
command to establish a connection. For example the command

TELNET VML. MCA LL. CA
will create a session on the VM1 system at McGill. The command

FTP VML. MCA LL. CA
will create afile transfer connection.
The NET command is useful in locating the names of computers connected on the Internet. Thisdisplaysa
list of computers that offer various services such as FTP access to public files. Y ou can browse through the
list and locate specific items. An FTP, GOPHER, or TELNET connection can be established directly from
NET by typing an F, G, or T in the margin beside the particular entry.

There are two MUSIC commands that can help you check the connection between you and the remote site.
They are:

FINGER The FINGER command alows you to send a one-line query to aremote Internet site, and
receive back information on who is logged into that remote site.

PING The PING (Packet Internet Groper) command measures round-trip-times to internet sites. It
does this by sending an ICMP/IP echo request to the remote site, which IP is obliged to
respond to if it receives the packet.

See Chapter 5 - MUSIC Commands for details about FINGER and PING.
Login

Once you are connected to the remote computer you usually have to login by entering a userid and a pass-
word. Many FTP sites accept the special userid of "anonymous", allowing you to connect and access their
public file library without having a userid assigned on their system. Y ou can usually enter anything for the
password.

Chapter 10. Utilities- FTP & TELNET 607

Documentation
MUSIC usesthe VM TCP/IP product to provide FTP and TELNET services. Complete FTP and TELNET
documentation are in the book IBM Transmission Control Protocol/Internet Protocol for VM (GC09-1204).

For complete details about FTP and TELNET refer to the MUS C/SP Communications Guide.

608 FTP & TELNET - MUSIC/SP User's Reference Guide

LBLIST

Printing Save Libraries

The LBLIST program can be used to display the contents of all the user's files that exist on the Save Library.
(Execute-only files and files with record format U (undefined format) will, however, not be displayed.) Files
with record length longer than 100 bytes will be truncated to 100 bytes on the printout. This programis
normally run from batch, due to the large amount of output that will usually be produced. The following
gives the control statement set up:

/1 NCLUDE LBLI ST
... Paraneter statenment (see bel ow)

Par anet er St atenent:

CODE=" xxxx"' [, NONEWPAQ [, ALLOBJ]

CODE="xxxx" This parameter specifiesthe 1-16 character ownership id (userid without subcode). It must
agree with the ownership id on the/ID statement.

NONEWPAG This parameter is used to suppress page skips between files. If this parameter is omitted,
then each file will start at the top of a new page.

ALLOBJ This parameter causes all object module statements to be printed. If this parameter is omit-
ted, then TXT and RLD statementswill not be printed. Since TXT and RLD statements
contain, for the most part, unreadable information, it is unlikely that you will want to print
them.

Chapter 10. Utilities- LBLIST 609

PANEL

Fullscreen Panel Generator

Using the IBM 3270 type workstation, it is possible to display an entire screen full of information and have
the user enter multiple dataitems with only asingle I/O operation. Thisisreferred to asfull-screen 1/0. The
PANEL system has been written to allow easy access to full-screen 1/0O from high-level languages. All that
is needed is some understanding of the basic concepts of screen formatting. No knowledge of 3270 protocol
isrequired.

A formatted screen image, hereafter called a panel, is composed of fields. A field may contain, for example,
explanatory text or a prompting message or it may be used to accept input data from the user. Fields may be
placed anywhere on the screen, although they may not overlap and they must start and end on asingleline.
A single line on the screen may contain multiple fields.

Each field isimmediately preceded by one character that is used to define the attributes of the field. This
attribute character controls various features of the field which are discussed later. Attribute characters are
invisible; the fact that they must be present means that there must always be at |east a one-character gap
between fields.

A field may be displayed in normal or in intensified display (highlighting), or it may be hidden. Hidden
fields are normally used for entering sensitive information, such as passwords. A field may be either modifi-
able or protected from modification by the workstation user. If the user triesto enter datain a protected
field, the workstation will reject the input by locking out the keyboard.

An application program must use panels which have been previously designed and stored, and can make use
of as many different panelsasit needs. A panel is essentially a subroutine stored as an object deck in afile.
Only one panel per fileisalowed. When the subroutine is called by an application program, it will display
the defined fields on the user's screen in their proper positions and with the desired characteristics. Data
passed from the calling program will be mapped into the proper fields on the screen.

After the panel has been displayed, the user can enter data into any unprotected field on the screen. When
the user presses an action key such as ENTER or a Program Function key, then the data entered can be
passed back to the calling program.

Services Provided by PANEL

Thefollowing isasummary of the services performed automatically by the PANEL utility.

» Basicfull-screen I/O
Any call to apanel normally resultsin screen I/0O. The screen image and the data supplied by the call-
ing program are written to the workstation. Data subsequently entered by the user will be passed back
to the calling program.

e Action key trandation
When user input is returned to the application program, atwo byte code is also returned indicating
which action key the user pressed. See the discussion entitled "Accessing Panels’ for a complete list of
the codes.

* Cursor Positioning

610 PANEL - MUSIC/SP User's Reference Guide

When a panel is displayed, the application program may specify where on the screen the cursor should
initially be positioned. If this positioning is not specified explicitly, then a default position will be used.

After screen 1/0 is complete, the application program receives a code indicating where on the screen the
cursor was positioned when the action key was pressed.

* Audibleaarm
Some 3270s have an audible alarm (beeper) built in. An application program has the option of sounding
this alarm when a panel is written to the screen. This can be useful in drawing the user's attention to the
fact that the user has made a mistake.

» Trandation of input to upper case
Like most workstations, 3270s are capable of transmitting both lower and upper case letters. Most users
enter al their datain lower case, while most programs use the corresponding upper case text. The
PANEL system will normally convert user input to upper case, but the option can be disabled for any
panel.

* Function Keys 13-24
Not all 3270 keyboards have 24 Program Function keys. Since most applications have no need for as
many as 24 function keys anyway, it is usually convenient to define the keys 13 through 24 as being
equivalent to 1 through 12. An option is available to cause the keys 13-24 to be translated as though the
corresponding key 1-12 had been pressed. Thus the application program would never be aware that a
key 13-24 was used.

* Automatic panel printing
Sometimesit is useful to be able to get a copy of a screen image on paper, or in afile. Anoption exists
which alows a user to print the panel using the F12 key. The panel iswritten to afile with ddname
FMTPRINT.

e Automatic HELP facility
An excellent way of helping users to use an online systemisto build in aHELP function. PANEL's
HEL P facility allows a HELP panel, or a series of HELP panels, to be associated with any given panel.
A HELP panel is simply another panel, presumably containing explanatory text on the use of the appli-
cation.

Developing Panels

To invoke the PANEL program, simply type PANEL when in Command (* Go) mode. Y ou will be
regquested to enter the name of afile into which the panel subroutine isto be saved (the OUTPUT FILE), and
optionaly, the name of an INPUT FILE. You can also type the file name as a parameter on the PANEL
command, for example, "PANEL mypanfile".

If you are creating a new panel, the OUTPUT FILE should be anew file, or if it exists, it should be empty.

If you are modifying an existing panel the OUTPUT FILE should be the name of the file containing the
existing panel. At the end of the modification process, the modified panel will overwrite the old panel in the
samefile.

Alternately, if you are modifying an existing panel, you may specify the file containing the existing panel as
the INPUT FILE and specify adifferent file for the OUTPUT FILE. At the end of the modification process,
the modified panel will be saved inthe OUTPUT FILE with the original panel unchanged in the INPUT
FILE. Thisisauseful technique for producing a number of similar panels from a single skeleton panel.

To display a panel file without changing it, use the command "SHOPAN filename" (or "CHOPIN filename").

Chapter 10. Utilities- PANEL 611

Each accessible field is numbered and filled with aruler.
Creating a New Pandl

Oncetheinitial fileinformation has been correctly entered, a blank screen will be displayed. (Thiswill not
occur if you are modifying an existing panel; instead refer below to "Modifying an Existing Panel".)

Two kinds of fields can be created: accessible fields and text fields. Accessible fields are those which are
used for communication between the calling program and the 3270 screen. An accessible field may be
protected or unprotected from user modification. A protected accessible field is usually used by the program
to send messages to the user; an unprotected accessible field usually receives information from the user that
isto be passed back to the calling program. (See the description of the PROTECT and UNPROTECT keys
under "Modifying an Existing Panel" below.) Text fields, on the other hand, are displayed on the screen, but
are never modified by the user or the calling program. Titles, headings and the like would normally be text
fields.

To specify an accessible field in your format, type in underscores (___) in the appropriate place on the
screen. Thelength of the field is determined by the number of underscores entered.

To specify atext field, simply type the text in the desired place on the screen. A text field may not contain
underscores.

Note that, as stated previoudly, at least one space must precede each field. This spaceis used by PANEL to
insert the attribute character for the field. Note aso that no field may be split between two screen lines.

Returning now to the blank screen that PANEL has presented, you are now ready to place the text and acces-
sible fields on the screen. Use the cursor positioning keys (right, left, up, and down) to move the cursor to
the start of afield. DO NOT pressthe ENTER key or any function key until you have completed the first
draft of the panel. Pressing these keys takes you out of the creation phase and into the panel modification
phase.

While entering the various fields of the new panel, should you wish to correct mistakes or change the order
of field appearance, simply blank out the mistake and retype the field. Once theinitial layout is complete,
pressthe ENTER key. The layout will be processed as follows:

o dl text fieldswill be protected
o dl accessible fields will be high-lighted and left unprotected

The panel will then be echoed back to your screen and you may then proceed to modify it.
Modifying an Existing Panel

Y ou are now ready to modify the panel in order to finalize its appearance and characteristics. If you were
modifying an existing panel, rather than creating a new one, you would have arrived immediately at this
stage, bypassing theinitial creation stage.

Modificationsto panels are accomplished by using Program Function keys. The keys PF1-PF12 have desig-
nated functions as listed below. The keys PF13-PF24, found on some workstations, have meanings identical
to the keys 1 through 12. That is, PF13 and PF1, PF14 and PF2, PF24 and PF12, are equivalent.

For most functions, the cursor position at the time the function key is pressed is crucial. For instance, if F9
(PROTECT FIELD) is pressed, then the field at which the cursor is positioned is the one which will become

612 PANEL - MUSIC/SP User's Reference Guide

protected.

M odification Function Keys

Function keys for use in modifying panels:

1/ 13 2/ 14 3/ 15
HELP HI DE or
& set F2 CURSOR or END
NCSKI P
4/ 16 5/ 17 6/ 18
CREATE or DELETE or Flip Field
SPLIT TRUNCATE | NTENSI TY
field field
7/ 19 8/ 20 9/ 21
Move Fi el ds Move Fi el ds PROTECT
uP DOMN Field
10/ 22 11/ 23 12/ 24
Move Field Move Field UNPROTECT
LEFT Rl GHT Field

Figure 10.6 - Function Keys for PANEL

F1 HELP

F2

F2 HIDE

F2 CURSOR

F2 NOSKIP

This key will cause a HELP panel to be displayed. The HELP panel gives ashort
summary of the functions of each of the modification function keys. It also allows
you to change the function of F2 from HIDE (the default) to CURSOR or to
NOSKIP. Pressing F3 will return you to the original panel.

The F2 key can have one of three possible functions: HIDE (the default), CURSOR
or NOSKIP. To change the function of this key, simply display the HEL P panel by
pressing F1, and type the desired function into the F2 square.

A field on the screen may be hidden (invisible). Although any kind of field (i.e. text
or accessible, protected or unprotected) may be hidden, the only field it would
normally make sense to hide is an accessible, unprotected field. Thisattributeis
usually reserved for entering sensitive data such as a password.

When a program calls upon a panel to be displayed, it may specify where the cursor
isto be positioned, or it may alow the cursor to be positioned by default. You can
indicate which field is to be the default by moving the cursor to the start of afield
and pressing the F2 key. If you do not use the CURSOR function, the default will
be the first unprotected field on the pand.

When a user types data into the last character of afield, the cursor normally will skip

to the start of the next input field. To prevent this skipping, you can set noskip on
any input field by moving the cursor to that field and pressing the F2 key. When a

Chapter 10. Utilities- PANEL 613

F3 END

F4 CREATE

F5 DELETE

F6 INTENSITY

F7 UP

F8 DOWN

F9 PROTECT

user types data into the last character of anoskip field, the cursor jumps 2 characters
to the right.

When you are satisfied with the appearance of the panel, press F3 to end modifica-
tion and proceed to the termination stage. If you have made any changesto the
panel you should press ENTER before pressing F3. Pressing ENTER causes
PANEL to echo the screen ensuring that all changes have been correctly stored.

This key may be used either to create anew field, or to split an old oneintwo. In
either case, the position immediately to the left of the cursor must be a space, or the
operation will fail. The spaceisrequired in order that an attribute byte may be
inserted for the new field.

If the CREATE key is pressed when the cursor is not positioned at an existing field,
anew field will be created. It will be an unprotected, normal intensity field and will
extend to the end of the screen line, or up to the start of the next field if one exists on
the same line.

If the CREATE key is pressed when the cursor is at an existing field, that field will
be split into two, i.e., an attribute byte will be inserted at the space to the left of the
cursor. (Remember that a space must exist to the left of the cursor when you press
the CREATE key.) Thedisplay intensity of the field to the right of the split will be
opposite of the display intensity to the left of the split (as though F6 had been
pressed), but other attributes will remain the same.

Thiskey is used to either truncate afield or to delete the entire field depending on
where the cursor iswhen F5 is pressed. If the cursor is at the first byte of thefield,
then the entire field will be deleted. If the cursor is somewhere in the middie of the
field, then the field will be truncated at that point. The cursor position marks the
first character to be truncated, NOT the last one to be kept.

If you have just created atext field, make sure you press PROTECT before you
press TRUNCATE.

Note that truncation of afield MUST be done using the DELETE key. Blanking out
underscores in an accessible field does not have any effect on the actual length of the
field.

The Flip Field INTENSITY function changes the display intensity of afield:
" anormal-display field will be highlighted

" ahighlighted field will become normal

" ahidden (invisible) field will become normal

The UP key moves al the lines, from the line where the cursor is positioned down to
the bottom of the screen, up oneline. Thisisaccomplished by deleting the entire
line immediately above the cursor. The line above the cursor is deleted even if it
containsafield. Whilethisisaconvenient way of deleting unwanted fields, beware
of inadvertent destruction.

The DOWN key moves all the lines, from the cursor down, down one line, and
inserts ablank line ABOVE the cursor. The operation will fail if the last line on the
screen (line 24) is not empty.

Thiskey will protect afield - that is, make it impossible for the workstation user to
type over it. Thisisnormally used to define atext field, although you may protect
an accessiblefield. Protecting an accessible field makesit available to the calling

614 PANEL - MUSIC/SP User's Reference Guide

program while ensuring that the user cannot modify its contents. Thisisnormally
done for fields used by the program to present error messages to the user.

The correct use of this key isimportant when anew text field is to be created. To do
this, you must first CREATE an accessible field, then type the desired text into that
field. Then, ensuring that the cursor is still positioned somewhere in the field, press
the PROTECT key. Thefield will become a protected text field, and only then may
be truncated, high-lighted, etc. The PROTECT key must be used IMMEDIATELY
after the text has been typed into the field.

F10 LEFT Thisis used to shift afield one column to the left. Note that the action applies only

toasinglefield, not to agroup of fields. There must be room available to move the
field to the left or the operation will fail.

F11 RIGHT Thisis used to shift afield one columnto theright. Similar rules apply to RIGHT as

to LEFT.

F12 UNPROTECT Used to make afield accessible and unprotected. All unprotected fields must be

accessible fields, so any text in afield which you unprotect will be discarded and
replaced by underscores. Information that the user types into an unprotected field on
apanel is passed back to the calling program.

Examples of M odifying a Panel

PANEL requires a specific sequence of actions for creating new fields, or modifying existing ones:

To CREATE anew TEXT field:

Move the cursor to the desired position of the start of the field and press the CREATE key (F4).
Type out the text.

Press the PROTECT key (F9).

Press the TRUNCATE key (F5).

To CREATE anew ACCESSIBLE field:

Move the cursor to the desired position of the start of the field and press the CREATE key (F4).
Type out the length - (using digits 1 through 0 makes it easier to count out the desired length.)
Press the TRUNCATE key (F5).

To change a TEXT field into an ACCESSIBLE field:

If you are completely replacing the field then move the cursor to the field and press the UNPROTECT
key (F12).

If you are splitting afield, then move the cursor one character to the left of where the new field isto
begin (leaving a space for the attribute character) and carry out the following steps:

Press the TRUNCATE key (F5).

Chapter 10. Utilities- PANEL 615

Move the cursor 1 character to the right; otherwise the next action will be ignored.
Press the CREATE key (F4).
Type out the length as above.

Press the TRUNCATE key (F5).
Storing Panels

When the END key (F3) is pressed to terminate panel modification, you will be presented with a termination
panel. On thisyou should specify

1. Thenamethat isto be given to the pand, i.e., the name of the subroutine that an application program
will call to have the panel displayed.

2. Theoptions to be used when displaying the panel such as trangating user input to uppercase, translating
function keys 13 through 24 into function keys 1 to 12, using PA2 as automatic panel reshow, or using
F12 to automatically print the panel in afile having a data definition name (ddname) of FMTPRINT.

3. TheHELP panel subroutine name to be associated with this panel (if any). The specified HEL P panel
will be linked to the present panel and be available to the user if the user needs assistance while viewing
the present panel. If thisisaHELP panel you are storing, you can enter the subroutine name of the next
HELP panel (if any). Each HELP panel is developed and stored separately, but one HELP panel may be
linked to another in this manner, thus allowing an unlimited number of HEL P panels to be displayed
when a user needs assistance. The user can scroll through these HEL P panels using F1, F10 and F11.

When the user presses the F1 key, the first HEL P panel associated with the user's current panel will be
displayed. Using the F11 or ENTER keys (show next HEL P panel) and the F10 key (show previous
HEL P panel), the user can scroll through the entire series of HEL P panels associated with the original
panel. Pressing F3 will get the user out of help mode and back to the original panel. Figure 10.7 shows
thisflow in a diagrammatic form.

—Fl—>
HELP —Fl11—> HELP —Fll—... — HELP
PANEL PANEL PANEL PANEL
1 <—F10— 2 <—F10—.. — n
)
) ! ! l

Figure 10.7 - Flow of Panels
Once you havefilled in the options, press ENTER to compl ete the creation of the panel object deck. You

will now be returned to the initial screen, from which you may commence creating or modifying another
panel. To exit PANEL, pressthe F3 (END) key.

616 PANEL - MUSIC/SP User's Reference Guide

Accessing Panelsthrough a Program

Once you have created your panel, it can be called from an application program exactly the same way as any
other subroutine. Two arguments may be supplied, athough only the first one is required.

Calling Sequence: CALL panel-name(io-area,supplemental)

where panel-name is the subroutine name given to a panel when it was stored.

Thel O-AREA Parameter

Thefirst parameter is called the 1/O area. It contains some basic control information plus the data to be
passed between the calling program and the panel. Itisablock of datawhose length in bytes must be no less
than the total length of all accessible fields in the panel, plus 6.

For example, suppose there are four accessible fields of lengths 5, 5, 10 and 24. To call this panel, an 11O
areano lessthan 50 (5 + 5 + 10 + 24 + 6) byteslong must be passed. The I/O areaislaid out asfollows:

Bytes
1-2

3-6

Function

Attention ID (AID)

Thistwo character code represents the action key which the user pressed after the data was
entered. It isset by the panel display service before control is returned to the application
program.

The codes for the various action keys are as follows:

01 - F1 'EN' - Enter
'02' - F2 ‘Al - PA1
'CL' - Clear
. 'CS' - Cursor Select
'24' - F24
Notes:

1. If aHELP panel isavailable then '01' will never be returned.
2. If the automatic print panel was selected then 12" will never be returned.

3. If automatic translation of function keys was selected then codes '13' through '24" will
never be returned.

Cursor Position
These four bytes contain two integer halfwords declared in Fortran as INTEGER* 2, in
COBOL as PICTURE S99 COMPUTATIONAL-1, or in PL/1 as FIXED BINARY (15,0).

These two halfwords can be used to determine where the cursor will be positioned when a
panel isfirst displayed. When control is passed back to the calling program, these halfwords
indicate where the cursor was positioned when the action key was pressed.

Depending on the contents of the SUPPLEMENTAL parameter (discussed below) the cursor
position can be given by either the panel field number or the panel row and column number.

Panel Field Number:
When specifying cursor position by panel field number, bytes 3 and 4 of |O-AREA should

Chapter 10. Utilities- PANEL 617

7 to end

contain the accessible field number on the panel; bytes 5 and 6 should contain zero.

Row and Column Number

When specifying cursor position by row and column number, bytes 3 and 4 of 10-AREA
should contain the row number (1-24); bytes 5 and 6 should contain the column number
(1-80).

Accessible Fields

The remainder of the IO-AREA isin one-to-one correspondence with the accessible fields of
the panel. Each accessible field, starting with the first one and proceeding left to right, top to
bottom through the panel, has a number of bytes equal to its own length reserved for it in this
portion of the IO-AREA. It isthrough these fields that information filled in by the user can
be passed back to the calling program.

The SUPPLEMENTAL Parameter

This second argument may optionally be passed to a panel subroutine. It contains supplementary orders
which give access to the alarm and cursor override services.

The orders are contained in a 16-byte field, of which currently only thefirst 4 bytes are meaningful. The
layout of the ordersis asfollows.

Bytes
1

5-16

Function

Panel Function

Normally, this byte is set to ablank. The following codes are available for thisfield:

P If the Function field is set to P, then the panel is written to the screen, but no read from
the workstation isdone. Thisisuseful for display only panels - control is returned to
the program immediately after the panel is written to the screen.

G If theFunction field is set to G, then aread is performed without displaying the panel.

A Code A will do awrite followed by an asynchronous read. The program regains control
immediately after the writeis complete. When the user presses an action key the datais
read and the application woken up with the POST-CODE set to ATTN. The application
can retrieve the data using the R (Read only) request. If the application issues a subse-
guent PANEL request (other than R), the asynchronous read is cancelled.

R Code R reads data from asynchronous read request.

Note: Setting the Function field to any value other than ablank, P, G, A, or R will prob-
ably cause your program to abend.

Alarm.
Set thisto ‘A’ to sound the 3270's alarm when the panel is displayed. This can be useful in
drawing the user's attention if the user has made a mistake.

Cursor Position as Field Number

To explicitly specify cursor positioning as using afield number move "C" to this position,
and set the cursor position code in the |O-AREA to the desired field number. "L" means
leave cursor alone.

Cursor Position as Row and Column

To specify cursor position as using row and column numbers, place an 'X'" in this position
and put the row number in the first half-word and the column number in the second half-
word of the cursor position in the |O-AREA parameter.

These positions should be left blank.

618 PANEL - MUSIC/SP User's Reference Guide

M odifying Panels Under Program Control
Subroutines MODOPT and MODFLD can be used in your program to dynamically modify panel options and
datafield attributes. See MODOPT and MODFLD in Chapter 11. System Subroutines.

Coding examples

Example of apanel:

SAMPLE PANEL
ENTER CUSTOMER NUMBER ==>

PURCHASE ORDER ===>
I N\vO CE AMOUNT ===>

VESSAGE:

Figure 10.8 - Sample Panel

Note that, in the sample panel above, the underscore characters are accessible fields which will appear
when modifying the panel, but will not be present when the panel is displayed under program control.

COBOL example:

01 FMT-1 O AREA.

02 FMI-AlD Pl C XX.

02 FMT- CURSOR.
03 FMI-CRS-FLD PIC S99 COWP.
03 FILLER PIC S99 COWP.

02 FMT- CUST- NO PI C X(5).

02 FMI-PUR-ORDER PIC X(5).

02 FMT-1NV-AMOUNT PI C X(10).

02 FMI- MESSAGE Pl C X(24).

PRCCESS.
MOVE SPACES TO FMT- CUST- NO
FMTI'- PUR- ORDER
FMT- | NV- AMOUNT.
MOVE ' FILL I N AND PRESS ENTER TO FMI- MESSACE.
CALL ' SAMPLE' USI NG FMI- | O AREA.
* FI' NI SH PROCESSI NG WHEN USER PRESSES F3
IF FMI-AID = ' 03
@O TO PROCESS- EXIT.
MOVE FMI- CUST- NO TO OUTPUT- CUST- NO
MOVE FMI- PUR- ORDER TO CQUTPUT- PUR- ORDER.
MOVE FMT-1 NV- AMOUNT TO QUTPUT- | NVO CE- AMOUNT.
VWRI TE OUT- REC FROM QUTPUT- RECORD.
GO TO PROCESS.

Chapter 10. Utilities- PANEL 619

FORTRAN example:

| NTEGER*2 Al D, CURSOR(2) , ENTER/' EN /, PF3/"' 03' /
LOG CAL*1 CUSTNQ(5), PURCH(5) , AVOUNT(10) , MESSAG 24)

COMMON /| OAREA/ Al D, CURSOR, CUSTNO, PURCH, AMOUNT, MESSAG

t he conmon bl ock groups the variables together into a
"structure" so that all the variables are contiguous and

in the required order. Thus passing the first variable in the
comon bl ock results in the whole structure being passed.

O0000

10 CALL FILL(CUSTNO, 44,' ')
CALL LMOVE(' FILL I N AND PRESS ENTER , MESSAG, 23)
CALL SAMPLE(Al D)
C FI NI SH PROCESSI NG WHEN USER PRESSES F3
| E (Al D.EQ PF3) GO TO 999
WRI TE(1, 100) CUSTNO, PURCH, AMOUNT
G0 TO 10

PL/l example:

DCL 1O AREA CHAR(50),

1 1 O_STRUCTURE DEFI NED(| O _AREA) ,
2 AID CHAR(2)

2 ROW FI XED BI N(15, 0),

2 COLUWN FI XED BI N(15, 0),

2 DATA,

3 CUSTOMER NUMBER CHAR(5),
3 PURCHASE ORDER CHAR(5),
3 INVO CE_AMOUNT CHAR(10),
2 MESSAGE CHAR(24);

DCL SAMPLE ENTRY(CHAR(50)) OPTI ONS(ASSEMBLER | NTER) ;

CUSTOMER _NUMBER, PURCHASE_ORDER, | NVOI CE_AMOUNT = ' ':
MESSAGE = ' FILL I N AND PRESS ENTER ;
DO WHI LE(AID «= ' 03');
CALL SAMPLE(| O AREA):
SELECT(AI D) ;
WHEN(' 03") ;
WHEN(' EN') DO,
PUT FI LE(OUT) LI ST(CUSTOVER NUMBER,
PURCHASE_ORDER, | NVOI CE_AMOUNT) ;
CUSTOMER _NUMBER, PURCHASE_ORDER, | NVOI CE_AMOUNT = ' ':
MESSAGE = ' FILL I N AND PRESS ENTER ;
END;
OTHERW SE MESSAGE = ' HI T ENTER TO ENTER DATA' ;
END;

620 PANEL - MUSIC/SP User's Reference Guide

Usage

After you have created your panels, you must ensure that they and the Panel Display Service subroutines
(stored in the file PANEL.SERVICE) are accessible to the linkage editor when compiling your application
program, just as you do for any other subroutines.

Consider an example of a FORTRAN application program using a panel stored as a subroutine called
SAMPLE in thefile called SAMPLE.OBJ:

*CGo

list sanple. obj
*In progress

/ LOAD VSFORT

CALL SAMPLE(Al D)
END

/ 1 NCLUDE SAMPLE. OBJ

/ 1 NCLUDE PANEL. SERVI CE

*End
*Go

Panel Printing

If the automatic print option was specified when a panel was stored (see the topic " Storing Panels' above) a
user can have a copy of the displayed panel printed to afile. The caling program must have a/FILE state-
ment specifying afile with a ddname of FMTPRINT, for example:

/ EI LE EMTPRI NT NAME(. . .)

If these requirements are meet, the displayed panel will be printed to the specified file when the user presses
the F12 key. When thisis done, control is not returned to the calling program, but rather a message appears
on the screen indicating that the panel has been printed, and the panel is redisplayed.

REXX interfaceto PANEL

An interface to MUSIC's PANEL facility is available through the special PANEL command in REXX. The
screens are created as usual viathe PANEL facility and stored as object files. When REXX encounters a
PANEL command it dynamically loads the appropriate object files for the screen images. Modifiable fields
are then filled from the specified REXX variables and the panel service routine isinvoked to perform the 1/0.
When thisis complete, the data from any modified fieldsis then returned viathe REXX variables.

The PANEL facility isinvoked from REXX using the PANEL command. Due to the fact that the interface
modifiesitemsin the variablelist, the entire PANEL command should be enclosed in quotes.

"PANEL fil enane [var-list]'

filename The name of the file containing the object file for the panel to use.

Chapter 10. Utilities- PANEL 621

var-list A list of variable names separated by blanks indicating which REXX variable is associated

with a specific field on the screen.

Field Variables:

1. Thefields on the screen are numbered from left to right, top to bottom.

2. Thefirst namein thelist isassigned to thefirst field, the second name to the second field, etc.

3. There need not be a variable name specified for each field on the screen or in fact for any fields on the
screen. In either case, the default variable name of name.n is used, where n is the number of the field
and name is the panel file name, with leading ownership id and directory names (if any) removed. For
example, for file name "ABC. TEST\MY PAN", the default variable names are MY PAN.1, MYPAN.2,
etc.

4. A period (".") can be used in the variable list to force the system to use the default name.

5. When afieldisinitialized from avariable, nulls are appended to the end if the variable is not long
enough to fill the field.

6. On returning from PANEL trailing blanks and nulls are removed.

7. The pand's subroutine name isignored by REXX.

Special Variables:

The following variables are used in addition to the panel fields themselves. These names cannot be overrid-
den by the user.

AID Two character code representing the action key pressed by the user.

FIELD Numeric value used to position the cursor to a specific field. It is also returned to indicate the
position of the cursor when the action key was struck. Thefields are numbered 1, 2, 3...

ROW Row number used as an alternative to FIELD.

COL Column number used as an alternative to FIELD

PANCTL Four character supplemental parameter used to control the operation of the alarm and deter-
mine whether field or row/column positioning is used.

RC Thisvariableis set to the return code as follows.

100 - insufficient storage to load panel

101 - PANEL commandisinvalid

102 - fileis not a panel object file

103 - panel filetoo large

104 - error accessing REXX variable

105 - error converting ROW, COL, or FIELD to numeric
<100 - file system return code from reading panel file

For further details on the values that these variables can have refer to the documentation on the PANEL -Sub-
system.

622 PANEL - MUSIC/SP User's Reference Guide

Help Panels

There are two names associated with a panel: the name of the file that contains it, and the subroutine name
that is used by languages such as FORTRAN to invokeit. Thelink between apanel and it's help panelsis
normally provided through the subroutine name. Since REXX dynamically |oads the panelsinto memory
based on the file name, the file name and the subroutine name MUST be the same for help panels.

Example
/ I NC REXX
/* This is an exanple of a data entry program

Fields froma panel are witten to a file.
The panel is called ENTDAT and the file DATFIL. */

do forever

/* Display the panel and get the data. Stop if
F3 is pressed */

" PANEL ENTDAT NAME ADDR. 1 ADDR. 2 ADDR 3 PHONE

if rce=0 then do;say ' Error in ENTDAT panel'; exit;

if aid=3 then | eave

/* wite the data to the file */

gueue nane || addr.1 || addr.2 || addr.3 || phone
MJSI O WRI TE DATFIL 1
end

Note: The PANEL command line must be in upper case characters.

end;

Chapter 10. Utilities - PANEL

623

POLYSOLVE

Overview

The POLY SOLVE program is a powerful conversational tool that can be used as a desk calculator facility,
demonstration program, and it can even be used to solve equations! A sample POLY SOLVE sessionis
given at the end of this writeup.

One powerful feature of this program, (the one that it takes its name from), is its ability to solve polynomial
equations. The following are examples of polynomial equations:

x=15/ 40

X +64 =0

17x2 + 47x = 16

16= x3 + 5x

x= sqrt (15)

ax3 + bx2 +cx +d =0

Y ou will notice that you cannot solve the last equation immediately because of the unknown coefficients of
ab,cand d. The POLY SOLVE program will realize that and ask you to define them. Thiswill be discussed
later. Some more common every-day uses of polysolve are shown in the examples below:

15 + 63 + 27 + 14/3 + 2.49

sqrt(15.3)+63/2.3
24*3 (The "*" means nultiplication)

Usage Notes

The program will solve any polynomia in X with amaximum of 25 real coefficients. All computations are
carried out in double precision. First order polynomials are solved algebraically. Higher order polynomials
are solved iteratively, by the double precision form of the SSP routine POLRT.

The program will solve polynomials for the unknown x entered according to the following conventions:

1. Anexpression not involving X is assumed to mean X=expression, and the value of X is evaluated and
displayed. For example, if the expression 2+2 is entered, the result 4 is displayed.

2. Anexpressionin X without an equal sign is assumed to mean expression=0 and the value or values of X
are evaluated and displayed.

3. Anexpressionin X written with an equal sign istaken asis.

All coefficients must be real numbers. For example, SQRT(-2) isinvalid.

624 POLYSOLVE - MUSIC/SP User's Reference Guide

Constants

Constants are stored in double precision form. The maximum value of a constant is approximately 10**50.

Variables

The independent variable must be X. Coefficients may be represented by a single letter from A to Z except
X. Use of E should be avoided because of possible confusion with exponentia notation for constants. Vari-
ables are stored as double precision numbers. The highest power of X which may be entered is 20.

The following operators are recognized:

+ addition

- subtraction

* multiplication

/ division

*x exponentiation (Raising to a power. ** 2 means squared)

exponentiation (equivalent to **)
Implied Operations

Parentheses imply multiplication if no explicit operator is given. For example 3(A+B) istaken as 3 times the
sum of A and B.

A constant immediately followed by avariable or afunction name is assumed to have a multiplication opera-
tor in between. For example 3X istaken as 3 times X, and 3SQRT(B) is taken as 3 times the square root of
B. However 3XSQRT(B) isinvalid since it would be taken as 3 times X SQRT(B) and there is no function
called XSQRT. X followed by a constant is assumed to have an exponentiation symbol in between. For
example X2 istaken as X to the power 2.

Blanks are always ignored.

Functions
The following functions are supported:
ALOG log to base e
EXP e to a power
SQRT square root
SIN sine of an angle expressed in radians
Ccos cosine of an angle expressed in radians

The double precision forms of these functions are automatically used.

Chapter 10. Utilities- POLYSOLVE 625

Entering a Polynomial
1. Anexpression not involving X written without an equal sign. For example 3A* SQRT(B) istaken as
X=3A*SQRT(B).
2. Anexpression in X written without an equal sign. For example 3X2+X3-3 istaken as 3X2+X3=0.
3. Anexpressionin X written with an equal sign. For example 3X2+SQRT(B)=-2.
Expressions may not:
1. Beginwith an egua sign.
2. Beanexpression not involving X written with an equal sign. For example A=B+C isinvalid

3. Containan X or an = within parentheses.
Continuing an Expression

An expression is assumed to be continued on the next lineif it endsin acomma, or is completely blank, or
ends with the right parentheses count lower than the left parentheses count, or the last character is an operator
or an equa sign (=).

A function name must not be split between lines, nor can a constant be split between lines.

Entering Coefficients
If variable coefficients are used in the polynomial, the system will request values for these variables. These
values may be entered as constants or as expressions involving other variables.
The values may be entered explicitly in the form variable = constants or expressionsin the order in which
they are requested. Implicit and explicit entries may be intermixed on one line. Expressions must be
preceded by an equal sign.
If more than one value is entered on aline, they must be separated by commas.

The continuation rules shown above under "Entering A Polynomia" also apply for entering coefficients.
Solution

The value or values of X are displayed by the program. Complex roots are shown as real part and imaginary
part. The letter "i" follows the imaginary part in the printout.

626 POLYSOLVE - MUSIC/SP User's Reference Guide

Example

*CGo
pol ysol ve
*In progress

Enter calculation or type HELP or /CAN

?
3(x+1) =3
Incorrect character sequence "(X+1)" found near colum 4
?
3x+3=3
Ans
.0
Enter calculation or type HELP or /CAN
2
sqrt(-1)

| HN2611 DSQRT NEGATI VE ARGUMENT=- 0. 9999999999999997D+00
Sol ution term nated

Enter calculation or type HELP or /CAN
2

1403+75- 155/ 158+3* 2501+

Conti nue st at enent
2

145. 5
Ans
9125. 52

Enter calculation or type HELP or /CAN
2

ésqrt(b):Sx

Enter B.
2

.:p+3f

Enter P, F.
2

f=c-d, 25.5
Enter C, D
?
d=1, 10
Ans
14. 4914

Sol ve ol d equation agai n?
Type yes or no
2

no
Enter calculation or type HELP or /CAN

Chapter 10. Utilities- POLYSOLVE 627

?
20.5x3 + 10x2 +32.3x=15/2.5 + sqrt(2.3)

Ans
. 212616
-. 350210 -1. 26566
-. 350210 1. 26566

Enter calculation or type HELP or /CAN
2

/ cancel
*Ter m nat ed
* G0

628 POLYSOLVE - MUSIC/SP User's Reference Guide

PROFILE

Overview

Y our user profile contains such things as your sign-on password, default tab character and tab columns, job
time limits, etc. The PROFILE program is used to change or display these options.

To use the PROFILE program, enter the command "PROFILE". Y ou will be asked to enter options. These
options are listed below, in aphabetica order. If you like, you can enter more than one of these options on
the same line, separated by blanks or commas. Also, if only one command lineis to be entered, you can type
it on the PROFILE command line, for example: PROFILE SHOW. Entering ablank command is equivalent

to SHOW.

Note: Any changes made to your profile options (except passwords) do not take effect until the next time

you sign on.

ALWAY SPROG(X)

AUTOPROG(x)

BACK SPACE(X)

BATCHPW(x)

BRIEF

DEFTIME(n)

EDMSG

Options

Givesthe file name of a program that is to be executed whenever your workstation
would otherwise be in * Go mode. For example, this could be a menu program that
lets you choose the next thing to do. Y ou will be prompted to enter your sign-on
password. To undefine the aways program, type ALWAY SPROG(). You are not
allowed to change the name if it is marked as FIXED. Abbreviations: ALWAYS,
ALPROG

Note: If the always program does not work correctly (or does not exist), and you get
stuck in aloop, don't panic! Go into attention mode (by pressing PA1 or BREAK),
then type/CAN ALL. This should return you to *Go mode. Y ou can then run
PROFILE and change the always program name.

Gives the file name of a program that will automatically be executed each time you
sign on. The name can be up to 22 characterslong. To remove the name, type
AUTOPROG(). You are not allowed to change the autoprog name if it is marked as
not cancellable. Abbreviations: AUTO, PROG

Defines x (any special character) as the input backspace character (not necessary on
3270-type workstations). The character may also be entered as BACK SPACE(xX),
where xx is the 2-digit hexadecimal form. To undefine the backspace character, type
BACKSPACE(). Seeadso TERMINAL(x). Abbreviations: BACKSP, BS

Defines a new batch password (1 to 8 characters). This password may be required
when you run abatch job. To set no batch password, type BATCHPW(). Abbrevia-
tion: BPW

Displays your name and id number (if assigned). Abbreviation: BR

Sets the default time limit for workstation jobs, in service units (SU). To specify no
limit, type DEFTIME(NOLIM). Abbreviations. DEFT, DEF, DT

Sets the conversational read prompt to *Ent er dat a rather than the normal "?".

Chapter 10. Utilities- PROFILE 629

END

EDNFERR

EDNFOK

Terminates the PROFILE program. Must be entered at the beginning of the
command line.

This option appliesto the /EDIT command, and means that if the file specified on
the command does not exist, the Editor should give an error message and stop.

This option appliesto the /EDIT command, and means that if the file specified on
the command does not exist, the Editor should start with an empty file of that name.

Note: EDNFERR and EDNFOK should not both be on; if they are, EDNFOK has priority. If neither ison,
the result depends on how the Editor was configured for your site.

EXEC

HELP

HEX(x y)

INPROG

INVIS

ITABS(n1n2n3...)

The implied form of the EXEC command is not allowed. To execute afile, you
must type the full command "EXEC filename", rather than just "filename".

Displays a description of the PROFILE program and options. Must be entered at the
beginning of the command line. The text displayed is taken from the public file
PROFILE.HELP.

Defines an input replacement character. When the system sees x in an input terminal
line, it will replaceit withy. x may be any special character (other than "/, comma,
or blank), and y may be any character. Each may be given in 2-digit hexadecimal
form. They are separated by a blank or comma. For example: HEX(&,02). To
remove this option, type HEX().

Removes the NOINPROG option.

Makes your id invisible to programs like FINGER. Y ou can use this option if you
do not wish other usersto know that you are signed on.

Definesnl, n2, n3, ... asthe default input tab column positions. Each number isa
column position from 1 to 80. When you enter atab character, the system will
supply the appropriate number of blanks to get to the next tab position. Seethe TAB
option. To undefine all input tab columns, type ITABS(). The numbers are sepa-
rated by blanks or commas. Abbreviation: ITAB

LANGUAGE(national language name)

NEWPW

NOEDMSG

NOEXEC

NOINPROG

This specifies the national language you prefer for messages, etc. The change will
take effect the next time you sign on. Not all applications support al languages. If
an application does not support the language you request, it uses English. National
language names are: English, French, Kanji (Japanese), Portuguese, and Spanish.
Other language names MAY also be accepted. Most language names have a2 or
3-character abbreviation, for example LANG(ENG). To remove the LANGUAGE
option, specify LANGUAGE() or LANGUAGE(DEFAULT), both of which use the
site-dependent default language. Abbreviation: LANG

If you wish to be prompted to enter the new password (1 to 8 characters) ina
blacked-out area (or non-display areafor 3270-type workstations), use this option
instead of PASSWORD(X).

Removes the EDM SG option.

Removes the EXEC option. Allows the implied EXEC command to be used.

Suppressesthe *I n progress message.

630 PROFILE - MUSIC/SP User's Reference Guide

NOINVIS

NOSLASH

OTABS(n1n2n3..)

PASSWORD(x)

PRINT
PRINT$
PRINTSPACE
ROUTE(name)
SHOW

SHOWS

SHOWSPACE

SLASH

TAB(X)

TERMINAL(x)

*Go
profile

*In progress

Removesthe INVIS option.

Removes the SLASH option. "/" may be omitted on commands in * Go mode.
Definesnl, n2, n3, ... asthe default output tab column positions. The numbers must
each be 1 to 254 and bein increasing order. They are separated by blanks or
commas. Up to 11 numbers can be specified. On some types of workstations, the
system can use output tabs to speed up output. The user must set the correct physi-
cal output tabs at the workstation. See also the TERMINAL(x) option. To undefine
the output tabs, type OTABS(). Abbreviation: OTAB

Specifies anew sign-on password (1 to 8 characters). You will be prompted to enter
your old password. See also NEWPW. Abbreviations: PASSW, PW

Same as SHOW

Same as SHOW$

Same as SHOWSPACE

Assigns the default route destination for your userid.

Displays your complete profile. A blank command line is equivalent to SHOW.

Displays the dollar limit for your userid and the amount used so far. These values
are also included in the output of the SHOW command. Abbreviation: $

Displays the current total space occupied by your files (in units of K = 1024 bytes),
and also your file space limits (if any). Abbreviation: SHOWSP

A dlash character (/") isrequired on all command in * Go mode.

Defines x (any special character) as your logical input tab character. To specify the
character in 2-digit hexadecimal form, type TAB(xx). To undefineit, type TAB().
Seethe ITABS option.

Defines the type of workstation you use. 3270, 3101, and PCWS are examples of
workstation type names. A workstation name must be defined in order for the
OTABS (output tabs) and BACK SPACE options to be honoured. Refer to the
trmcls parameter of the /ID command in Chapter 5. MUS C Commands for more
details. To remove this option, type TERMINAL(). Abbreviation: TERM

Example

USER PROFI LE - ENTER COVMAND OR HELP

?

noi nprog itabs(10 20 30)

CHANGED
?

show

Chapter 10. Utilities- PROFILE 631

USERI D=SPQR FI LE OAMNERSHI P | D=SP(R TYPE=0
| D=987- 6543 NAME=Jul i us Caesar
TIME LIMTS (IN SERVICE UNITS) :
PRI ME=180 NONPRI ME=180 BATCH=180 DEFAULT=60
MAX NUMBER OF EXTRA SESSI ONS PER TERM NAL: 5
PASSWORD CAN BE CHANGED BY USER
SNGL: CONCURRENT SESSI ONS (ON DI FFERENT TERM NALS) ARE NOT ALLOWED
NOCOM FI LES MAY BE SAVED PRIV OR SHR, BUT NOT PUBL
AUTOPROG (NONE)

| NPUT TABS: 10 20 30
NO OUTPUT TABS

FUNDS ($): 257.35 USED, 500.00 LIMT

SAVE LIBRARY: TOTAL = 132K LIMT = 200K MM/ FILE = 400
MAX TRACKS PER DATA SET (UDS) AT ALLOCATI ON: 0

CREATED 1991/ 03/ 15 (YEAR/ MONTH DAY)
LAST SI GN-ON: 1991/10/31 10: 20 LAST BATCH JOB: O
LAST PASSWORD CHANGE: SI GN- ON PW 1991/ 10/ 31 BATCH PW 1991/ 10/ 31
PASSWORD LI FETI ME: NOLIMT
USERI D OF CREATOR: $000000
?
end
*End
* 0o

632 PROFILE - MUSIC/SP User's Reference Guide

Sorting

Overview of MUSIC SORT Facilities

MUSIC provides facilities for users to sort fixed-length filesin main storage and on disk. Disk sort opera-
tions can handle large numbers of individual records. MUSIC's disk sorting capability features the fact that it
preserves the input sequence for those records that contain identical information in the sort fields.

The following identifies the various sorting facilities available on MUSIC. The disk sort routines are then
fully described individually in the same order as they are highlighted below.

SORT This command, valid during * Go mode, sorts the contents of afile. Refer to Chapter 5.
MUS C Commands.

MNSORT Generalized disk sort program allowing you to sort files without the need for writing any
program.

SSORT Routine to sort arrays or tablesin main storage. The sorted array replaces the original

array. No disk work utility files are used, nor is any work storage array required. This
routine is suitable for the smaller sorting requirements. This subroutine is callable from
many of MUSIC's high-level languages such as FORTRAN. Input sequence may not be
preserved for those records that contain identical information in the sort fields. For more
details about this routine, refer to the SSORT subroutine writeup in Chapter 9. System
Subroutines in this guide.

DSORT Generalized disk sort subroutine callable from many of MUSIC's high-level languages
such as FORTRAN.
SRTMUS Subroutine similar to DSORT, except that the parameters are specified in aformat similar

to the OS Sort/Merge routine available on other operating systems.

COBOL SORT The MUSIC disk sort facility is directly callable from COBOL using the COBOL SORT
Verb.

PL/I SORT A PL/I program can perform sorting operations by calling any of the sort interface
subroutines PLISRTA, PLISRTB, PLISRTC and PLISRTD, as described in the PL/I
Optimizing Compiler Programmer's Guide. Refer to the discussion on the PL/I Optimiz-
ing Compiler.

MNSORT - MUSIC Main Program for Sorting

MNSORT isageneral purpose sort program which can sort data records into ascending or descending order
according to various types of control fields. Input can be from adisk or tape data set, from the Save Library,
or from the input stream. Output sorted records can be punched, printed, or written to tape, disk, or the Save
Library. Sorting is done by the subroutine DSORT. FORTRAN NAMELIST input allows the user to spec-
ify input and output unit numbers, file names, work units, logical record length, sort control fields, and other
parameters. Default values are provided for al parameters.

If you enter only the INPUT="filename' parameter, you can sort the contents of afile and cause it to be
replaced with the sorted version.

Chapter 10. Utilities- Sorting 633

From aworkstation, MNSORT is used by typing EXEC MNSORT or the following:

/| FILE statenents as required
/ I NCLUDE MNSORT
cards to be sorted... (if input unit is 5)

The user will then be prompted to enter the sort parametersin NAMELIST form, separated by commas (see
below for a description of the parameters). When MNSORT is used from batch, usage is as above except
that the NAMELIST parameters must be supplied following the /INCLUDE MNSORT statement.

Parameters

INPUT=n or INPUT='filename' or FILE='filename
The input data to be sorted, either a unit number (1 to 13) or afile name (in single quotes).
DefaultisINPUT=1. Abbreviation: IN

OUTPUT=n or OUTPUT='filename' or OUTPUT=""
Defines the sort output file, either a unit number (1 to 13) or afile name. OUTPUT="*"
means use the same unit or file name as specified by the INPUT parameter (i.e. the sorted
output replaces the input file). Default if OUTPUT not specified: OUTPUT=""if INPUT is
afilename; otherwise OUTPUT=2. Abbreviation: OUT.

Notes:

1. Anoutput fileisautomatically replaced if it aready exists.

2. If INPUT isafile name and OUTPUT is not specified, the input file is replaced by the
sorted data.

3. If aunit number isused for INPUT or OUTPUT, an appropriate /FILE statement should
be used if necessary.

RECLEN=n Thelength of the recordsto be sorted. If INPUT isafile name, default RECLEN isthe
record length of thefile; otherwise the default is RECLEN=80.

WORK1=n Unit number for first (or only) sort work file. Defaultis3. If WORK1=0, no work fileis
used.

WORK2=n Unit number for second sort work file. If 0, a second work fileis not used. Defaultis
WORK2=4,

Note: The program contains /FILE statements for two work files on units 3 and 4 (tempo-
rary files). They are adequate for sorting up to about 550K of data (7000 80-byte
records). If necessary, you can change the work file sizes by supplying your own
/FILE statements for units 3 and 4:

/ FILE 3 N(&&TEMP) NEW DELETE SPACE(nnnn)
/ FILE 4 N(&&TEMP) NEW DELETE SPACE(nnnn)
/ 1 NCLUDE NMNSORT

where nnnn is the desired space in K. The default is 550K. When work files are
used, there must be 2 of them (not 1); that is, WORK2 must not be O.

WRKSIZ=n Sizein bytes of the main storage sort work areato be used. The maximum is 52000, which
is also the default.

FORMAT="xX'",'xx,...

634 Sorting - MUSIC/SP User's Reference Guide

Formats of the sort control fields. Defaultis FORMAT='CH' (1 field). Thelast specifica
tion isrepeated if necessary. See also FLDPOS, FLDLEN, and ORDER parameters below.
The possible formats are: CH (character), Bl (binary), DA (date), FI (fixed-point), FL
(normalized floating-point), ZD (zoned decimal), PD (packed decimal), Cl (case ignore).

FLDPOS=n1,n2,...
Starting column numbers of the sort control fields. Default is FLDPOS=1.

FLDLEN=N1,n2,...
Lengths of the sort control fields. Each value must be 1 to 256. Default is RECLEN, or 256
if RECLEN is greater than 256. Refer to the DSORT routine for other restrictions on
FLDPOS and FLDLEN.

ORDER='X','X',...
Sort order for the control fields: 'A’ for ascending, 'D' for descending. Default is
ORDER='A". Thelast specification is repeated if necessary.

TITLE="xxxx...
Optional information to appear in the heading.

PARMS=n If anonzero unit number is specified, additional parameters will be read from that unit. The
default is PARM S=0.

HELP Reguests a display of information on how to use the program.
ECHO Requests a display of the parameter values.
Notes:

1. Thesame sorting restrictions and efficiency considerations apply to MNSORT as apply to DSORT.

2. Thefile MNSORT is public and not execute-only, so that the user can replace the /FILE statement for
unit 3 or supply replacements for routines SRTIN, SRTOUT, or SRTMSG.

Examples:
1. Assume that data set ABCDFIL1 contains 50-byte records to be sorted in ascending order on
two control fields. The first field is a 4-byte fixed-point value starting in column 21; the

second is a 10-byte character field starting in column 3. The sorted records are to be writ-
ten to data set ABCDFIL2.

Chapter 10. Utilities- Sorting 635

*Go

list sanple

*In progress

/ FILE 1 UDS(ABCDFI L1) VOL(VOLUME) SHR
/ FILE 2 UDS(ABCDFI L2) VOL(VOLUME) OLD
/ I NCLUDE MNSORT

*End

*Go

sanpl e

*In progress

ENTER SORT PARAMETERS OR HELP

?

recl en=50, format="fi',' ch',fl dpos=21, 3, f | dl en=4, 10

SRTO00 BEG N SORT. RECORD LENGTH = 50, AREA = 51944
SRTO00 RECORD COUNT = 200

SRTO00 NORMAL END OF SORT

JOB TI ME 3.42 SERVICE UNI TS

*End

*Qo

2. This example sorts the contents of file TT1 and stores the sorted records into file TT2. The
previous file TT2 is replaced.

msort
*In progress

ENTER SORT PARAMETERS OR HELP
?

input="ttl ,output="tt2'

SRTO00 BEG N SORT. RECORD LENGTH = 80, AREA = 52000
SRTO00 RECORD COUNT = 125

SRTO00 NORVAL END OF SORT

JOB TI MVE 2.19 SERVICE UNITS

TT2
REPLACED
*End

*Go

DSORT Subroutine

This subroutine sorts fixed-length logical records into ascending or descending order based on one or more
sort control fieldsin each record. The caller supplies amain storage area and, optionally, one or two direct
access work filesto be used if al records cannot be sorted in the main storage area. The input data set to be
sorted, and the output sorted data set, may be any MUSIC sequentia files, or user-written input/output
routines may be supplied.

If appropriate user-written input/output routines are used, the length of each logical record islimited only by

the size of the main storage work area. If sufficient direct access work space is provided, thereisno limit on

the number of records which can be sorted. Records with identical control fields are output in the same order
asinput.

636 Sorting - MUSIC/SP User's Reference Guide

Restrictions
1. Thetotal length of the sort control fields may not exceed 256 bytes.
2. The maximum number of control fieldsis 20.
3. Control fields may not overlap, and each must start within the first 4096 bytes of the logical record.
4. Only the following types of control fields are accepted:
a. Character (EBCDIC collating sequence) (OS Sort/Merge codes CH and BlI).
b. Internal fixed-point (OS Sort/Merge code FI).

c. Internal normalized floating-point (OS Sort/Merge code FL). Floating-point control fields must be
normalized.

d. Zoned decimal (OS Sort/Merge code ZD). ZD should be used to sort unsigned numeric fields
created using FORTRAN | format.

e. Packed decimal (OS Sort/Merge code PD).

5. Zoned and packed decimal fields must not exceed 32 bytes in length and are not checked for valid sign,
digit or zone codes. Note that non-negative integer fields created using FORTRAN I-format may be
treated as zoned decimal fields for sorting.

Usage

DSORT may be called in two ways. All variables except CTLTAB and WKAREA are fullword integers.
Mode | :

CALL DSORT(RECLEN, ORDER, CTLLEN, CTLDSP, WKAREA, WWRKSI Z,
I NU, QUTU, WORKUL, WORKUZ2, &n)

Mode |1 :

CALL DSORT(RECLEN, 2, CTLTAB, 0, WKAREA, WRKSI Z, | NU, QUTU,
WORKU1, WORKU2, &n)

Mode | is used when sorting on a single character-type control field. Mode Il is used for the general case of
one or more control fields of various types.

RECLEN Length (in bytes) of each logical record.
ORDER 0 for ascending order, 1 for descending order.
CTLLEN Length (in bytes) of the control field. Thismust be 1 to 256.
CTLDSP Displacement (in bytes) of the control field from the start of the logical record. This must be
0to 4095. (A control field at the beginning of the record has a displacement of 0).
CTLTAB 'tl)'gbl e specifying the sort control fieldsfor Mode 1. The format of this table is described
ow.

WKAREA Array to be used as amain storage work area. Usually thisis specified asa REAL*8 array.

Chapter 10. Utilities- Sorting 637

WRKSIZ

INU

OuUTU

WORKU1

WORKU2

&n

Length (in bytes) of the work area WKAREA. The minimum length is 1536 if only one sort
control field is used, or approximately 1536 + RECLEN if more than one sort control field is
used. However, alarger area should be provided if possible.

Unit number of sort input data. This argument is not inspected by DSORT. Itissimply
passed to the SRTIN routine.

Unit number of sort output data. This argument is not inspected by DSORT. Itissimply
passed to the SRTOUT routine.

Unit number or ddname of adirect access work file, or 0. If addnameis used, it must be
followed by ablank (if less than 8 characterslong) and enclosed in single quotes. For exam-
ple, 'SRTWRK '. If only onework fileis used (WORKU2=0), then it must be a UDSfile,
not afile.

Unit number or ddname of a second direct access work file, or O.
Thisargument isoptional. Itisthe FORTRAN statement number to be transferred to if the

sort is unsuccessful. DSORT returns with acode of O in register 15 if the sort is successful,
and a code of 4 otherwise.

Format of Control Field Table

Thetable CTLTAB specifying the sort control fieldsfor Mode Il isan INTEGER* 2 array (that is, halfword
integers). Thefirst eement, CTLTAB(1), isthe number (1 to 20) of sort control fields. The remaining
elements, in groups of three, describe the sort control fields as follows:

CTLTAB(3i-1)

CTLTAB(3i)

CTLTAB(3i+1)

Displacement (in bytes) of the ith control field from the start of the logical record. This
must be 0to 4095. (A control field at the beginning of the record has a displacement of
0)

Length (in bytes) of the ith control field. This must be 1 to 256.
Thefirst byte specifies the type of the ith control field:

O=character

1=fixed-point

2=normalized floating-point

3=zoned decimal

4=packed decimal

5=date (7 character form, i.e. 0LJAN9Q)
6=case ignore

The second byte gives the sort order for theith control field:

O=ascending
1=descending

An exampleis given below.

Sort 1/0 Routines

In addition to using the GULP routines for 1/0 on the disk work files, DSORT calls three subroutines:
SRTIN to read an input logical record, SRTOUT to write an output logical record, and SRTMSG to display a

638 Sorting -

MUSIC/SP User's Reference Guide

message. DSORT uses the following calling sequences:
CALL SRTI N(RECORD, RECLEN, | NU, &n)
CALL SRTOUT(RECORD, RECLEN, OUTU)
CALL SRTMSG LI NE)

where RECORD isthe logical record to be read or written, RECLEN is the record length (as passed to
DSORT), INU istheinput unit number (as passed to DSORT), OUTU is the output unit number (as passed
to DSORT), and LINE isa 121-character line to be printed. SRTIN does an alternate return (RETURN 1) to
indicate end of input.

Default versions of SRTIN, SRTOUT, and SRTMSG are available in the subroutine library. SRTIN and
SRTOUT can handle any record length. For specia applications, any or al of these routines may be
replaced by user-written ones. Thisis done by including the replacement source or object deck as part of the
user's program.

Y ou can suppress all the sort messages by defining a dummy version of SRTMSG such as:

SUBROUTI NE SRTMSG
RETURN
END

DSORT uses 18 and 19 as the GUL PDF file numbers for work file I/O. Therefore, the user's program should
avoid using these numbers.

Efficiency Considerations
Aslarge amain storage area as possible should be provided. A suggested size is 32000 bytes or more.

The number of direct access work filesmay be0, 1, or 2. No work fileisneeded if al records can be sorted
in main storage. Otherwise, the total work space provided must be at |east twice the size of the input data set
to be sorted. That is, asingle work file twice the input size is needed, or two work files each at least the
input size. To avoid excessive disk arm movement, two UDS work files should be used only if they are
located on different volumes.

For maximum efficiency in sorting alargefile, use two UDS work files on different volumes.

If afileisused as awork file, the number of work files must be two. In other words, if asingle work fileis
used, it must be a UDSfile, not afile.

Example 1

The following program sorts the card images in data set ABCD$XY Z in ascending order according to the
charactersin columns 21 to 30 of each card. Theresulting cards are punched (unit 7). Mode| calling
sequence is used, with two sort work files on different volumes.

/ FILE 1 UDS(ABCD$XYZ) VOL(MJSI C2) SHR
/ FI LE 2 UDS(ABCDWRK1) VOL(MJSI C2) OLD
/ FI LE 3 UDS(ABCDWRK2) VOL(MJSI C3) OLD
/ LOAD VSFORT
REAL*8 WORK(7000)
CALL DSORT(80, 0, 10, 20, WORK, 56000, 1, 7, 2, 3, *9)

Chapter 10. Utilities- Sorting 639

STOP

9 STOP 99

END

Example 2

This example reads cards on unit 5, sorts them according to three control fields, and writes the result on unit
10. Mode Il calling sequence is used, with one sort work file. A dummy SRTMSG routineis used to
suppress messages. The control fields are;

1

2.

Fixed-point in columns 5 to 8 (ascending order).
Floating-point (double precision) in columns 41 to 48 (descending order).
Characters in columns 21 to 30 (ascending order).

/FILE 1 UDS(&&TEMP) NREC(2000)
/ LOAD VSFORT
REAL*8 \ORK(4000)
| NTEGER*2 CTLTAB(10)/ 3, 4, 4, Z0100, 40, 8, Z0201,
* 20,10, 0/
CALL DSORT(80, 2, CTLTAB, 0, WORK, 32000, 5, 10, 1, 0, *9)
STOP
9 STOP 99
END
SUBROUTI NE SRTMBG
RETURN
END
/ DATA

cards to be sorted

SRTMUS Subroutine

The MUSIC subroutine SRTMUS may be used from a FORTRAN program to sort fixed-length recordsinto
ascending or descending order according to one or more control fields in each record. SRTMUS performs
the sort operation by calling DSORT, the MUSIC generalized sort routine. Refer to the description of
DSORT for detailed information about sort work files, main storage areas, and input/output routines.

Syntax

CALL SRTMUS(SRTCMD, RECCIVD, RETCOD, WRKSI Z, WKAREA, | NU, QUTU, WORKU1, WORKU2)

Parameters

SRTCMD Image of SORT statement (as for OS Sort/Merge), terminated by a dollar sign character ($).

RECCMD Image of RECORD statement (as for OS Sort/Merge), terminated by $.

RETCOD Integer return code, set to O if sort is successful, to 16 otherwise.

WRKSIZ Integer length (in bytes) of the array WKAREA.

640 Sorting - MUSIC/SP User's Reference Guide

WKAREA Main storage work areato be used by DSORT. A recommended size is 32000 bytes or
more.

INU Integer unit number of sort input data. If this argument is omitted, unit 1 is assumed.

OouTuU Integer unit number of sort output data. If this argument is omitted, the output unit is
assumed to be the same as the input unit, and the original data set is replaced by the sorted
one.

WORKU1 Integer unit number of atemporary data set to be used as a sort work file. If thisargument is
omitted, unit 3 isassumed. If O is specified, awork fileis not used.

WORKU2 Integer unit number of asecond sort work file. If this argument is omitted or O, only one
work fileis used (WORKUL). Two sort work files should be used only if they are on differ-
ent volumes.

Restrictions

1. Variable-length records (TYPE=V) may not be used.

2. Sort control formats CH (character), Bl (binary), FI (fixed-point), FL (normalized floating-point), ZD
(zoned decimal), and PD (packed decimal) are supported.

3. Sort control fields must begin on a byte boundary and be a whole number of bytesin length.

4. The maximum number of control fieldsis 20.

5. Control fields may not overlap.

Example of SRTMUS

This example generates 20-byte records on unit 1 containing floating-point numbers, then sorts the records
into ascending order according to the floating-point numbers and prints the lowest and highest values. File 3
isasort work file.

/FILE 1 UDS(&&TEMP) NREC(2000) LRECL(20)
/ FI LE 3 UDS(&&ATEMP) NREC(1000)
/ LOAD VSFORT

REAL*8 \ORK(4000)

CALL RSTART(123, 4567)

DO 1 Me1, 2000

X=UNI (0)
1 WRI TE(1, 71) M X
71 FORMAT(| 10, A4)
ENDFI LE 1
REW ND 1

CALL SRTMUS(' SORT FIELDS=(11,4,FL,A)$',
* ' RECORD TYPE=F, LENGTH=20$' , K, 32000, WORK)
| F(K. NE. 0) STOP 99
REW ND 1
DO 2 N=1, 2000
READ(1, 71) M X
| F(N. EQ 1) WRI TE(6, 61) X, M
2 | F(N. EQ 2000) WRI TE(6, 62) X, M

Chapter 10. Utilities- Sorting 641

61 FORMAT(' OM Nl MUM =", F12.6,' AT M=",17)
62 FORMAT(' OMAXI MUM =' , F12.6,' AT M=",17/
STOP
END

Using COBOL's SORT Feature

The Sort Feature of ANS COBOL is supported by MUSIC. Using the SORT Statement, the COBOL
programmer can sort data records according to specified fields. Refer to the ANS COBOL Language Manual
(GC28-6396) for a complete description of the Sort Feature, and a sample program illustrating itsuse. The
following additional remarks apply to COBOL sorts under MUSIC:
1. Thesortisperformed by DSORT, the MUSIC generalized sort routine described above.
2. A work file must be defined with a ddname of SORTWKOL1 by using a/FILE statement. Thisisused as
asort work file by DSORT. If asecond sort work fileisto be used, define it with ddname SORTWKO02.
The work files can be UDS or normal MUSIC files, except that a UDS must be used if thereis only one
sort work file.
Example using one work file:
/ FI LE SORTWKO01 UDS(&&TEMP) NEW DELETE NREC(8000)
Exanpl e using two work files:

/ FI LE SORTWKO1 NAVE(&&TEMP) SPACE(500)
/ FI LE SORTWKO2 NAVE(&&TEMP) SPACE(500)

3. Thesize of the main storage work area can be specified within the COBOL source program by using the
SORT-CORE-SIZE specia register. For example, to request an area of 50000 bytes, use "MOVE
50000 TO SORT-CORE-SIZE". Negative numbers and the specia value +999999 are not supported.

4. Variable-length records may not be sorted.

642 Sorting - MUSIC/SP User's Reference Guide

TAPUTIL

TAPUTIL isatape utility program which can be used to dump or summarize selected files from tape, and
copy files from one tape to another. All record formats and block sizes can be processed, and blocks may be
of different lengths. Blocks can be dumped in both character and hexadecimal form.

Usage

TAPUTIL isrun asaMUSIC batch job, with the tape or tapes specified on /FILE statements. The input tape
(the tape to be read) is normally defined as unit 1. The output tape, if required, is normally defined as unit 2.
An output tape is used only if the COPY parameter is specified. The control statement setup is as follows:

/ FILE 1 TAPE VOL(vol umel) RECFM U)

/FILE 2 TAPE VOL(volune2) RECFMU) (if a second tape is used)
/1 NCLUDE TAPUTI L

par anet er statenent (see bel ow)

The /FILE statements for the tape(s) must specify RECFM (U), since this program processes raw blocks of

data of any length. The program is controlled by various keyword parameters (in Fortran NAMELIST form)
on the parameter statement. These parameters, described below, are separated from each other by commas.

Parameters

The following may be specified on the parameter statement, separated from each other by commas. The
default column lists the parameter values which are automatically assumed if the parameter is not specified.

STATS Print statistics about each file (number of blocks, lengths of blocks, etc.) The default is no
STATS.

SL Print any standard labels found. The defaultisno SL.

COPY Copy filesfrom the input tape to the output tape. The default is no COPY.

IN=n Unit number of input tape. The defaultis1

OUT=n/f Unit2 nlumber (n) of output tape and starting file number (f) in the output tape. The defaults
ae2,1.

PRINT=n Print the first n blocks from each file, in character form. PRINT='ALL' may be specified.
The default is 0.

DUMP=n Dump the first n blocks from each file, in character and hexadecimal. DUMP="ALL" may be
specified. The default isO.

FILES=n Process thefirst n files from the input tape. 1f not specified, two tape marks will be regarded
asthe end.

SELECT=n,m,...
Process only filesn, m, ... from the input tape. Up to 100 file numbers may be specified.

Chapter 10. Utilities- TAPUTIL 643

They must be in ascending order.
Notes

1. Record format U must be specified on the tape /FILE statements.

2. Afileof atapeisconsidered to be the data between two consecutive tape marks (or between the begin-
ning of the tape and the first tape mark). Thefiles of atape are numbered 1, 2, 3, etc. MUSIC hasno
skip to file support, so files are skipped by reading through them.

3. Theprogram assumes that two tape marks (with no data blocks between them) indicate the end of the
input tape. If the tape does not end with two tape marks, the program will continue reading to the end of
thereel. Thisisnot very popular with operations. It is recommended that the FILES=n parameter be
used to limit the number of files processed. This parameter can also be used to skip over double tape
marks in the middle of avolume. However, the FILES and SELECT parameters must not be used
together.

4. Usersarereminded that MUSIC tape jobs must be submitted by using the SUBMIT command described
earlier in thisguide in Chapter 3. Using Batch.

5. TheSTATS, SL, and copy parameters must not immediately follow the OUT or SELECT parameters.
Examples

1. Dump thefirst 5 blocks from every file of atape.

/ FILE 1 TAPE VOL(MYTAPE) RECFM U)
/1 NC TAPUTI L
DUMP=5

2. Print the first 10 blocks of each of files1, 5, and 7.
/ FILE 1 TAPE VOL(MYTAPE) RECFM U)
/1 NC TAPUTI L
PRI NT=10, SELECT=1, 5,7

3. Copy TAPEX to TAPEY.
/ FILE 1 TAPE VOL(TAPEX) RECFM U)
/ FILE 2 TAPE VOL(TAPEY) RECFM U)
/1 NC TAPUTI L
CoPY

4. Dump the entire contents of atape, print statistics, and any standard labels.
/ FILE 1 TAPE VOL(XXXXXX) RECFM U)

/1 NC TAPUTI L
STATS, SL, DUWP=" ALL'

644 TAPUTIL - MUSIC/SP User's Reference Guide

5. Copy files3 and 4 from TAPEIN to file 6 and 7 on TAPEOT.

/ FILE 1 TAPE VOL(TAPEIN) RECFM U)
/ EI LE 2 TAPE VOL(TAPEOT) RECFM U)
/1 NC TAPUTI L

COPY, QUT=2, 6, SELECT=3, 4

Chapter 10. Utilities- TAPUTIL 645

UDSARC/UDSRST/DSCHK

Archiving and Retrieving User Data Set (UDS) Files

The user can cause a set of User Data Set (UDS) files owned by the user to be copied to a magnetic tape by
using the UDSARC program. The referenced data sets on disk are not altered by this copy operation.
Options are available to archive specific data sets, agroup, or al of them to tape. (To archivefiles, refer to
the writeup on the ARCHIV utility.)

The UDSRST program can be used to retrieve data sets from tapes created by UDSARC.

The DSCHK utility is available to list the names of the files contained on a tape created by the UDSARC
program and at the same time, double-check the validity of the information stored on the tape.

The user should note that these three utilities must be submitted to batch since they use magnetic tape.
UDSARC Program

The following illustrates the control statement set up for the UDSARC program:

[FILE 1 TAPE BLK(nnnn) RSIZ(80) VOL(vvvvvv)
/ 1 NCLUDE UDSARC
UNI TS=1
dunp specification statements (see bel ow)

Dunp Specification Statenent:

VOL="vol 1'[,'vol 2'][,'vol 3"][, DSN=" data set nane']
[, CODES=' useri d']

Exanpl es: VOL=" MUSI C1' , DSN=" ABCD1234'
VOL=" MUSI C1' , ' MJSI C2' , CODES="' ABCD
VOL=" MUSI C2' , DSN=' ABCDX. .

One or more dump specification statements may be used. Each statement must contain aVOL parameter
and one of either aDSN or CODES parameter. AbbreviationsV, D and C may be used. Commas are used
to separate the parameters on each dump specification statement.

VOL specifiesalist of volume names to be searched for the data sets. One or more volume names
may be given.

DSN specifies the name of the data set to be archived. The form DSN="ABCDX.." may be used to
indicate that all data sets on the named volumes starting with the letters ABCDX areto be
archived.

646 UDSARC - MUSIC/SP User's Reference Guide

CODES parameter causes all the user's data sets on the given volumes to be archived. Specify the
ownership id (userid without subcode).

Retrieving UDSFiless UDSRST

UDS files can be retrieved from the tape prepared by the UDSARC program. Each data set is retrieved from
tape by running a separate batch job. If the receiving data set does not exist, it must be allocated using the
original logical record size (RSIZ) and number of records (NREC). The parameters VOL and DSN give the
volume and data set name at the time the data set was archived. These parameters are used to locate the
specific copy on tape.

The following illustrates the control statement set up:

/[FILE 1 TAPE BLK(nnnn) RSIZ(80) VOL(vvvvvv) SHR

/FILE 2 UDS(receiving data set nane) VOL(volune) OLD

/ | NCLUDE UDSRST

I N=1, QUT=2, VOL="ori gi nal vol une', DSN='"ori gi nal data set nane'

DSCHK Program

This program checks the contents of atape created by UDSARC and can list the data set names stored on it if
the INFO=TRUE parameter is used. The following illustrates the control statement set up for running the
DSCHK program:

/[FILE 1 TAPE BLK(nnnn) RSIZ(80) VOL(vvvvvv) SHR
/ I NCLUDE DSCHK
UNI TS=1, | NFO=TRUE

Contents of Information Records

In adump produced by UDSARC, each data set is preceded by a* DS1 record and a*DS2 record. The*DS1
record has the volume name, the data set name, and the date and time of the dump. The *DS2 record
contains the following information:

Column 8 B for backup, N for no backup.
9-12 Device type.
13-15 Data set organization.
16-19 Record format.
20-25 Block size.
26-31 Logical record length.
32-37 No. of tracks (no. of physical blocksif FBA device).
38-40 No. of extents.
41-44 No. of blocks per track (32 if FBA device).
45-48 Key length.
49-53 FBA physical block length (O if not FBA device).

Chapter 10. Utilities- UDSARC/UDSRST/DSCHK 647

UTIL

UTIL provides facilities for listing, punching, copying, and merging data on cards, card images, tape or disk.
It can insert sequence numbers, translate from BCD to EBCDIC and vice versa, and perform other editing
functions. Multiple copies can be punched or printed. The program can read and write logical records up to
133 bytes in length, and can supply information on the size and characteristics of MUSIC disk data sets.

Usage

Typicaly UTIL isrun using a control statement set up similar to that shown below:

/| FILE statenents (if required)
/1 NCLUDE UTI L
...control statenents and data...

If more than one copy of punched or printed output is requested (viathe control statements $SPUNCH=n,
$L1ST=n or $COPIES=n described below), then unit 4 is reserved as awork file and thus the user cannot
give a/FILE statement for this unit number. If copiesinvolve more than about 4000 records each, then the
user should provide atemporary file on unit 4 that will be large enough to hold one copy. If multiple copies
are not requested, then the user may supply as many as 4 /FILE statements referring to UDSfiles.

For datarecordsin the input stream (unit 5) or accessed by /INCLUDE, the record length is 80. For data

records accessed by $INPUT=m, the record length is that of the file specified on the /FILE statement for unit
m, to a maximum of 133.

Control Statements

Control statements normally have $in column 1 and may not contain embedded blanks. In the following
description, nisan unsigned decimal number, 1 to 8 digitsin length. A quote within a data string must be
represented by two single quotes. With no control statements, the input deck is simply listed.

A user datarecord may have the control character $in column 1 provided a UTIL control statement name
does not occur starting in column 2. (See also $SNOCTL, $INPUT and $CHAR below.)

$BACKSPACE=n
Performs a backspace operation on MUSIC 1/O unit number n.

$BATCH Causes line numbers, indentation, and page headings to be produced by default. The page
heading includes the date and page number, unless suppressed by $SNOPAGE.

$BCD=n Convert from EBCDIC to BCD and punch n copies. Defaultisn=1. (Number of copiesis
ignored if already specified.) If both conversions are requested, BCD to EBCDIC is done
first.

$CHAR=x Use x (may be any character) as the control character instead of $.

$CONV Convert from BCD to EBCDIC as cards are read.

$DOUBLE Double space listing.

648 UTIL - MUSIC/SP User's Reference Guide

$EBCDIC=n
$END
$ENDFILE=n
$GANG

n

card

$INDENT=n

$INFO

$INFO=ALL

$INPUT=m

$LIST=n
$COPIES=n

Equivaent to $CONV followed by $PUNCH=n.
Treated as end-of-file.

Write an end-of-file mark on MUSIC input/output unit number n.

The above sequence punches n copies of card.

In the listing, indent n spaces before the record. n must be 0to 40. Default isn=0 (n=20 if
$BATCH is used).

Causes adescription of UDSfilesto be printed at the end of the program. Temporary (that
is, unnamed) disk data sets are not included.

Same as $INFO, except that temporary UDS files are included.

Causes reading to immediately transfer to unit m. At end-of-file on this unit, reading
switches back to unit 5. Input logical records shorter than 133 bytes are filled out with
blankson theright. mmay be 1, 2, 3, 4,5, 9, 11, 12, 13, 14, or 15. More than one $INPUT
card may be used, and the same unit number may be repeated; thus, two or more data sets
may be merged. For units 5 and 9, control statements are accepted (e.g. $INPUT=5 may be
used to switch from 9 to 5, or $END may be used to stop the program from unit 9), but for
other units any control statements are treated as data.

Input is from unit 5 (the input stream) until the first $INPUT=m statement is encountered.
The record length for the input stream, or for any /INCLUDE'd file, is 80.

Note: If a$OUTPUT or other control statement is to apply to the dataread by a SINPUT
statement, it must precede the SINPUT statement.

Either of these control statementsis used to resume or begin listing, and produce n copies of
printed output. n (and the equal sign) may be omitted, in which case n=1 is assumed.

$LIT=("stringl',starting col,'string2',starting col)

Specifies up to 2 character strings to be inserted in each card. For example,
$LIT="ABCD',73) puts ABCD in columns 73-76 of each card.

$NAME=a...an...n

Specifies identification a...a and sequence humbers (initial value and increment both n...n)
for columns 73-80. a...a and n...n must together have alength of 8, and the length of n...n
must not be zero. a...a may not contain blanks or end with a digit.

$NOBCD Suppress conversion from EBCDIC to BCD. (Punching continues unless suppressed by
SNOPUNCH -- the same appliesto SNOEBCDIC.)
$NOCTL Causes any subsequent control statements to be treated as data.
$NOCONV Either control statement suppresses conversion from BCD to EBCDIC. (Thisisthe default.)
$NOEBCDIC
SNOLIST Suppress listing.
SNOLIT Suppress insertion of character strings.

Chapter 10. Utilities- UTIL 649

$NOPAGE

$NOPUNCH
$NOSEQ

SNUMBER

Suppress date and page numbers from the page heading line. (Meaningful only if $BATCH
isused.)

Suppress punching. (Thisisthe default.)
Suppress sequence humbers.

Either of these control statementsis used to cause a skip to a new page and number the

$NEdMlowing printed lines, starting at 1.

$OUTPUT=m Specifiesthat output isto be written on unit m, and implies 1 copy. mmay be 1, 2, 3, 4, 6, 7,

$PUNCH=n

$REWIND=n

10, 11, 12, 13, 14, or 15. Output logical records are truncated or blank-padded on the right
to conform to the receiving data set.

The combination of $NOLIST and $OUTPUT=6 can be used to print a file which has
carriage control information as the first character of each record.

Use the $PUNCH=n option to get multiple copies of the output. If used thisway, the
$PUNCH card must precede the SOUTPUT card.

Note: If a$OUTPUT card isto apply to one or more $INPUT cards, it must precede the
$INPUT cards.

Write the output on unit 7, producing n copies (for example, punch n copies of an input
deck). n may be omitted, in which case n=1 isassumed. Only the first SPUNCH card is
used to set the number of copies.

Issues arewind for MUSIC I/O unit number n.

$SEQ=(starting-col,length,initial-val ue,increment)

$SEP=n

$SINGLE

$SKIP
$EJECT

$SPACE=n

$STATS

$SUPPRESS

$NONUM

$TERM

$TITLE="string'

Specifies sequence numbers to beinserted. Length must be 1 to 8. $SEQ is equivalent to
$SEQ=(77,4,1,1).

Punch n separator cards between each copy (n may be 0). Separator cards have 7-8-9
punchesin columns 1-80. Default assumption is 5 separator cards. Separator cards are
suppressed if the output unitisnot 7.

Single space listing. (Default is$SINGLE.)

Either of these control statements will cause a skip to a new page.

Insert n blank linesinthelisting. Defaultisn=1. If fewer than n lines remain on the page,
effect is same as $EJECT.

Prints input and output record counts. The input count does not include control cards and the
output count does not include extra copies of punched output or separator cards.

Either control statement suppresses line numbers.
Reverts to standard defaults, i.e. no line numbers, no indentation, and no page headings.

$TERM is assumed at the start of the program.

Skip to anew page and print specified title at top of each page. (Meaningful only if

650 UTIL - MUSIC/SP User's Reference Guide

$BATCH is used.)

$* Comment (ignored).

Examples

Copy a sequential file from one UDS to another (unit 1 to unit 2). Thelogical record length is assumed to be

133 or less.

/ FILE 1 UDS(ABCDXXX1) VOL(WMWV) SHR
/ FI LE 2 UDS(ABCDXXX2) VOL(WMW) OLD
/ 1 NCLUDE UTI L

$NOLI ST

$STATS

$OUTPUT=2

$1 NPUT=1

Print afile called ABC with line and page numbers

/I NCLUDE UTI L
$BATCH
/I NCLUDE ABC

Card to tape with sequence humbered listing

/ FILE 1 TAPE BLK(800) RSIZ(80) VOL(MYTAPE) OLD
/ 1 NCLUDE UTI L

$OUTPUT=1

$NUVBER

$NOCTL

(DATA CARDS)

Card to disk data set, suppressing listing

/FILE 1 UDS(UUUUSI I 1) VOL(MJSI C2) OLD
/ 1 NCLUDE UTI L

$OUTPUT=1

$NOLI ST

$NOCTL

(DATA CARDS)

Print and punch from magnetic tape

/ FILE 1 TAPE BLK(800) RSIZ(80) VOL(MYTAPE) SHR
/ 1 NCLUDE UTI L

$OUTPUT=7

$1 NPUT=1

Listing adisk UDS file with line and page numbers

/EILE 1 UDS(UUUUSI I 1) VOL(MJSI C2) SHR
/ 1 NCLUDE UTI L

$BATCH

$1 NPUT=1

Chapter 10. Utilities- UTIL

651

Print 10 copies of afile whose records are 100 byteslong

/ FI LE 1 NAVE(FI LENAVE)
/1 NCLUDE UTI L

$COPI ES=10

$1 NPUT=1

Reproduce a card deck:
Add identification in columns 73-76 and sequence numbersin columns 77-80. No listing to be produced.

/ 1 NCLUDE UTI L
$NOLI ST
$NAVE=CARDO001
$OUTPUT=7

(DATA CARDS)

Punch 500 copies of a card
/ I NCLUDE UTI L
$GANG
500
(CARD)
Obtain information about a disk data set:
/FILE 1 UDS(UUUUSI I'1) VOL(MJSI C2)

/I NCLUDE UTI L
$I NFO

652 UTIL - MUSIC/SP User's Reference Guide

VIEW

VIEW alows the viewing of files of any record length or type and any size on a full-screen workstation.
Files can be displayed in hexadecimal. ASCIlI modeis available to view ASCII files on a 3270-type work-
station. In this mode printable ASCII characters are translated to their EBCDIC equivalents. Locate and

Find functions are supported.

AScii [on|offflip]

Bottom

CANcel

CAse [Ignore]Respect]
CEnter n

COlumns [on|off[flip]
DEFine PFn string

Down n

ECHO [NAME|WORDItext]
ECHOX [NAME|WORD|text]
END

Find string

HELP

HEX [on|off|flip]

HHEX [on|off[flip]

Function Keys

Summary of Commands

HUNT string
Locate string
LEftn

Linen

MATrk [mn|?]
MARKER x
Next n

LLinen

NUMber [on|offflip]
QQuit
RAngemn
RETrieve

Right n

RUIer [on|off|flip]
SCROIl n

Search string
SHow [on|off]
STatus

STORE fn [Append|Replace]
TAG [on|offflip]
TEXTLc
TEXTUc

TIme

Top

UIO [on|off[flip]
UNMark

Up

Users

VHEX [on|offlflip]
Zonemn

F1: Help Get help on how to use VIEW.

F3: End Terminate the current VIEW.

F5: CEnter Place the data line pointed to by the cursor at the center of the data display area.
F7. Up Move by the scroll value toward the top of the file.

F8: Down Move by the scroll value toward the bottom of the file.

F9: Locate Repeat the previous locate command.

F10: LEft Move by the scroll value toward the first column of thefile.

F11: Right Move by the scroll value toward the last column of thefile.

F12: RETrieve Retrieve the previous command entered.

Commands

AScii [on|off[flip]

Turns on or off ASCII trandation. If the file being viewed isan ASCI|I file, "ascii

on" will alow the display of the standard printable characters.

Chapter 10. Utilities- VIEW 653

Bottom
CANCce

CAse [Ignore]Respect]

CEnter n

COlumns [on|off|flip]

DEFine PFn string

Displays the last full page (screen) of thefile.

Terminates the current view.

Defines the case for searching strings. When RESPECT, the result of the search
depends upon the setting of TEXTLC or TEXTUC. If TEXTUC isin effect, then
your input text is trandlated to upper case prior to the search. If TEXTLC isin
effect, then your input string is not translated to upper case. In both circumstances,
thetext in thefileis compared "as-is'. When IGNORE, the searching ignores
case, both in your input string and in the file. Any combination of upper and lower
case matches the searched text.

Places the line defined by n at the center of the display area. If nisnot specified,
the line pointed to by the cursor is centered.

This command places aruled line in the message area that corresponds to the
columns being displayed.

Defines the function key specified by nto be string. If no string is specified, the
current definition is place in the command area, ready for modification. If the
string specified is an asterisk (*), the key revertsto the default definition.

Downn This command moves down the viewing window by n lines, or when nis not spec-
ified, it moves down the viewing window by the scroll value.
ECHO [NAmMe|WORD text]

Echoes to the command area the text pointed to by the cursor. When the key word
"NAME" isused it echoes the viewed file name. When the keyword "WORD" is
used the text being echoed istruncated after the first word of the text. When text
follows the echo command that text is echoed to the command area.

ECHOX [NAmeWORD text]

END

Find string

HELP

HEX [on|off|flip]
HHEX [on|off[flip]
Hunt string
Locate string

'string’
X'string'

Identical to ECHO except that this command places the hexadecimal version of the
text in the command area

Terminates the current view.

Finds the next occurrence of the specified string. The search proceeds from the
line pointed to by the cursor plus 1. The string to be found must be found at the
start of the defined locate zone. See Locate, Zone and RANge.

Provides help on how to use the view facility.

Turns on vertical hex display of the data on the screen.

Turns on horizontal hex display of the data on the screen.

Same as FIND except that the FIND begins at the top of thefile.

L ocates the next occurrence of the specified string. The search goes from right to
left, and downward, from the line and record column pointed to by the cursor. The
cursor is placed at the found text. The view of the file on the screen changesin
accordance with the result of the search. If the found text is not on the currently

displayed lines and columns, the viewing window adjusts as required. If the search
fails, amessage is posted informing you that the search has gone to end-of-file,

654 VIEW - MUSIC/SP User's Reference Guide

LEftn

Linen

LLinen

MArk [mn|?]

MARKER x

Next n

and the current line and cursor position remains unchanged. The search can be
limited horizontally (column-wise) by setting the zone. Setting the range limits
searches within the lines defined by the range.

Y ou can specify strings to be located by delimiting them with single (") or double
(") quotes. Though quotes are normally not required, they are necessary when
leading or trailing blanks are part of a string or when the string to be located is
expressed as a hexadecimal string (LOCATE X'string’).

Examples:

| abc locate the string -- abc

| ' abc locate the string -- abc preceded and followed by a blank.
| "don't" locate the string -- don't

| x"clc2c3" locate the hexstring -- clc2c3 (c'abc’)

Illegal strings

don' t strings with imbedded quotes should be quoted by the alter-
nate quote. In this case "don't".

" abc missing ending quote.

" abc" the first quote must be matched by the same same type
quote at the end of the string.

x'f1fm the string type (x) requires that all hexadecima digits be
in the range af and 0-9.

x' clc' the string type (Xx) requires that all hexadecima digits be
paired. In this example the string has a trailing "c" which
is not paired.

This command moves the viewing window left by n lines, or when n is not speci-
fied, it moves the viewing window left by the scroll value.

Displays the page (screen) with n asthefirst line. "n" can bea"." (period) indicat-
ing the first line of amarked group.

Defines the row of the displayed data areato place the "located text" after alocate,
where the "locate text" was not on the currently displayed screen. By default such
searches will place the located text at the center of the screen. n can be any posi-
tive integer or any of the following keywords PAGE, HALF, CENTER, CURSOR
or MAX.

Marks the line pointed to by the cursor. A group of lines can be marked. When
integer values are used as parameters those lines are marked. "?' used as a param-
eter, displaysin the message area what lines are marked and how many.

used to define the mark character to be used to flag marked lines.

This command moves the viewing window down by n lines, or when n is not

specified, it moves down by the scroll value.

Chapter 10. Utilities- VIEW 655

NUMber [on|offflip]

QQuit
RAngemn

RETrieve

Right

RUIer [on|off|flip]

SCROII n

Search string

SHow [filename]

Turns line numbering on or off.
Terminates the current view.

Sets the range, start and end lines, for find, locate, top, bottom, up and down
commands. misthe starting line and n isthe ending line. If only one number is
specified it istaken asn and misdefaulted to 1. In other words, when only 1
number is specified, the range is taken to be the first "number” linesin thefile.

RA MAX isused to reset it to the entire file length (all lines). Top of file and
bottom of file messages are changed to top of range and bottom of range, when the
rangeis a subset of thefile size.

Examples:

RA 10 30 only lines 10 through 30 can be displayed and searched
through.

RA max sets the range to the file size

Echoes to the command buffer the previous command entered.

This command moves the viewing window right by n lines, or when n is not speci-
fied, it movesright by the scroll value.

This command places aruled line in the message area which corresponds to the
columns being displayed.

Thisis an alternate method of setting the scroll value. Normally the scroll valueis
set by typing in the scroll areadirectly. Valid valuesfor scroll isany valid positive
integer, and the key words max, page, half, and cursor.

Same as LOCATE except that the search begins at the top of thefile.
Display the first two lines of filename at the bottom of the screen. Thisis usually

used to display function key definitions. "SHOW OFF" will display the default
function key definitions.

STatus Displays the current time, date, service units used, number of users current signed
on, and the session id number.

STOre fn [Append|Replace]
Stores the marked linesin the specified file. If append is specified, the marked
lines will be appended to thefile. If replaceis specified the file will be purged and
anew file with the marked lines will be created. If neither option is specified,
replaceis assumed. In thiscase you will be prompted if the file already exists.

TAG Displays the tag text of the viewed file.

TEXTLC When specified, the command areais not translated to uppercase. Therefore
searching is performed on an upper and lower case basis.

TEXTUc When specified, the command areais trandated to uppercase. Therefore searching
is performed on uppercase basis only.

Time Same as STATUS.

656 VIEW - MUSIC/SP User's Reference Guide

Top Displaysthefirst full page (screen) of thefile.

UIO [on|off[flip] Turns unformatted 1/0 on or off. Unformatted I/O refersto reading in the data
from the file as 512 byte chunks. These chunks are exact representations of the file
asitisrecorded on disk. Some files may have been created or written using unfor-
matted /0. Thisis detected by VIEW and UIO is automatically turned on. UIO
off isinvalid for such files since they can not be read sequentially.

UNMark Unmarks the marked lines.

Up This command moves the viewing window up by n lines, or when n is not speci-
fied, it moves up by the scroll value.

USers Same as STATUS.
VHEX [on|offlflip] Turns on vertical hex display of the data on the screen.
Zonemn Sets the zone, start and end columns, for find and locate commands. miis the start-

ing column and n isthe ending column. If only one number is specified it is taken
asnand misdefaultedto 1. Z MAX isused to reset it to the entire record length

(@l columns).

Examples:

z 10 30 the located string must occur within columns 10-30.
z 50 the located string must occur within columns 1-50.

TheScroll Area

Thisfield on the extreme right of the command area, is used to define the scroll value for right/left and
up/down movement. Valid entriesin thisfield are any positive integer or any of the following keywords:
PAGE, HALF, CENTER, CURSOR, and MAX. Y ou can change the scroll value by overtyping a new
valuein thefield or you can use the "SCROLL n" command. Commands that use the scroll value are:

UP (F7) scroll towards the top of thefile

DOWN (F8) scroll towards the bottom of thefile
LEFT (F10) scroll towards the first column of the file
RIGHT (F11) scroll towards the last column of the file

The use of MAX in the scroll field scrolls to the top, bottom, left margin, or right margin, depending on
which of the function keys above you press next. The previous scroll value reappears and takes effect after
the interaction, that isMAX is aways temporary.

The use of CURSOR scrolls to the data line pointed to by the cursor or if the cursor is off the dataarea by a
PAGE value. For example, if the cursor is pointing to line 50 of afile, the DOWN key places line 50 at the
top of the data area on the screen.

Return Codes

0 normal termination.

-1 not a 3270 workstation.

Chapter 10. Utilities- VIEW 657

<-1 not enough work area available, absolute of the return integer isthe required areain bytes.
1-100 file error occurred.

>100 FSIO error occurred.

658 VIEW - MUSIC/SP User's Reference Guide

VMPRINT

The VMPRINT program is used to print the contents of MUSIC files on a batch printer without the neces-
sity of submitting a batch job. The datawritesto a VM virtua printer for subsequent printing by VM. The
program has the ability to direct files to remote printers or to other VM systems via RSCS (the Remote
Spooling Communication Subsystem of VM).

Usage

VMPRINT filel[,file2,...filen][,CLASS="x"][,TO="yyy'][,CC=" zzz']

where:

filel is the name of the MUSIC file to be printed. One or more files can be specified per
command.

CLASS=X' specifies the VM output class for this printer file (1 character long). The default isclass A.

TO="yyy' specifies the RSCS nade ID name, referred to as the destination (up to 8 characters). This
is the tag information, which can be the remote printer assigned name or the name of
another VM system. When TO= is present, the print file is spooled to RSCS; when TO=is
absent, the print file is spooled to SY STEM (the default).

CC='zzz zzz can be either YES or NO indicating whether the file to be printed contains control char-
actersin the first column which will control the printing of the file. Acceptable carriage
control characters are blank, O, +, -, and 1. If CC=isnot present, then the following
defaults are assumed:

- fileswith afixed or fixed compressed record format, whose record lengths are not 121
and not greater than 132, do not contain carriage control characters.
- dl other files do contain carriage control characters.

The operands are entered on the same line as the command and can be separated by any number of blanks
or commands. Any options specified must be enclosed in single quotes.

Examples:

VMPRI NT MYFI LE
VMPRI NT FI LE1, FILE2, CLASS='A', CC='YES

Chapter 10. Utilities- VMPRINT 659

ZERO.FILE

Programto WriteZeroestoaFile

The ZERO.FILE utility program provides an efficient way of writing binary zeroesto every block of afile
or user dataset. Usageisasfollows:

/FILE 1 UDS(dsnane) VOL(volunme) OLD
/1 NCLUDE ZERO. FI LE
START=n, END=m <--- optional

or
/FILE 1 NAME(filenane) OLD

/1 NCLUDE ZERO. FI LE
START=n, END=m <--- optional

In the case of afile, the currently allocated spaceis set to zero. Each 512-byte block is zeroed, therefore

this program should not be used for afile which has arecord format FC, V, or VC and islater to be read
sequentially (error 46, "file cannot be read sequentially" would result).

660 ZERO.FILE - MUSIC/SP User's Reference Guide

Appendixes

Appendixes 661

Appendix A. 11 PS/ITAS

I nter active | nstructional Systems

The MUSIC Interactive Instructional Presentation and Authoring System (IIPS/I1AS) is an implementation
of the IBM Interactive Instructional Presentation System (11PS) (Program Product 5668-012) and Interac-
tive Instructional Authoring System (I1AS) (Program Product 5668-011). It provides areal-time training
and instructional capability for course creation and presentation. The [IPS and I1AS combine the best
features of IBM's previous training and instructional programs. the Interactive Instructional System (115)
and Coursewriter I11.

Facilities provided by the IIPS and I1AS include:

1. Administrator commands
2. Report programs

3. Coursecreation

4. Course execution

Administrator commands provide a means to monitor and control administrative, maintenance, and opera-
tional functions of the instructional system. Information relating to the execution and maintenance of
course material can be recorded.

A number of programs are provided to process these recordings, producing a variety of statistical summar-
ies.

Instructional materials (courses) prepared by the author are entered into the system from a workstation.
The courses may be written in the Coursewriter Language or using the IIAS Course Structuring facility.
Once the courses have entered, they are available to the students registered to them.

Course execution is carried out in a conversational manner between a student at aworkstation and the
instructional system control program. The instructional system presents material to the student, evaluates
responses, and, based upon the responses, determines the student's path through the material created by the
author.

662 MUSIC/SP User's Reference Guide

Appendix B. LEARN Program

If your installation hasinstalled the MUSIC Interactive Instructional Presentation System (11PS), severa
computer-assisted instruction (CAl) courses are available to familiarize the user with the basic concepts of
the MUSIC system for TTY -typeterminals. The names of the courses are:

MUSIC (Introduction to MUSIC)

UPDATE (Introduction to MUSIC Line Editor)
EDITOR (Introduction to MUSIC Context Editor)
SCRIPT (Introduction to MUSIC/SCRIPT)

AWM PE

Course Sign On

To sign on to a particular course, enter the word LEARN anytime you arein * Go mode. The system will

prompt you with a message
ENTER STD#/ CNAME OR LI ST OR HELP

Three responses are valid at thistime:

1. Enter "student/cname", where cname is one of the course names listed above. For example, enter
"student/script" if you want to take the MUSIC/SCRIPT course. (LEARN recognizes student as an
authorized student number.)

2. TypeLIST toget alist of all the MUSIC CAI courses available.

3. TypeHELPto get adescription of the usage of special keys on your workstation.

Whenever you sign on any one of the courses, the system will create afile called @LEARN for you. This

fileis used to record information about your progression in the course. The next time when you sign on the

same course, it will start from where it left off. Should you want to start at the beginning of the same
course the next time when you sign on it, you can purge the file by using the command PURGE @L EARN
before you enter LEARN.

If you are taking a course different from the one you took previously, the contentsin the file @LEARN will

be replaced by the information about your progression in the current course. Therefore, if you sign on the
previous course the next time, the course will start at the beginning.

Course Sign Off

Should you want to get out of the course while you are in the middle of it, type SIGN OFF anytime while
the system iswaiting for your answer to a question. The workstation will then return to * Go mode.

If you have come to the end of the course, the system will issue amessage END OF COURSE PLEASE
SI GN OFF. At thistime, enter SIGN OFF to exit from the course and return to * Go mode.

Appendix B. LEARN Program 663

664 MUSIC/SP User's Reference Guide

| ndex

Index 665

| ndex

&

&&TEMP, 169, 172

*

* - Editor Command, 284

/

/COM Job Control Statement, 165

/DATA Job Control Statement, 165

/END Job Control Statement, 166

/ETC Job Control Statement, 166

/FILE (Files) Job Control Statement, 168

/FILE (Genera Overview) Job Control Statement,
167

/FILE (Miscellaneous) Job Control Statement, 180

/FILE (Permanent UDS) Job Control Statement,
173

/FILE (Printers) Job Control Statement, 182

/FILE (Tape UDS) Job Control Statement, 176

/FILE (Temporary UDS) Job Control Statement,
172

/1D Job Control Statement, 183

/INCLUDE Job Control Statement, 183

/INFO Job Control Statement, 185

/JOB Job Control Statement, 185

/LOAD Job Control Statement, 185

/OPT Job Control Statement, 188

/PARM Job Control Statement, 188

/PASSWORD Job Control Statement, 188

/PAUSE Job Control Statement, 188

/SY S Job Control Statement, 189

?

? Command, 155

666 MUSIC/SP User's Reference Guide

= - Editor Command, 284

/

/CANCEL - MUSIC Command, 99

/COMPRESS - MUSIC Command, 105

/DEFINE - MUSIC Command, 108
/DISCON - MUSIC Command, 112
/ID - MUSIC Command, 123

INEXT - MUSIC Command, 135
/PREVIOUS - MUSIC Command, 138
/RECORD - MUSIC Command, 143
/REQUEST - MUSIC Command, 145
/SKIP - MUSIC Command, 148
ISTATUS - MUSIC Command, 151
/TIME - MUSIC Command, 155
/USERS - MUSIC Command, 157
/WINDOW - MUSIC Command, 161

A

A Programming Language, 318, 324
ABBREYV - System Subroutine, 466
Abbreviations

Editor, 214

of Commands, 96
Abend Codes, VSAM, 82
ACB, VSAM, 75
ACCESS - MUSIC Command, 97
Access Control - Files, 63
Access Method Services, 75, 552
Accessing Menu Facilities, 89
Accessing MUSIC, 18
Accumulated Charge Listing, 631
Action Keys (FSED), 199
Active Users

Number of, 151, 157

Number of (Editor), 277, 281
ADD - Editor Command, 219
ADD - MUSIC Command, 97
Adding Blank Spaces, 205
Adding Datato End of Tape File, 179
ADTOXY - System Subroutine, 466
ADVANCEDEX (MUSIC/APL), 321
AIN - Editor Command, 219, 293
Allocation Buffer for UDS, 72

Allocation UDS Volume Names, 175
ALPHA - Editor Command, 219, 293
ALT Key
3178 Termindl, 21
3278 Termindl, 21
3279 Termindl, 21
ALTER AMS Command, 555
ALWAY SPROG Defining, 629
AMS, 75, 552
ALTER Command, 555
BLDINDEX Command, 558
Command Language Syntax, 553
Commands, 555

DEFINE ALTERNATEINDEX, 560

DEFINE CLUSTER, 563
DEFINE PATH, 566
DELETE Command, 567
LISTCAT Command, 568
REPRO Command, 569
AMS - MUSIC Command, 98
Anonymous Login, 607
APL - Subset Version, 318
APL Interpreter - VSAPL, 324

APL ON/OFF Key 3270 Terminal, 21

APLCOURSE (MUSIC/APL), 321
APPEND on FILE Statement, 169
APPONLY on FILE Statement, 169
Architecture - 3270, 18
ARCHIV Utility, 571
Archive Tape Checking, 605, 647
Archiving Files, 571, 603
Archiving UDSFile, 646
ARROW - Editor Command, 219
Arrow Keys, 205
ASM, 330

Buffer Space, 73

Loading, 186
ASMFIX - Editor Command, 220
ASMLG, 339
ASMLG Loading, 186
Assembler (Loader) - ASMLG, 339
Assembler - ASM, 330
ATTN Key, 18

3270 Terminal, 21
Attn 3270 Terminal State, 23
ATTRIB - Editor Command, 220
ATTRIB - MUSIC Command, 98
Attributes, 239

Execute-Only, 64

Files, 171

Private, 63

Public, 63

Share, 63
Attributes - Files, 63
Attributes, Changing File, 91
AUTOPROG Defining, 629

AUTOSKIP - Editor Command, 220

B

BACKSP - System Subroutine, 466
BACKSP System Subroutine, 179
Backspace, 18

Changing Batch, 629

TTY Termina, 27

3270 Terminal, 21
Backspace Key, 204

Backspacing Recordsin FORTRAN, COBOL,

PL/I, 179
BACKUP on FILE Statement, 175
Backup UDSFile, 175
BASE64 Data Processing, 468
BASIC
IBM, 341
BASIC - MUSIC Command, 98
BASIC Compiler - VSBASIC, 345
Batch
Concepts, 42
Defintion, 3
ID Statement, 43
Job Classes, 48
Job Return Location, 45
Job Submission, 46-47, 152
Job Submission (Editor), 274
Job Time, 43, 47
Magnetic Tape, 47, 179
Operator Messages, 44, 47
Output Inspection, 50
Output Route Location, 47
Output Routed to MUSIC, 50
Password, 43
Password Defining, 629
Preparing Job for, 43
Printer Control, 44

Printing Without Submitting to Batch, 659

Specia Forms, 47
Statements, 42

BCD to EBCDIC Code Conversion, 648

BDAM, 378

BEEP - Editor Command, 221
BIGBUF - System Subroutine, 467
BIGEDIT - MUSIC Command, 99
Bit Manipulation Subroutines, 463
BITFLP - System Subroutine, 467
BITOFF - System Subroutine, 468
BITON - System Subroutine, 468
BLANK - Editor Command, 221

Blanks Removing from Output, 66, 105

BLDINDEX AMS Command, 558
BLKSIZE on FILE Statement, 177

Index

667

Block Size

Magnetic Tape, 177

UDSFile, 72
Blocks Definition, 13
BLOCKSIZE on FILE Statement, 177
BOATPROB (MUSIC/APL), 321
BOATPROB (VS APL), 328
BOTH - Editor Command, 221, 293
BOTTOM - Editor Command, 222
BR - Editor Command, 222
BREAK Key, 18

TTY Termind, 27
Break Mode, 24, 88
BREAK Request

3270 Terminal, 24
BREAK Signa

TTY Termind, 27

3270 Termindl, 21
BRIEF - Editor Command, 222
BROWSE - MUSIC Command, 99, 194
BROWSE LRECL, 99
Browsing Fileswith VIEW, 653
BSAM, 333, 378
Buffer

Allocation for UDS, 72

Definition, 13

Space on UDS Files, 72
Bulletin Boards - IDP, 125
BYTE - System Subroutine, 468
Byte Definition, 14
Byte Manipulation Subroutines, 463
B64TXT - System Subroutine, 468

C

C/370, 359

Data Definition, 359
CAI Courses, 663
CALC - Editor Command, 223
CANCAN - System Subroutine, 469
CARGCALL - System Subroutine, 470
Carriage Control, 66
Carriage Control Overview, 38
CASE - Editor Command, 223
CD - Editor Command, 224
CD - MUSIC Command, 100
CD on SY S Statement, 190
CENTER - Editor Command, 224
CENTER - System Subroutine, 470
Central Processing Unit (CPU), 13
CHANGE

(VSBE), 355
CHANGE - Editor Command, 199, 224
Change Directory for /SYS, 190

668 MUSIC/SP User's Reference Guide

CHANGEL - Editor Command, 225
Changing File Attributes, 91, 102
Changing Files

Brief Introduction, 3

with Editor, 114
Changing Passwords, 134
Changing Text, 206
Channels Definition, 13
Character Search Subroutines, 464

Character String Conversion Subroutines, 463

Character Strings - LN, 495
Character Tranglation Subroutine, 463
Charge Accumulated Listing, 631
CHAT - MUSIC Command, 101
Checking Archive Tape, 605, 647
CHMOD - MUSIC Command, 102
Cl, 7
Cl - MUSIC Command, 103
CICS- MUSIC Command, 103
CICS/IVM, 364
CICS/VM-MUSIC Interface - CICS, 364
Class, Batch Job, 48
CLEAR Key

(FSED), 199-200

3270 Terminal, 24
CLOSDA - System Subroutine, 470
CLRIN - System Subroutine, 471
CLSFIL

Common Blocks, 539

Error Codes, 539

Option Keywords (SS), 534, 537
CLSFIL - System Subroutine, 471
CM, 6
CM - MUSIC Command, 103
CMDPFK - Editor Command, 226
CMDRET - System Subroutine, 471
CMDS - Editor Command, 226
CMDSTO - System Subroutine, 471
Cmd Pipe-lines, 448
CN Command Suffix (Editor), 286
CNCL Key

3270 Terminal, 21
CNTINFO - Editor Command, 226
Co-axia Connected PCs, 24
COBLG, 385
COBLG Loading, 186
COBOL, 378

Accessing 3270 Panels, 617, 619

Backspacing Records, 179

Link-Editing, 414

Loading, 186

Running from Object Modules, 335, 373, 382,

385
SORT Verb, 633, 642

COBOL (Loader) - COBLG, 385

COBOL Compiler - COBOL2, 369

COBOL Compiler - VSCOBOL, 378
COBOL 11, 369
COBOL2

Loading, 186
COBTEST - MUSIC Command, 104
Code Conversion

BCD to EBCDIC, 648

EBCDIC to BCD, 648
CODON - System Subroutine, 472
COLOR - Editor Command, 227, 294
COM - Job Control Statement, 165
COM on FILE Statement, 171
Command Area

Editor', 208
Command Key, 207
Command Language Definition, 2
Command Mode, 88
Command Mode Help Facility, 122
Command Syntax, 88
Command Syntax (Editor), 214
Commands, 88

Abbreviations, 96

Convention, 96

Description, 96

For Editor, 208

MUSIC, 88

Summary of MUSIC, 89
Comments Editor, 284, 290
Common Library Index, 63
COMPARE - MUSIC Command, 104
Comparison Subroutines, 464
Compile Step Parameters

ASM, 334

C/370, 360

COBOL, 380

CoBOL 11, 372

PL/I, 431
Compiler Step Parameters

VSPASCAL, 424
Compilers

Brief Introduction, 3

Options, Specifying (Overview), 188

Overview, 314
Compress Command, 105
CONF - MUSIC Command, 106
Conferencing, Administering, 106
CONFMAN - MUSIC Command, 106
Connect Time for Session, 135, 151
Connectionto MUSIC, 18
Connectionsto MUSIC, 19
Constraints Profile (Introduction), 12
Contents Program SCRIPT, 10
Context Editor VS APL, 328

Control Section Restriction on LOADER, 421

Control, Printer Carriage, 66
Controlled Access, 11

Controlled Scrolling TTY Video Terminal, 28

Conventions of Commands, 96
Conventions of Job Control Statements, 164
Conversational Read

FILE Statement, 181

from Batch, 45

Spooled, 69
COPY - Editor Command, 227
COPY - MUSIC Command, 106

COPY Statement of AUTOREPORT RPG |1, 455

COPY COL - Editor Command, 228
Copying

Files, 106, 648

UDSFiles, 593, 648
CORE - System Subroutine, 472
Correct Typing Mistakes, 18
Correct Typing Mistakes 3270 Terminal, 23
COUNT - MUSIC Command, 107
Course Information - CI, 7
Course Management Facility, 6
CPU Definition, 13
Creating New Files (Editor), 195
Creating New Files (VSBE), 355
Creating UDSFile, 176
Creating your own Editor, 288
CREP - Editor Command, 228
CRLF - System Subroutine, 474
CTRAN - System Subroutine, 474
CTRL Key on TTY Terminal, 27
Current

Date, 151

Job Time, 155

News Items, 134

Time of Day, 151
Cursor (FSED), 203
CURSOR - Editor Command, 229
Cursor Character 3270 Terminal, 22
Cursor Key (FSED), 199
Cursor Key 3270 Terminal, 23
Cursor, Moving, 206
Customized Editor, 289
CWIS - IDP Program, 125
C2D - System Subroutine, 475
C2I - System Subroutine, 476
C2R - System Subroutine, 476
C2X - System Subroutine, 477
C370

External Names, 359

Loading, 186

Index

669

D

Data

Conversion, Magnetic Tape, 178

Separating, 165

Set Name (DSN), 174
DATA - Job Control Statement, 165
Data Definition Name, 167-168, 172, 174, 177,

180

ASM, 333

C/370, 359, 361

COBOL, 370, 379

GPSS, 408

PL/I, 430, 432

RPG 11, 454

VSBASIC, 350

VSPASCAL, 424
Data Storage, VSAM, 76
DATCN2 - System Subroutine, 478
DATCON - System Subroutine, 478
Date

Current, 151

Subroutines, 460
DBCS - Editor Command, 230
DBG Command, 108
DEBUG - MUSIC Command, 108
DEBUG - System Subroutine, 479
Debug Utility Program, 573
Debugger - TESTF, 399
Debugger, Interactive COBOL 11, 374
Debugging Aids

ASM, 332

VSPASCAL, 427
Debugging and Tracing, VSAM, 83
DECN - System Subroutine, 479
DECOUT - System Subroutine, 479
DECRYPT - MUSIC Command, 108
DECRY PT Utility, 597
Default Function Key Definitions - All Modes,

109

Default Job Time Changing, 629
DEFAULT on FILE Statement, 170
DEFINE - Editor Command, 230
DEFINE ALTERNATEINDEX Command, 560
DEFINE CLUSTER Command, 563
Define Command, 108
DEFINE Editor Command, 287
DEFINE PATH Command, 566
Defining a TAB key, 290
Defining function Keys

All Modes, 108
Defining Function Keys, No. of, 125
Del Key (FSED), 199
DEL Key 3270 Terminal, 23
DELAY - System Subroutine, 480

670 MUSIC/SP User's Reference Guide

DELCHAR - Editor Command, 234
DELETE

(VSBE), 355

on FILE Statement, 170
DELETE - Editor Command, 234
DELETE - MUSIC Command, 110
DELETE AMS Command, 567
Delete Character (Editor), 252
DELETE Key, 207
DELETEL - Editor Command, 235
Deleting

Characters, 207

Lines, 207
Deleting Files, 140
Deleting UDS File, 176
DELIM - Editor Command, 235
Density Magnetic Tape, 178
DENSITY on FILE Statement, 178
Desk Calculator, 318, 324, 624
DIAL Command 3270 Terminal, 22
DIR - MUSIC Command, 111
Direct Access

COBOL, 378

FORTRAN, 173, 414
Direct Output Control, 67
Direct Termina Control, 38
Directories, 63, 111
Disk

Allocation, 12

Block Utilization, UDS, 72

Device Definition, 13

Sort, 633
Dispatcher Definition, 14
DISPLAY - MUSIC Command, 113
Displaying

Files, 113

Files (Editor), 249

Portion of Line, 161

Portion of Line (Editor), 282

Portion of Line (FSED), 292
DisplayWrite/370, 114
Disposition

File, 169

Magnetic Tape, 178

UDSFile, 175
Document Processing, 10
Double Spacing, 66
DOWN - Editor Command, 236
DOWNPAGE - Editor Command, 236

DOWNWINDOW - Editor Command, 236

DSCHK Utility, 647

DSCOPY Utility, 593

DSLIST Utility, 594

DSORT - System Subroutine, 480
DSORT Subroutine, 636

DSREN Utility, 596

DUMMY - ROUTE Destination, 56
DUMMY on FILE Statement, 181
Dummy Program, 186
DUP - Editor Command, 236
Duplicating
Files, 648
Lines (Editor Command), 236
UDSFile, 593
DW370 - MUSIC Command, 114
Dynamic Access Routines, 534
Common Blocks, 538
Error Codes, 539
Dynamic Accessto Files, 534
Dynamic Output Control, 37

E

EBCDIC to BCD Code conversion, 648
ECHO - Editor Command, 237
ECHO Editor Command, 288
ECHOIN - System Subroutine, 480
EDIT - MUSIC Command, 114
EDIT Command, 194
Editing
Files, 194
Functions, 206
INPUT File, 194
Large File, 289
Large UDSFiles, 289
MUSIC Commands Summary, 89
Script Files, 154
UDS Files, 289
using the Editor, 114
Editing Large Files, 99
Editor, 114, 192
(Editor), 195, 290
Abbreviations, 214
Command Suffix, 286
Commands, 208, 214
Comments, 284, 290
Creating your own, 288
Customized, 289
Defining X Command, 287
Delete Character, 234, 252
Ending, 193
EXECUTE Command, 196
Extent of Restart Recovery, 309
FILE & QUIT Commands, 208
FILE Command, 196
Full Screen Mode, 197
Function Key Default Definitions, 200
Function Keys, 200
Getting Help, 208
Help Facility, 245

Hex Input and Output, 293

Input of Data, 204

Invoking, 194

Logical Commands, 286

Macro Facility in REXX, 297
Marking Lines, 209

MFIO UIO Requests, 195
Modes, 193

Restart Facility, 308

Restart Facility Efficiency, 310
Restart Facility Restrictions, 310
Restart Log File, 308

Restart Multi-Session, 312
SAVE Command, 196

Starting, 193

String Separator, 214
Suppressing Restart Feature, 195, 310
VSBASIC, 353

Editor Commands

*, 284

=, 284

ADD, 219

AIN, 219
ALPHA, 219
ARROW, 219
ASMFIX, 220
ATTRIB, 220
AUTOSKIP, 220
BEEP, 221
BLANK, 221
BOTH, 221
BOTTOM, 222
BR, 222

BRIEF, 222
CALC, 223
CASE, 223

CD, 224
CENTER, 224
CHANGE, 224
CHANGEL, 225
CMDPFK, 226
CMDS, 226
CNTINFO, 226
COLOR, 227, 294
COPY, 227
COPYCOL, 228
CREP, 228
CURSOR, 229
DBCS, 230
DEFINE, 230
DELCHAR, 234
DELETE, 234
DELETEL, 235
DELIM, 235
DOWN, 236
DOWNPAGE, 236

Index

671

DOWNWINDOW, 236
DUP, 236

ECHO, 237

END, 237

ENQ, 238
EXECUTE, 238
FF, 238

FILE, 239

FILL, 241

FIND, 242
FLAG, 242-243
FLIP, 244
FORMAT, 244
FS, 245

GETV, 245
HELP, 245

HEX, 246
HUNT, 246
INPUT, 247
INSERT, 247
JOIN, 248

KEYS, 248
LANGUAGE, 248
LAST, 249
LEFT, 249

LIST, 249
LOCATE, 250
LOCATEL, 250
LOG, 251
MARGINS, 251
MARK, 252

MD, 252
MDELETE, 252
MERGE, 253
MINSERT, 253
MOVE, 253
MSG, 254
MSGS, 254
NAME, 255
NEXT, 255
NOARROW, 255
NOCHANGE, 256
NOFILL, 256
NOFLAG, 256
NOFS, 256
NONULLS, 257
NONUMBER, 257
NOSCREEN, 257
NOSHOW, 257
NOTRAN, 258
NULLS, 258
NUMBER, 258
OFF, 258
OKREPL, 259
OVERLAY, 259
POINT, 260

672 MUSIC/SP User's Reference Guide

POWERINP, 260
PREFIX, 211, 261
PRINT, 261
PROMPT, 263
PURGE, 263
QQUIT, 264
QUIT, 264
RENAME, 264
REPEAT, 264
REPLACE, 265
REXX, 265
RIGHT, 266
RUN, 266
SAVE, 266
SCAN, 267
SCREEN, 267
SEARCH, 268
SEARCHL, 268
SEQ, 268

SET, 269
SETRC, 269
SETV, 270
SHIFT, 270
SHOW, 270
SIZE, 271
SORT, 272
SPACE, 272
SPELL, 273
SPLIT, 273
STORE, 273
SUBMIT, 274
SUBSET, 275
TABIN, 275
TABOUT, 276
TAG, 276
TEXT, 276
TIME, 277
TOLC, 277
TOP, 277
TOUC, 278
TRAN, 278
TREE, 278
UFIND, 278
ULOCATE, 279
UNDELETE, 279
UNFF, 280
UNFORMAT, 280
UNMARK, 280
UNSORT, 280
UP, 280
UPPAGE, 281
UPWINDOW, 281
USERS, 281
VERIFY, 281
WINDOW, 282
X, 282

XIN, 283
XL, 283
ZONE, 283
Editor LRECL, 114
Electronic Mail, 131
Emulation - 3270, 19
ENCRYPT - MUSIC Command, 115
ENCRY PT/DECRY PT Utility, 597
Encrypted File, Viewing, 115
END
(VSBE), 355
END - Editor Command, 237
END - Job Control Statement, 166
End of Line Signal
3270 Terminal, 21
Ending the Editor, 193, 196
ENQ - Editor Command, 238
Enqueue UDS File, 174
Enter Data Message, 629
ENTER Key, 204-205
3270 Terminal, 24
ENTER Key (FSED), 199
ENTER Key 3270 Terminal, 21, 23
Entry Assist 3270 Terminal, 21
Entry Point Restriction on LOADER, 421
EOF (/INCLUDE), 184
EQJ - System Subroutine, 480
EQUAL - System Subroutine, 480
Equal Editor Command, 284
EQUALB - System Subroutine, 481
ERASE
EOF Key (FSED), 199, 291
EOF Key 3270 Terminal, 24
INPUT Key (FSED), 199, 201
INPUT Key 3270 Terminal, 24
ERASE - MUSIC Command, 115
Erase Screen, 3270 Terminal, 66
Erasing Files, 140
Error Code Dynamic Access to Files, 539
Error Codes, VSAM, 79
Error Messages
Multi-Session, 39
ERRS (/INCLUDE), 184
ESDS
VSAM Files, 76
ETC
Command from Batch, 45
ETC - Job Control Statement, 166
EVIEW - MUSIC Command, 115
EXAMPLES (VS APL), 328
EXARCH Utility, 599
EXEC
(REXX), 444
(VSBE), 355
Buffer Space, 73
Loading, 186

EXECUTE - Editor Command, 196, 238
EXECUTE - MUSIC Command, 116
Execute-Only Attribute, 171
Execute-Only Attributes, 64
Execution Mode, 88
EXREST Utility, 600
Externa Names

C/370, 359

COBOL, 370, 379

PL/I, 430-431

RPG II, 454

VS PASCAL, 424
EXTRACT Command, 297
EXTRACT Variables, 298

F

FBAS64 - System Subroutine, 481
FF - Editor Command, 238
FILARC Utility, 603
FILCHK Utility, 605
FILE
Editor Command, 196, 208
FILE (Files) - Job Control Statement, 168

FILE (General Overview) - Job Control State-

ment, 167

FILE (Miscellaneous) - Job Control Statement,

180

FILE (Permanent UDS) - Job Control Statement,

173

FILE (Printers) - Job Control Statement, 182

FILE (Tape UDS) - Job Control Statement, 176
FILE (Temporary UDS) - Job Control Statement,

172

FILE (VSBE), 356

FILE - Editor Command, 239

File Naming, Flat, 61

FILE PRT Statement, 182

FILE Statement
Continuation, 167
General Syntax, 167
Magnetic Tape File, 176
Pre-allocated File, 180
Temporary UDSFile, 172
Unit Record Device, 180
Whereto Place, 167

File System, 59

Files
Access by Subroutines, 461
Access Control, 63
Archiving, 571, 603
Attributes, 63, 171, 239
Changing Attributes, 91
Changing, Brief Introduction, 3

Index

673

Copying, 106, 648
Displaying, 113
Disposition, 169
Dynamic Access, 534
Editing, 194
Encrypt Utility, 597
Exporting, 599
FILE Statement, 168
Groups, 169
Introduction, 2
Listing, 129
Listing All, 609
Listing Information, 126
Logical Record Length, 170
Manipulation Commands Summary, 90
Max Size, 64
Max Size, Temporary UDS, 172
Name Save Library, 60
Name, Prefix, 63
Naming, 60
Number of Records, 171
Ownership, 11, 60
Printing by VMPRINT, 659
Printing on Specified Printer, 56, 138
Purging, 140
Purging (Editor), 263
Purging from Batch, 45
Record Formats, 64, 170
Record Length, 170
Record Size, 64, 170
Referencing from Program, 183
Renaming, 144
Renaming (Editor), 264
Restoring, 604
Retrieving, 572, 604
Sharing VSAM, 79
Size, UDS, 72
Sorting, 149
Space, 64
Space Allocation, 64, 170
Space Release, 169
Storage Technique, 60
Summarizing, 152
Systems, 60
Tag String, 276
Transferring FTP, 120
Types of Structure, 2
Utilitites for, 648
Utility Programs, 550
VSAM, 75
Writing Binary Zeros to, 660
Filess
Temporary, 169
FILL - Editor Command, 241
FILL - System Subroutine, 483
FILL Editor Command, 291

674 MUSIC/SP User's Reference Guide

FILMSG (SS), 535
FILMSG - System Subroutine, 484
FILRST Utility, 604
Filtersin REXX, 451
FIND - Editor Command, 242
FINDTEXT - MUSIC Command, 117
FINGER - MUSIC Command, 118
FINGER Command - Internet, 607
Fixed Compressed Record Format (FC), 64
Fixed Length Record Format (F), 64
FIXSCR - System Subroutine, 484
FLAG - Editor Command, 242-243
Flagging MUSIC/SCRIPT, 242
Flat File Naming, 61
FLIB - MUSIC Command, 119
FLIP - Editor Command, 244
FNDALL - System Subroutine, 484
FNDCHR - System Subroutine, 485
FORMAT (VSAPL), 328
FORMAT - Editor Command, 244
FORTG1 Buffer Space, 73
FORTGL1 Loading, 186
FORTRAN
Accessing 3270 Panels, 617, 620
Backspacing Records, 179
Direct Access, 173

Sequential 1/0, MAX Record Size, 172-173

Unformatted /O, 172-173
FORTRAN Compiler - VSFORT, 387
FORTRAN/MUSIC

Interface Introduction, 14

Interface Sequentia 1/0, 172-173
FORTRAN/VS, 387
FRMTDA - System Subroutine, 486
FRSTOR - System Subroutine, 486
FS - Editor Command, 245
FSI, 5
FSI - MUSIC Command, 119
FTP, 607

Documentation, 608
FTP - MUSIC Command, 120
Full Screen Editing

Action Keys, 199

Blank Display, 291

Changing Default, 630

CLEAR Key, 200

Cursor Key, 199

Defining PF Keys, 287

DEL Key, 199

Display PF keys Assignment, 288

Efficient Usage, 202

ENTER Key, 199

Entry Assist, 199

ERASE EOF Key, 199, 291

ERASE INPUT Key, 199, 201

INS MODE Key, 199, 291

Invoking, 245
Invoking (Editor), 197
NEW LINE Key, 199
Null Character, 291
Order of Operation, 201
PA1Key, 199
PA2 Key, 199
PF Keys, 199
PF13-PF24 Simulation, 291
RESET Key, 201
Retrieving Previous Cmd. Line, 202
Screen Cursor, 203
Screen Format, 197
SYSREQ Key, 200
Unprintable Character, 198
VSAPL, 324
WINDOW Command, 292
Without PF keys, 291
Full Screen Interface (FSI), 5
Full Screen Mode
Definition, 19
Editing in, 199
Full Screen Panel Generator, 610
Function Keys
(FSED), 199
Default Definitions, Editor, 200
Defining for All Modes, 108
Defining No. of, 125, 245
Definitions - All Modes, 108
Display Definitionsin *Go, 34, 110
Editor, 200
Multi-Session, 34, 110
PANEL, 613
Retrieve, 109
Fund
alocation, 11, 124
Low on, 124
Out of, 124
Remaining, 124

G

Gang Punching, 649

GDDM, 410

GDDM - MUSIC Command, 120
General Purpose Simulation System, 408
General Purpose Simulation System - GPSS, 408
GET Request, VSAM, 83

GETID - System Subroutine, 487
GETMAIL - MUSIC Command, 120
GETMINFO - MUSIC Command, 121
GETOP - System Subroutine, 487
GETRET - System Subroutine, 438
GETV - Editor Command, 245

GO Step Parameters

ASM, 336

C/370, 362

COBOL, 374, 382

PL/I, 433
GOPHER - MUSIC Command, 122
GPSS, 408
GPSS Loading, 186
Graphical Data Display Manager, 410
Graphical Data Display Manager - GDDM, 410
Group of Files, 169
GTSTOR - System Subroutine, 488
GULPDF - System Subroutine, 489
GULPRD - System Subroutine, 490
GULPWR - System Subroutine, 490

H

Hardware Definition, 13
Help

For the Editor, 208
HELP - Command Mode, 122
HELP - Editor Command, 245
HELP - MUSIC Command, 122
Help Facility Command Mode, 2, 122
Help Facility Editor, 245
HEX - Editor Command, 246, 293
Hexadecimal Definition, 293
Hexadecimal Input and Output (Editor), 293
Hierarchical, 61
HOLD on FILE Statement, 181
Holding File, 68
HUNT - Editor Command, 246
HWORD - System Subroutine, 491

I1/0
Area Panel, 617
Definition, 13
Direct Access, FORTRAN, 173
Numbers, 65
Sequential FORTRAN, 172
Sequential, FORTRAN, 173
Subroutine Extensions, 461
Unformatted FORTRAN, 173
Unformatted, FORTRAN, 172
1/O Interface, 59
IBM BASIC, 341
IBM BASIC Environment - IBMBASIC, 341
IBM C/370 Compilers, 359
IBM PC, 29

Index 675

PCWS, 29
Personal Computer Workstation, 29
3270/PC Workstation, 24
IBM 3161/3163/3164 Termindls, 27
IBM 3270 Architecture, 18
ID - Job Control Statement, 183
ID Command Workstation, 123
ID Statement Batch, 43
ID Statement Continuation Batch, 166
IDP - MUSIC Command, 125
IEFBR Loading, 186
[1AS, 662
[1PS, 662
IS, 662
Implied Exec, 116
Implied EXEC Changing Default, 630
IN PROGRESS M essage Suppression, 630
INCLUDE - Job Control Statement, 183
Index Program SCRIPT, 10
Index Text Searching - Subroutines, 465
INFO - Job Control Statement, 185
INFO Statement, 47
Information Passing to Program, 116, 188
INPUT - Editor Command, 247
Input File, 96
Displaying, 113
Editing, 194
Listing, 129
INPUT INHIBITED 3270 Terminal, 23
Input Key, 207
Input Mode
(Editor Command), 247
(Editor), 193
Input of Data, 204
Input Tabs (Editor), 275
Input Tabs Changing Default, 630
InsLine Key, 207
INS MODE Key (FSED), 199, 291
INSMODE Key 3270 Terminal, 23
INSERT - Editor Command, 247
INSERT Key, 207
Inserting Characters, 207
Inserting Files (Editor), 253
Inserting Lines, 207
Interactive
Computing Definition, 1
Computing Introduction, 1
Debugger VS PASCAL, 427
Instructional Authoring System, 662
Instructional Presentation System, 662
Instructional System, 662
Intercepting Terminal Output, 449
Interlanguage Communication
VS FORTRAN, 393
Interlanguage Communication VS PASCAL, 424
Interlanguage Communications IBM BASIC, 343

676 MUSIC/SP User's Reference Guide

Internet
Access, 33, 92
FINGER Command, 118, 607
NET Command, 134
PING Command, 136, 607
TELNET Command, 155
Transferring Files, 120
Using, 19
Intersystem TELL, 155
Introduction, 1
INVIS - Profile Option, 630
IRC - MUSIC Command, 126
ITS Subroutines, 544, 465
ITSBLD Utility, 544
ITSBLD2 Utility, 544
ITSFCL Subroutine, 547
ITSFID Subroutine, 544
ITSFIW Subroutine, 544
I TSFOP Subroutine, 545
ITSFOR Subroutine, 546
ITSFRE Subroutine, 546
I TSFSS Subroutine, 545
ITSFxx - System Subroutine, 491
ITSRET Utility, 544
I2C - System Subroutine, 491
[2X - System Subroutine, 492

J

Job

Batch, 43

Time Changing Default, 629

Time Editing (Editor), 277, 281
JOB - Job Control Statement, 185
Job Class, Batch, 48
Job Control Statements, 164
Job Control Statements Convention, 164
Job Statement

ASM, 335

ASMLG, 339

C/370, 362

COBLG, 385

COBOL, 373, 382

LKED, 415

L oader, 421

PL/I, 433

PLILG, 439

VS PASCAL, 426
JOB Statement Overview, 185
Job Submission

to MUSIC Batch, 46-47

to Operating Systems, 46
Job Time

Batch, 43, 47

Current, 155
Limit, 189
Session, 135, 151
JOIN - Editor Command, 248

K

K Unit of Storage Definition, 14
KEEP on FILE Statement, 170
KEEPIN - System Subroutine, 492
Keyboard is Locked, 205
Keys
Editor Function, 200
ENTER, 205
INSERT and DELETE, 207
TAB, 204
KEY S - Editor Command, 248
KSDS
VSAM Files, 76

L

Label Magnetic Tape, 177
LAND - System Subroutine, 493
LANG - MUSIC Command, 126
LANGUAGE - Editor Command, 248
LANGUAGE - National Support, 630
LAST - Editor Command, 249
LAST /List Parameter, 130
Last Display Command, 113
LBCOMP - System Subroutine, 493
LBLIST Utility, 609
LBMOVE - System Subroutine, 493
LCOMP - System Subroutine, 494
LCOMPL - System Subroutine, 494
LEARN, 663
LEFT - Editor Command, 249
Length of Strings - LN, 495
Library

Command for REXX, REXLIB, 444

Common Index, 63

Subroutine Introduction, 3

User Index, 63
LIBRARY - MUSIC Command, 126
Library, Listing File Names, 126
Limiting Time Option MUSIC/APL, 322
Limiting Time Option VS APL, 329
Line Cdl Down

3270 Terminal, 23
Line End Signal

TTY Termina, 27
Line Length Input Restriction, 18

Line Length, Batch Printer, 42
Line Numbers, 113

Display (Editor), 257-258, 284
Linkage Editor, 414

Control Statements, 416

Overlay, 315

When to Use, 315

Work File, 416
Linkage Editor - LKED, 414
LIST (VSBE), 356
LIST - Editor Command, 249
LIST - MUSIC Command, 129
LISTCAT AMS Command, 568
Listing

All Files, 609

File Information, 126

File Names, 126

Files, 129

Files (Editor), 249
Listing Names UDS Files, 594
LJUST - System Subroutine, 494
LKED, 414

Buffer Space, 73

Loading, 186

Return Codes, 417
LM - MUSIC Command, 130
LMQOVE - System Subroutine, 495
LN - System Subroutine, 495
LOAD - Job Control Statement, 185
Load Module Executor - EXEC, 418
Load Module Executor - XMON, 420
Load Modules

Creating, 414

Executor, 418

Executor (OS MODE), 420

Executor (PL/I), 440

Running, 418

Running in OS Mode, 420
Load Modules IBM BASIC, 343
LOADER, 339, 385, 421

Buffer Space, 73

Loading, 186

Options Specifying, 185

OS-Mode, 438

When to usg, 314
LOADER - System Loader, 421
Loader Overview, 314
Loader Step Parameters

ASM, 335

C/370, 361

COBLG, 385

COBOL, 373, 381

PL/I, 432

PLILG, 438

VS PASCAL, 425
Local Area Network, 19

Index

677

NET3270, 31
Local Editing Keys, 207
LOCATE - Editor Command, 250
LOCATE - System Subroutine, 496
LOCATEL - Editor Command, 250
LOCNAM - System Subroutine, 496
LOG - Editor Command, 251
LOG Editor Command, 309
Logical Commands for Editor, 286
Logical Operations by Subroutines, 464
Logical Record Length

Files, 170

Magnetic Tape, 177

UDSFile, 173, 175, 177
Logical Unit Numbers, 65, 167-168, 172, 174,

177,180

Logical Unit Numbers Default Assignment, 167
LOR - System Subroutine, 497
Lower Case

(Editor), 276

Editing, 154

3270 Terminal, 24
LPT1 - PC1 Printer Name, 57
LRECL for Browse, 99
LRECL for Editor, 114
LRECL on FILE Statement, 170, 173, 177
LSHFTL - System Subroutine, 497
LSHFTR - System Subroutine, 497
LXOR - System Subroutine, 497

M

Macro Facility in REXX, 297
Macro Instructions for ASM, 331
Macro Library for ASM, 330
Magnetic Tape

Adding Datato End of, 179

Batch Job, 47, 179

Block Size, 177

Control Subroutine, 462

Copying Files, 643

Data Conversion, 178

Density, 178

Disposition, 178

Dumping Files, 643

Fixed Format, 179

Fixed-Blocked Format, 179

Label, 177

Logical Record Length, 177

Parity, 178

Reading Multiple Files, 179

Record Length, 177

Record Size, 177

Ring, 177

678 MUSIC/SP User's Reference Guide

Summarizing Files, 643

Tape Recording Technique, 178

Trandation, 178

UDSFiles, 176

Utility for, 643

Volume Name, 178

Writing Multiple Files, 179

7 Track, 178

9 Track, 178
MAIL - MUSIC Command, 131
Main Storage VSAM, 78
MAKxxxx - MUSIC Command, 131
MAN - MUSIC Command, 2, 131
Manuals, v
MARGINS - Editor Command, 251
MARK - Editor Command, 252
Marking Linesfor Editor, 209
MAXSP on FILE Statement, 170
MAZE - System Subroutine, 497
MCNCAT - System Subroutine, 498
MD - Editor Command, 252
MD - MUSIC Command, 132
MDELETE (Editor Command), 234
MDELETE - Editor Command, 252
MDISK Command, 450
MEET - MUSIC Command, 132
Menu Facilities, Accessing, 89
Menus, 5

FSl, 5

TODO, 8
MERGE - Editor Command, 253
Message Suppressing IN PROGRESS, 630
Message to Operator Commands Summary, 93
Messages

Electronic Mail, 131

Multi-Session, 39

Sending, 154

Sending to Operator, 145

Workstation, 39
MESSAGES - MUSIC Command, 133
ME2A - System Subroutine, 498
MFIO UIO Requests, Editor, 195
MINSERT (Editor Command), 234
MINSERT - Editor Command, 253
Miscellaneous Utility Programs, 551
MNSORT - MUSIC Command, 133
MNSORT Utility, 633
Mode

Break, 24, 88

Command, 88

Execution, 88

Reading, 88
Model 38 TTY Terminal, 27
Modes Editor, 193
Modes Terminal, 88
Modes Workstation, 88

MODFLD - System Subroutine, 499
MODORPT - System Subroutine, 500
More... 3270 Termina State, 23
MOVE - Editor Command, 253
MOVE - System Subroutine, 501
Moving

The Cursor, 206
MS - MUSIC Command, 133
MS Programs, 34
MSG - Editor Command, 254
MSGS - Editor Command, 254
Multi-Session

Error Messages, 39

Function Keys, 34, 110

Restart Facility, 312

Support, 34
Multiple Blanks, Removing, 66, 105
MUSFNS (MUSIC/APL), 321
MUSFNS (VS APL), 328
MUSIC

(VSAPL), 328

Commands, 88

Courses, 663

Definition, 2

L oader, 421

Publications, v

System Overview, 13
MUSIC - ROUTE Destination, 56
MUSIC Commands

/CANCEL, 99

/COMPRESS, 105

/DEFINE, 108

/DISCON, 112

/1D, 123

INEXT, 135

/PREVIOUS, 138

/RECORD, 143

/REQUEST, 145

/SKIP, 148

/STATUS, 151

/TIME, 155

/USERS, 157

/WINDOW, 161

ACCESS, 97

ADD, 97

AMS, 98

ATTRIB, 98

BASIC, 98

BIGEDIT, 99

BROWSE, 99

CD, 100

CHAT, 101

CHMOD, 102

Cl, 103

CICS, 103

CM, 103

COBTEST, 104
COMPARE, 104
CONF, 106
CONFMAN, 106
COPY, 106
COUNT, 107
DEBUG, 108
DECRYPT, 108
DELETE, 110
Description, 96
DIR, 111
DISPLAY, 113
DW370, 114
EDIT, 114
ENCRYPT, 115
ERASE, 115
EVIEW, 115
EXECUTE, 116
FINDTEXT, 117
FINGER, 118
FLIB, 119

FSl, 119

FTP, 120
GDDM, 120
GETMAIL, 120
GETMINFO, 121
GOPHER, 122
HELP, 122

IDP, 125

IRC, 126
LANG, 126
LIBRARY, 126
LIST, 129

LM, 130

MAIL, 131
MAKxxxx, 131
MAN, 131

MD, 132

MEET, 132
MESSAGES, 133
MNSORT, 133
MS, 133

NET, 134
NEWPW, 134
NEWS, 134
OFF, 135
OUTPUT, 135
PCEXEC, 136
PHONE, 136
PING, 136

PIPE, 137
PLAN, 137
POLYSOLVE, 137
POST, 137

PQ, 138
PRINT, 56, 138

Index

679

PROFILE, 140 MUSIC/APL, 318

PROG, 140 | Beam Functions, 322
PURGE, 140 Limiting Time Option, 322
QFTP, 142 Loading, 186

RD, 142 System Commands, 321
RENAME, 144 Time Limits Extension, 322
RN, 145 Workspace Library, 320
ROUTE, 35, 56, 145 Workspaces, 320

SCHED, 146 Workstation Support, 318
SENDFILE, 146 MUSIC/SCRIPT, 10
SENDMAIL, 147 Flagging, 242

SHOPAN, 147 MUSIC/SP VSFORTRAN Debugger - TESTF,
SHOWPFK, 148 399

SORT, 149 MUSIO Command REXX, 443
SUBMIT, 152

SUMMARY, 152
SYSDATE, 153

TAG, 153 N

TEDIT, 154

TELL, 154 NAME - Editor Command, 255
TELNET, 155 Naming Rules Save Library, 60
TODO, 156 Naming Rules, UDS File, 174
TREE, 63, 156 National Language Support, 630
TUT, 157 NEST (/INCLUDE), 184

VER, 157 NET - MUSIC Command, 134
VIEW, 158 NET3270, 31, 19, 199, 202
VM, 158 Features, 31

WEB, 160 Starting, 31

WHOAMI, 160 NEW

with REXX, 441 (Editor), 195

XTMUS, 161 on File Statement, 169
XTPC, 162 NEW (VSBE), 355

ZEROCNT, 162 New Users, Full Screen Interface, 5

MUSIC Commands from the Editor, 208
MUSIC Job Control Statements

NEW(REPLACE) on FILE Statement, 169, 175
NEWLINE Key (FSED), 199

/COM, 165 NEWPW - MUSIC Command, 134
/IDATA, 165 NEWS (MUSIC/APL), 321

/END, 166 NEWS (VSAPL), 328

/ETC, 166 NEWS - MUSIC Command, 134
/FILE (Files), 168 News Reader, 145

/FILE (Genera Overview), 167 NEXT - Editor Command, 255
/FILE (Miscellaneous), 180 Next Line, 204

/FILE (Permanent UDS), 173 NEXT on SY S Statement, 190

[FILE (Printers), 182 Next Program Specifying, 190
[FILE (Tape UDS), 176 NOARROW - Editor Command, 255
/FILE (Temporary UDS), 172 NOBACKUP on FILE Statement, 175
/ID, 183 NOCHANGE - Editor Command, 256
/INCLUDE, 183 NOCRLF - System Subroutine, 501
/INFO, 185 NOECHO - System Subroutine, 502
/JOB, 185 NOFILL - Editor Command, 256
/LOAD, 185 NOFILL Editor Command, 291
/OPT, 188 NOFLAG - Editor Command, 256
/PARM, 188 NOFS - Editor Command, 256
/PASSWORD, 188 NOLOG (Editor), 195

/PAUSE, 188 NOLOG Editor Command, 310
/SYS, 189 NONCAN - System Subroutine, 502

680 MUSIC/SP User's Reference Guide

NONULLS - Editor Command, 257
NONULLS Editor Command, 291
NONUMBER - Editor Command, 257
NOPAUS - System Subroutine, 502
NOPRINT on SY S Statement, 189
NORLSE on FILE Statement, 170
NOSCREEN - Editor Command, 257
NOSHOW - Editor Command, 257
NOSHOW - System Subroutine, 502
NOSKIP on SY S Statement, 189
NOTRAN - Editor Command, 258, 293
NOTRIN - System Subroutine, 502
NPRMPT - System Subroutine, 502
NREC on FILE Statement, 171, 173
NSGNOF - System Subroutine, 503
NULFIL (VSBE), 355
NULLS - Editor Command, 258
NULLS Editor Command, 291
NUMBER - Editor Command, 258
Number of Records

Files, 171

UDSFile, 173-174
Numbers

Logical Unit, 167-168, 172, 174, 177, 180

Logical Unit Default Assignment, 167

Random Generating, 465

Unit, 65
Numeric One, 18
NXTCMD - System Subroutine, 503
NXTPGM - System Subroutine, 504
NXWORD - System Subroutine, 505

O

Object Modules
How to Load, 314
Loading, 421
VSBASIC, 348
VS PASCAL, 425
OFF - Editor Command, 258
OFF - MUSIC Command, 135
OKREPL - Editor Command, 259
OLD
(CREATE) on FILE Statement, 169, 175
(Editor), 195
on File Statement, 169
Online Help, 2
Operating Systems Definition, 13
Operating Systems, Submitting to, 46
Operator Messages, 20
Batch, 44, 47
Sending, 145
OPNFIL
Common Blocks, 539

Error Codes, 539

Option Keywords (SS), 534, 537
OPNFIL - System Subroutine, 506
OPT - Job Control Statement, 188
OPT Command

MUSIC/APL, 319, 322

VSAPL, 325
OPT Statement

ASM, 334

ASMLG, 340

COBLG, 386

COBOL, 380

COBOL 11, 372

GPSS, 408

LKED, 417

LOADER, 422

PLILG, 439

RPG II, 454

VSBASIC, 348

Options, Specifying Compiler (Overview), 188

(O]

Facilities Simulation, 331

Macros Supported, 331
OS/MUSIC Interface Introduction, 14
Output

Compressed, 66, 105

Skipping on Workstation, 148
OUTPUT - MUSIC Command, 135
Output Control

Direct, 67

STOPSK Subroutine, 462

Workstation, 37, 161
OUTPUT Program, 50

Commands, 53

Keys, 53

Request Codes, 52

Screen, 51

Using, 50
Output Tabs (Editor), 276
Output Tabs Changing Default, 631
OVERLAY - Editor Command, 259
Overprinting, 66
Overview System, 13
Ownership Id, 11

P

Page Skip, 66

Page Skip on Batch, Suppressing, 189

Paging Up and Down, 206

PANEL, 610
Accessing from Programs, 617
Creating New Panels, 612
Function Keys, 613

Index

681

1/0O Area, 617
Modifying Panels, 612
Printing, 621
REXX Interface, 621
Storing Panels, 616
Supplemental Area, 617
Usage, 611, 621
PANFLD - System Subroutine, 506
Parameter
Information to Program, 116
Passing to Program, 116, 188
Parity Magnetic Tape, 178
PARM - Job Control Statement, 188
PARM - System Subroutine, 507
PASCAL Compiler - VSPASCAL, 423
PASCAL Loading, 187
Passing Information to Program, 188
Passthru, 158
Password
Batch, 43
Changing, 11, 134, 630-631
Introduction, 11
PASSWORD - Job Control Statement, 188
PAUSE - Job Control Statement, 188
PAUSE - System Subroutine, 508
PAUSE Statement from Batch, 44
PA1Key, 18
(FSED), 199
3270 Terminal, 21
PA2 Key (FSED), 199
PA2 Key 3270 Terminal, 21
PCEXEC - MUSIC Command, 136
PCWS
Terminal Types, 29
PCWS for Windows, 30
PCWSIBM PC, 29
PC1 Printer Name, 57
PDS on FILE Statement, 169
Permanent UDS File, 173
Personal Computer Workstation,
IBM PC, 29
Personal Computers
Co-axia Connected, 24
LAN Connections, 31
PF Keys
Assignment Displaying of (FSED), 288
Defining (Editor), 287
Defining Number of, 22
PHONE - MUSIC Command, 136
PING - MUSIC Command, 136
PING Command - Internet, 607
PIPE - MUSIC Command, 137
PIPE Command, 450
Pipe-lines, 448
PL/I, 429
Accessing 3270 Panels, 617, 620

682 MUSIC/SP User's Reference Guide

Backspacing Records, 179
Link-Editing, 414
Running from Load Module, 440
Running from Object Modules, 438
Sort, 433, 633
Support, VSAM, 84
PL/l Load Module Executor - XMPLI, 440
PL/I OS-Mode Loader - PLILG, 438
PL/I Version 2 Optimizing Compiler - PLI, 429
PLAN - MUSIC Command, 137
PLC, Buffer Space, 73
PLI Loading, 187
PLILG, 438
Buffer Space, 73
Loading, 187
PLOT (VSAPL), 328
PLOTFORMAT (MUSIC/APL), 321
POINT - Editor Command, 260
Polynomial Definition, 624
POLY SOLVE, 624
POLY SOLVE - MUSIC Command, 137
Port Definition, 13
POST - MUSIC Command, 137
Power Input, 212
POWERINP - Editor Command, 260
PQ - MUSIC Command, 138
PQ Program, 58
Pre-allocated File FILE Statement, 180
PREFIX - Editor Command, 211, 261
Prefix Area of the Editor, 211
Prefix, File Name, 63
PRINT
(VSBE), 356
Command, 56
Queue, 56
PRINT - Editor Command, 261
PRINT - MUSIC Command, 56, 138
Print Queue, 50
Print Screen, 35
Printer
Control, 66
Control from Batch, 44
Status, 58
Printing Files on Specified Printer, 56, 138
PRIV on FILE Statement, 171
Private Attributes, 63, 171
Private UDS File, 174
Processors
APL - Subset Version, 318
APL Interpreter - VSAPL, 324
Assembler (Loader) - ASMLG, 339
Assembler - ASM, 330
BASIC Compiler - VSBASIC, 345
CICS/VM-MUSIC Interface - CICS, 364
COBOL (Loader) - COBLG, 385
COBOL Compiler - COBOL2, 369

COBOL Compiler - VSCOBOL, 378
FORTRAN Compiler - VSFORT, 387

General Purpose Simulation System - GPSS,

408
Graphical Data Display Manager - GDDM,
410

IBM BASIC Environment - IBMBASIC, 341

IBM C/370 Compilers, 359

Linkage Editor - LKED, 414

Load Module Executor - EXEC, 418

Load Module Executor - XMON, 420

LOADER - System Loader, 421

MUSIC/SP VSFORTRAN Debugger -
TESTF, 399

PASCAL Compiler - VSPASCAL, 423

PL/I Load Module Executor - XMPLI, 440

PL/I OS-Mode Loader - PLILG, 438

PL/I Version 2 Optimizing Compiler - PLI,
429

Restructured Extended Executor - REXX, 441

RPG Il - RPG, 453

SAA RPG/370, 456
PROCOP - System Subroutine, 508
Profile, 12

Changing, 629

Constraints (Introduction), 12

Modifiable Items (Overview), 12
PROFILE - MUSIC Command, 140
PROFILE Utility, 629
PROG - MUSIC Command, 140
Program

Dummy, 186

Passing Information to, 116

Passing to Program, 188
Program Chaining (REXX), 445
Program Chaining (VS BASIC), 346
Program Execution Commands Summary, 93
Program Running, 116
PROMPT (VSBE), 356
PROMPT - Editor Command, 263
PROMPT - System Subroutine, 509
Prompting Subroutines, 461
Protocol Converter, 29
Protocol Converters

7171, 21
PRT on FILE Statement, 181
PRTSCR, 35
PUBL on FILE Statement, 171
Public

Read-Only UDS File, 174

Workspace MUSIC/APL, 321

Workspace VS APL, 327

Write Access UDS File, 174
Public Attributes, 63, 171
Public Domain Software, 607
Publications, v

PUN on FILE Statement, 181
Punching Cards from Batch, 650
PURGE

Command from Batch, 45
PURGE - Editor Command, 263
PURGE - MUSIC Command, 140
PURGE - System Subroutine, 509
Purging Files, 140
Purging Files (Editor), 263

Q

QFOPEN - System Subroutine, 509
QFTP - MUSIC Command, 142
QQUIT - Editor Command, 264
QSAM, 333

QUIT (VSBE), 357

QUIT - Editor Command, 208, 264

R

Random Number

Subroutines, 465
RD - MUSIC Command, 142
RDR on FILE Statement, 181
Reading Mode, 88
Reading Sequential Files, 541
Reading 3270 Workstation State, 23
RECFM on FILE Statement, 170
Record

Command, 143

Length, Files, 64
Record Formats (Editor), 195
Record Formats - Files, 64, 170
Record Length

(Editor), 195

Files, 170

Magnetic Tape, 177

UDSFile, 173, 175, 177
Recording MUSIC Sessions, 143
Referencing Files, 183
Remote Job Entry Definition, 14
RENAME - Editor Command, 264
RENAME - MUSIC Command, 144
Renaming

Files, 144

UDS File, 596
Renaming Files (Editor), 264
RENUM (VSBE), 357
REPEAT - Editor Command, 264
REPLACE - Editor Command, 265
Replacing Text, 204

[ndex

683

Report Program Generator |1, 453
REPRO AM S Command, 569
REPT Key TTY Termina, 27
REQUEST Command, 145
REREAD - System Subroutine, 510
RESET Key, 205
RESET Key (FSED), 201
RESET Key 3270 Terminal, 23
Restart Facility
(Editor), 308
Efficiency (Editor), 310
Extent of Recovery (Editor), 309
LOG Command (Editor), 309
Log File (Editor), 308
Multi-Session, 312
Restrictions (Editor), 310
Sample Session (Editor), 311
Suppressing (Editor), 195, 310
Restart Number, Displaying, 151
Restoring Files, 604
Restoring UDS Files, 647

Restructured Extended Executor, (see also REXX)

Restructured Extended Executor - REXX, 441
Retrev Utility, 572
Retrieve Function Key, 109
Retrieving Files, 572, 604
Retrieving UDS Files, 647
Return Codes

LKED, 417
Return Location, Batch Job, 45
REXLIB Command, REXX, 444
REXX, 88, 441

Editor Macro Facility, 297

Interface to PANEL, 621

Loading, 187

REXLIB Command, 444
REXX - Editor Command, 265
REXX Filters, 451
RIGHT - Editor Command, 266
Ring, Magnetic Tape, 177
RJE Definition, 14
RJUST - System Subroutine, 511
RLSE on FILE Statement, 170
RN - MUSIC Command, 145
RO (Editor), 195
ROUTE - MUSIC Command, 35, 56, 145
ROUTE Destination

DUMMY, 56

MUSIC, 56

SYSTEM, 56
Route Location, Batch Output, 47
Routing Program Output to System Printer, 182
RPG Il - RPG, 453
RPG Loading, 187
RPGAUTO Loading, 187
RPG370

684 MUSIC/SP User's Reference Guide

References, 458

Statements, 456

Usage, 456
RPLGLG Loading, 187
RRDS

VSAM Files, 76
RSCS Printer, 56
RSCS Printers, 139
RSIZE on FILE Statement, 170, 173, 177
RSTART - System Subroutine, 511
RUN

(VSBE), 357
RUN - Editor Command, 266
Run Programs from Editor, 266
Run Time Step Parameters

VS PASCAL, 426
Running Program, 116
Running Programs from Editor, 238
RVRS - System Subroutine, 512

S

SAA RPG/370, 456
SAAFLAG - RPG370, 457
Sample

Restart Session (Editor), 311
SAVE (VSBE), 357
SAVE - Editor Command, 196, 266
Save Library, 60

Listing File Names, 126

Sorting, 633
Save Library File, 60

Introduction, 2

Name, 60
Saving

Output (Unit 10), 68
SAVREQ - System Subroutine, 513
SBIC (VSAPL), 328
SCAN - Editor Command, 199, 267
SCHED - MUSIC Command, 146
Scheduling Actions by Subroutines, 460
Scheduling Mestings, 132
SCREEN - Editor Command, 267
Screen Control 3270 Terminal, 23, 66
Screen Cursor (FSED), 203
Screen Format 3270 Terminal, 22
Screen States 3270 Workstation, 23
Scrolling Control

TTY Video Terminal, 28
Scrolling Definition, 28
SEARCH - Editor Command, 268
SEARCHL - Editor Command, 268
SECSP on FILE Statement, 170
Security, 11

Self-Teach CAl Courses, 663
SEND Command for Transferring Files, 24
SENDFILE - MUSIC Command, 146
Sending Messages, 154
Sending Messages to Operator, 145
SENDMAIL - MUSIC Command, 147
SEP - System Subroutine, 513
Separator String (Editor), 214
SEQ - Editor Command, 268
Sequence Numbering

(Editor), 268

(UTIL), 650
Sequential Files, Reading, 541
Sequential 1/0 FORTRAN

Max Record Size, 172-173
Service Units, 11

Used for Session, 135, 151
Session

Sample Restart (Editor), 311
Sessions, Multiple, 34
SET - Editor Command, 269
SETINF

Common Blocks, 539

Error Codes, 539

Option Keywords (SS), 534, 538
SETINF - System Subroutine, 514
SETRC - Editor Command, 269
Setup

TTY Termina, 28
SETV - Editor Command, 270
SHARE Attribute, 171
Share Attributes, 63
SHIFT - Editor Command, 270
Shifting by Subroutines, 464
SHOPAN - MUSIC Command, 147
SHOW - Editor Command, 270
SHOW Editor Command, 288
SHOWIN - System Subroutine, 514
SHOWPFK, 34, 110
SHOWPFK - MUSIC Command, 148
SHR on FILE Statement, 169, 171
Sign On

Command, 123

3270 Terminal, 22

3270-type Workstation, 125
Signing Off, 135
Signing On and Off Commands Summary, 91
SIGNOF - System Subroutine, 514
Simulation OSand VS, 331
Size

MAX Temporary UDS File, 172

Specifying Files, 170

Specifying Permanent UDS File, 175

Specifying Temporary UDSFile, 172

Specifying User Region, 189

UDSFile, 72

SIZE - Editor Command, 271
SKIP Command, 148
Skipping Output on Workstation, 148
Skipping to the Next Line, 204
SNAP Macro for ASM, 332
Software Definition, 13
Sort

COBOL, 633

COBOL SORT Verh, 642

Disk, 633

Facilities, 633

PL/I, 433, 633

Utility, 633

Utility Programs, 551
SORT - Editor Command, 272
SORT - MUSIC Command, 149
Sorting by Subroutines, 464
Sorting Subroutine, 636, 638, 640
Space

Allocation - Filesss, 170

Allocation, Files, 64

Bar 3270 Terminal, 24

Information Save Library, 631

Limit Temporary UDS File, 172

Release Files, 169
SPACE - Editor Command, 272
SPACE on FILE Statement, 170
Specia Forms, Batch Output, 47
SPELL - Editor Command, 273
Spelling Check Program, 9
SPLIT - Editor Command, 273
Spooled Conversational Reads, 69
Spooling Definition, 15
SRTIN (SS), 638
SRTMSG (SS), 639
SRTMUS - System Subroutine, 514
SRTMUS Subroutine, 640
SRTOUT (SS), 638
SSORT - System Subroutine, 514
Stack Usage REXX, 442
Starting the Editor, 193
Statements for Batch, 42
Statements Job Control, 164
STATUS - System Subroutine, 515
STATUS Command, 151
Stopping a Program, 99
STOPSK - System Subroutine, 515
Storage

Techniques, 60
STORE - Editor Command, 273
String Manipulation Subroutines, 464
String Separator (Editor), 214
Student Facility - CI, 7
Submit

Command, 46

MUSIC Batch Keywords, 47

I ndex

685

to MUSIC Batch, 42, 46-47, 152

to Operating Systems, 46
SUBMIT - Editor Command, 274
SUBMIT - MUSIC Command, 152
Subroutine, (see System Subroutines)

Interlanguage Communication VS PASCAL,

424
Interlanguage Communication VSFORTRAN,
393

Library Introduction, 3

Summary of, 460
SUBSET - Editor Command, 275
Summarizing Files, 152
SUMMARY - MUSIC Command, 152
SUMRY Command, 152
Supplemental Area PANEL, 617
Swapping Definition, 15
SY S - Job Control Statement, 189
SYSREQ Key (FSED), 200
SYSDATE - MUSIC Command, 153
SYSINE - System Subroutine, 515
SYSINL - System Subroutine, 516
SYSINM - System Subroutine, 516
SYSINR - System Subroutine, 516
SY SINR Usage for Conversational Reads, 69
SYSMSG - System Subroutine, 518
System

Control Program Definition, 13

Information Commands Summary, 91

Loader, 421

Names COBOL, 379

Names COBOL 11, 370

Overview, 13

Status, 151

Subroutine Library Introduction, 3
SYSTEM - ROUTE Destination, 56
System Subroutines

ABBREV, 466

ADTOXY, 466

BACKSP, 466

BIGBUF, 467

BITFLP, 467

BITOFF, 468

BITON, 468

BYTE, 468

B64TXT, 468

CANCAN, 469

CARGCALL, 470

CENTER, 470

CLOSDA, 470

CLRIN, 471

CLSFIL, 471

CMDRET, 471

CMDSTO, 471

CODON, 472

CORE, 472

686 MUSIC/SP User's Reference Guide

CRLF, 474
CTRAN, 474
C2D, 475

C21, 476

C2R, 476
C2X, 477
DATCNZ, 478
DATCON, 478
DEBUG, 479
DECN, 479
DECOUT, 479
DELAY, 480
DSORT, 480
ECHOIN, 480
EQJ, 480
EQUAL, 480
EQUALB, 481
FBAS64, 481
FILL, 483
FILMSG, 484
FIXSCR, 484
FNDALL, 484
FNDCHR, 485
FRMTDA, 486
FRSTOR, 486
GETID, 487
GETORP, 487
GETRET, 488
GTSTOR, 488
GULPDF, 489
GULPRD, 490
GULPWR, 490
HWORD, 491
ITSFCL, 547
ITSFID, 544
ITSFIW, 544
ITSFOP, 545
ITSFOR, 546
ITSFRE, 546
ITSFSS, 545
ITSFxx, 491
12C, 491

12X, 492
KEEPIN, 492
LAND, 493
LBCOMP, 493
LBMOVE, 493
LCOMP, 494
LCOMPL, 494
LJUST, 494
LMOVE, 495
LN, 495
LOCATE, 496
LOCNAM, 496
LOR, 497
LSHFTL, 497

LSHFTR, 497
LXOR, 497
MAZE, 497
MCNCAT, 498
MEZ2A, 498
MODFLD, 499
MODOFPT, 500
MOVE, 501
NOCRLF, 501
NOECHO, 502
NONCAN, 502
NOPAUS, 502
NOSHOW, 502
NOTRIN, 502
NPRMPT, 502
NSGNOF, 503
NXTCMD, 503
NXTPGM, 504
NXWORD, 505
OPNFIL, 506
PANFLD, 506
PARM, 507
PAUSE, 508
PROCOP, 508
PROMPT, 509
PURGE, 509
QFOPEN, 509
REREAD, 510
RJUST, 511
RSTART, 511
RVRS, 512
SAVREQ, 513
SEP, 513
SETINF, 514
SHOWIN, 514
SIGNOF, 514
SRTMUS, 514
SSORT, 514
STATUS, 515
STOPSK, 515
Summary of, 460
SYSINE, 515
SYSINL, 516
SYSINM, 516
SYSINR, 516
SYSMSG, 518
TABS, 518
TBAS64, 518
TBIT, 519
TEXTLC, 519
TEXTUC, 520
TIMCON, 520
TIMDAT, 521
TIMOFF, 522
TIMON, 522
TOLC, 522

TOUC, 522
TPCLSE, 523
TPOPEN, 523
TRANSL, 523
TRIN, 524
TSDATE, 524
TSTIME, 524
TSUSER, 525
UUDEC, 526
UUENC, 527
VERALL, 528
VERIFY, 529
WORD, 529
XGCOFF, 530
XGCON, 530
X2C, 531
X2l, 532
ZERO, 532

T

TAB Key, 204, 206
Tabbing with the Editor, 290
TABIN - Editor Command, 275
TABOUT - Editor Command, 276
Tabs
Changing Default Character, 631
Overview, 37
Setting (Editor), 275
Setting by Subroutines, 462
TTY Terminads, 28
TABS - System Subroutine, 518
TAG - Editor Command, 276
TAG - MUSIC Command, 153
Tag String - Files, 276
TAPE on FILE Statement, 177
TAPUTIL Utility, 643
TBAS64 - System Subroutine, 518
TBIT - System Subroutine, 519
TCB, Displaying, 160
TCP/IP, 92, 155
TCP/IP Internet, 607
Teacher's Menu, 6
TEDIT - MUSIC Command, 154
Telephone Connection to MUSIC, 18
Teletype Terminals, 27
TELL - MUSIC Command, 154
TELL, Intersystem, 155
TELNET, 607
Documentation, 608
TELNET - MUSIC Command, 33, 155
Temporary
File, 169
UDSFile, 172

Index

687

Space Limit, 172

TERM on FILE Statement, 181
Terminal

Modes, 88
Terminal Class

on /id Command, 124

Specifying Default, 631

3101, 27

3161, 27

3270 Terminal, 124
Terminal Status

3270 Attn, 23

3270 More..., 23

3270 Working, 23

3270 Writing, 23
Terminal Types, 29
Terminal Users

Displaying Number of, 151, 157
Terminals

Definition, 2

Number, 124, 151

Usage, 18
Terminating a Program, 99
TEST

REQ Key (FSED), 200
TESTF - VS/IFORTRAN Debugger, 399
TEST2741 (MUSIC/APL), 321
TEST2741 (VSAPL), 328
TEXT - Editor Command, 276
Text Formatting, 10
TEXTLC - System Subroutine, 519
TEXTUC - System Subroutine, 520
TIMCON - System Subroutine, 520
TIMDAT - System Subroutine, 521
Time

of Day Current, 151

Slice Definition, 14

Subroutines, 460
TIME - Editor Command, 277
Time Limits

Extension MUSIC/APL, 322

Extension VS APL, 329

Overview, 11

Workstation Jobs, 189
TIME on SY S Statement, 189
Time, Office, And Documentation Organizer, 8
TIMOFF - System Subroutine, 522
TIMON - System Subroutine, 522
Title Lines

ASM, 336

C/370, 363

COBOL, 374, 382

PL/I, 433

VSPASCAL, 426
TODO, 8
TODO - MUSIC Command, 156

688 MUSIC/SP User's Reference Guide

TOLC - Editor Command, 277

TOLC - System Subroutine, 522

TOP - Editor Command, 277

TOUC - Editor Command, 278

TOUC - System Subroutine, 522
TPCLSE - System Subroutine, 523
TPOPEN - System Subroutine, 523
Tracing and Debugging, VSAM, 83
Trademarks, vi

TRAN - Editor Command, 278, 293
Transfer Files, 24

TRANSL - System Subroutine, 523
Trandation Magnetic Tape, 178
Transmission Control Unit Definition, 13
Transporting VS APL Workspaces, 328
TREE - Editor Command, 278

TREE - MUSIC Command, 63, 156
Tree Structured File Naming, 61

TRIN - System Subroutine, 524

Triple Spacing, 66

TRTCH on FILE Statement, 178
TSDATE - System Subroutine, 524
TSTIME - System Subroutine, 524
TSUSER - System Subroutine, 525
TTY Definition, 27

TUT - MUSIC Command, 157
TYPEDRILL (MUSIC/APL), 321
Typing Mistakes Correction, 18

Typing Mistakes Correction 3270 Terminal, 23

U

UDS Access Subroutines, 461
UDSFiles, 60
Access Control, 71
Archiving, 646
Backup, 175
Block Size for Magnetic Tapes, 177
Buffer Allocation, 72
Buffer Space, 72
Copying, 648
Creation, 176
Deletion, 176
Disk Block Utilization, 72
Disposition, 175
Editing, 289
Enqueue, 174
Finding Size of ($INFO), 649
Introduction, 2, 71
Listing Names, 594
Logical Record Length, 173, 175, 177
Magnectic Tape, 176
Names, 71
Naming Rules, 174

Number of Records, 173-174

Permanent, 173

Private, 174

Public Read-Only, 174

Public Write Access, 174

Record Length, 173, 175

Record Size, 173, 175, 177

Renaming, 593, 596

Restoring, 647

Retrieving, 647

Size, 72

Storage Technique, 71

Temporary, 172

Temporary UDSFile, 172

Utilities for, 648

Utility Programs, 550

Volume Name Specification, 175
UDSon FILE Statement, 172, 174
UDSARC Contents of Information Record, 647
UDSARC Utility, 646
UDSRST Utility, 647
UFIND - Editor Command, 278
ULOCATE - Editor Command, 279
Undefined File FILE Statement, 181
UNDEFINED on FILE Statement, 181
Undefined Record Format (U), 64
UNDELETE - Editor Command, 279
UNFF - Editor Command, 280
UNFORMAT - Editor Command, 280
Unformatted 1/0 FORTRAN, 172-173
Unit Numbers, 65

Logical, 167-168, 174, 177, 180

Logical Default Assignment, 167
Unit Record Device FILE Statement, 181
Unit 10, 65, 68
Unit 10 Default Assignment, 167
Unit 5, 65
Unit 5 Default Assignment, 167
Unit 6, 65
Unit 6 Default Assignment, 167
Unit 7, 65
Unit 7 Default Assignment, 167
Unit 9, 65
Unit 9 Default Assignment, 167
Unit 9 from Batch, 45
Unlocking the Keyboard, 205
UNMARK - Editor Command, 280
UNSORT - Editor Command, 280
UP - Editor Command, 280
UPPAGE - Editor Command, 281
Upper and Lower Case

(Editor), 276

Editing, 154

3270 Terminal, 24
UPWINDOW - Editor Command, 281
Usage Constraints Introduction, 12

USENET, 145
User Library Index, 63
User Region
Introduction, 14
Size, 14
Userids
Changing Options, 629
Introduction, 11
Out of Funds, 124
Printing Current, 151
Protection, 11
Specifying, 123
Users
Displaying Number of (Editor), 277, 281
USERS - Editor Command, 281
USERS Command, 157
Using Terminals, 18
UTIL Utility, 648
UTIL Utility Examples, 651
Utilities Definition, 4
UUDEC - System Subroutine, 526
UUENC - System Subroutine, 527

\%

Variable Compressed Record Format (VC), 64
Variable Length Record Format (V), 64
VER - MUSIC Command, 157
VERALL - System Subroutine, 528
VERIFY - Editor Command, 281
VERIFY - System Subroutine, 529
VIEW, 653
VIEW - MUSIC Command, 158
Viewing an Encrypted File, 115
Viewing Fileswith VIEW, 653
Virtual Storage Access Method, 75
VM - MUSIC Command, 158
VM command, 158
VM Definition, 14
VMPRINT Utility, 659
Volume Name
Magnetic Tape, 178
Specification UDS File, 175
VOLUME on FILE Statement, 178
VS
PASCAL, 423
VSAPL, 324
Conversion of MUSIC/APL Workspaces, 327
Full Screen Editing of Functions, 324, 328
Limiting Time Option, 329
System Commands, 326
Time Limits Extension, 329
Transporting Workspaces, 328
Workspace Library, 327

Index 689

Workspaces, 326
Workstation Reguirement, 325
VS Assembler, 330
Link-Editing, 414
Running from Object Modules, 335, 373, 382,
385, 433
VSBASIC
Chaining Programs, 346
Compiler, 345
Control of Input/Output Files, 349
Control Statements, 347
Editor, 353
Editor Invoking, 355
Object Modules, 348
Storage Requirement, 347
VS BASIC Editor Invoking, 98
VS FORTRAN, 387
VS FORTRAN Interlanguage Communication,
393
V S Macros Supported, 331
VSPASCAL, 423
Running from Object Modules, 426
VS PASCAL Interlanguage Communication, 424
VSAM, 75
Abend Codes, 82
Data Storage Organization, 76
Error Codes, 79
File Sharing, 79
Files, 75
GET Request, 83
Indexes, 77
Main Storage Reguirements, 78
PL/I Support, 84
Sample Program, 84
Tracing and Debugging, 83
VSAM Files
ESDS, 76
KSDS, 76
Processing with AMS, 552
RRDS, 76
VSAM IBM BASIC Support, 344
VSAPL, 324
VSAPL.FS, 324
VSBASIC Loading, 187
VSBASIC, Buffer Space, 73
VSFORT Loading, 187
VSPASCAL Loading, 187

690 MUSIC/SP User's Reference Guide

\W

WEB - MUSIC Command, 160
WHOAMI - MUSIC Command, 160
WINDOW - Editor Command, 282
WINDOW Command, 161
WINDOW Editor Command, 292
Windows, PCWSfor, 30
WORD - System Subroutine, 529
Word Movement Subroutines, 463
Working 3270 Terminal State, 23
Workspaces MUSIC/APL, 320
Workspaces VS APL, 326
Workstation

Definition, 2
Workstation I/0O Control Commands

Summary, 89
Workstation Status

3270 Reading, 23
Workstation Users

Displaying Number of, 151, 157
Workstations

ASCIL, 27

Class, 124

Defaults, 20

Direct Control, 38

Error Messages, 39

Feature Subroutines, 462

Holding File FILE Statement, 181

IBM 3101, 27

IBM 3161, 27

IBM 3163, 27

IBM 3164, 27

IBM 3270, 21

Modes, 88

Multi-Session, 34

Number, 124, 151

Output Control, 37

Password Changing, 630-631

Prompting Subroutines, 462

Screen States, 23

Supported by MUSIC, 19

Type Specifying Default, 631

Usage, 18
Wrap-around - POWERINP, 212, 260
Write to Input Area, 3270 Terminal, 67
Write to Message Area, 3270 Terminal, 66
Writing Binary Zeros to File, 660
Writing 3270 Terminal State, 23
WSFNS (MUSIC/APL), 321
WSHR on FILE Statement, 169

X

X - Editor Command, 282

X Command Defining (Editor), 287
XGCOFF - System Subroutine, 530
XGCON - System Subroutine, 530
XIN - Editor Command, 283, 293
XL - Editor Command, 283
XMON, 420

XMON Loading, 187

XMON, Buffer Space, 73

XMPLI Buffer Space, 74

XMPLI Loading, 187

XMRPG Loading, 187
XMRPG370, 456

XO on FILE Statement, 171
XTMUS - MUSIC Command, 161
XTPC - MUSIC Command, 162
X2C - System Subroutine, 531

X2l - System Subroutine, 532

z

ZERO - System Subroutine, 532
ZERO.FILE Utility, 660

ZEROCNT - MUSIC Command, 162
ZONE - Editor Command, 283

2

2741 Terminal
Testing, 321, 328

3

3101 Terminals, 27

316x Terminals, 27
3270 Termindl, 21
(FSED), 197
Architecture, 18
Attn Status, 23
Display Control Subroutines, 462
Emulation, 19
Entry Assist, 21
Line Call Down, 23
More... Status, 23
Overview, 19
Screen Control, 23
Screen Format, 22
Sign On, 22
Working Status, 23
Writeto Message Area, 66
Writing Status, 23
3270 Terminal, Write to Input Area, 67
3270 Workstation
Panel Generator, 610
Reading Status, 23
Screen Formatting, 610
Screen States, 23
3270/PC
Receive, IBM PC, 25
Send, IBM PC, 24
Workstation, IBM PC, 24

7

7 Track Magnetic Tape, 178
7 Track on FILE Statement, 178
7Trk on FILE Statement, 178

9

9 Track Magnetic Tape, 178
9 Track on FILE Statement, 178
9TRK on FILE Statement, 178

[ndex

691

692 MUSIC/SP User's Reference Guide

Table of Contents

Chapter 1. Introduction e 1
Introduction to Interactive Computing 2
How to Get MUSICtoWork for You 2
Onlinelnformation e 2
FilesonMUSIC e 2
MUSIC/SPEditor e 3
Processors 3
System SubroutineLibrary 3
BaichProcessing e 3
Utility Programs 4
Menu Facilities e 5
OVEIVIBW e e 5

Full Screeninterface (FSI) o o o 5
Menufor Teachers(CM) o o 6
Time, Office, and Documentation Organizer (TODO) 8
MUSIC and You (Useridsand Profiles) 11
WhatisaUserid? e 11
Password e 11
TimeLimits e 11
Fund Allocation 11
Disk Allocation e 12
Userid Profile o 12
MUSIC System OVerview e e e 13
HardwareComponents i it 13
MUSICSystemTasks 13
VMandMUSIC 14
User Region 14
User Servicing Techniques o o oo ot e e 14
Chapter 2. Workstationso o e 17
Overview of Workstations 18
BasicConecepts 18
Typesof ConNnections e 19

IBM 3270-type Terminals (Connectiontypel) 21
Entry Assist Feature 21
SignontoMUSIC e 22
ScreenFormat L L 22
ScreenControl 23
MUSIC ScreenStates 23
3270/PC and other Co-Axia Connected PCs 24
ASCIl Terminas (Connectiontype2) 27
PCWS (Connectiontype3) i 29

MUSIC/SP User's Reference Guide vii

viii

NET3270 for Personal Computers (Connectiontyped4) 31

Starting NET3270 e 31
NET3270Features e e 31
Internet Access (connectiontype5b)o 33
Using the Internet to ConnecttoMUSIC 33
MUSICSTELNET Command 33
Multi-SesSion SUPPOIt o e e e 34
SESSIONSCommand e 36
Workstation Output Control 37
Workstation Error MeSsages e 39
Chapter 3. UsingBatch 41
BatchConcepts e 42
MUSIC Commands and StatementsonBatch 42
PreparingaBatchJob 43
Format of theBatch /ID Statement 43
Printer Control 44
Special Operator Message-/PAUSE 44
Return LocationMeSsages o o i 45
PurgingFiles 45
UnitQonBatch 45
Submitting Jobs to MUSIC Batch & Other Operating Systems 46
SUBMIT Program 46
/INFO Job Control Statement 47
SubmittingtoMUSICbatch 47
Examplesof SUBMIT 48
OUTPUT Management Facility 50
Usingthe OUTPUT Facility 50
OUTPUT Commands it e e e 53
Non-3270 Support (TTY Mode) oo 55
Printing Files 56
Checking the Statusof Printers 58
Chapter 4. FileSystemand I/O Interface 59
FileSystems e 60
Savelibrary Files 60
Hierarchical Tree Structured FileNaming 61
UnitNumbers e e 65
Cariage Control Characters e 66
HoldingFile 68
Spooled Conversational Reads 69

MUSIC/SP User's Reference Guide

UserDataSets(UDS) o o o 71

Storing DataonaUDSFile 72
Disk Block Utilization 72
Buffer Allocationfor UDSFiles 72
MUSIC/SP Virtual Storage AccessMethod (VSAM) 75
Introductionto VSAM 75
VSAM References 75
VSAM Abbreviations 75
VSAM Data Storage and Organization 76
FeaturesNot Supportedby VSAM L 77
VSAM UsageNotes 78
Main Storage Requirements-VSAM L 78
VSAM FileSharing 79
VSAMError Codes oo 79
VSAM AbendCodes 82
Tracing and Debugging Facilities 83
VSAM MiscellaneousNotes 83
PLALSUPPOIt e 84
SampleProgramfor VSAM 84
Chapter 5, MUSIC Commands e 87
MUSIC Commands- Overview e 88
WorkstationModes 88
Functional Summary of Commands 89
MUSIC Commands Equivalentto Other Systems 94
MUSIC Command Descriptions it 96
Command Presentation, 96
ACCESS 97
ADD . .. 97
AMS 98
ATTRIB 98
BASIC . . . 98
BIGEDIT 99
BROWSE 99
ICANCEL 99
CD . e 100
CHAT . 101
CHMOD 102
Cl o e 103
CICS . . 103
CM 103
COBTEST o e s 104
COMPARE 104
ICOMPRESS e 105
CONF . . 106
CONFMAN . . 106
COPY . 106
COUNT . . 107
DEBUG 108
DECRYPT 108
IDEFINE e 108
DELETE 110
DIR . . 111

MUSIC/SP User's Reference Guide ix

IDISCON 112

DISPLAY . . e 113
DW370 e e 114
EDIT . . o e e 114
ENCRYPT e 115
ERASE e 115
EVIEW . . . e 115
EXECUTE e e 116
FINDTEXT . . . o e e e e e e e e e e e e e 117
FINGER e e e 118
FLIB . . . e e 119
FSl e 119
FTP . . e e 120
GDDM . . e e 120
GETMAIL . . . e 120
GETMINFO e 121
GOPHER e 122
HELP e e e e e 122
1D e e e 123
IDP . e 125
IRC . . e 126
LANG . . . e 126
LIBRARY e 126
LIST . e e 129
LM e 130
MAIL . . e 131
MAKXXXX ottt e e e e e e e e e e e e e e e e e e 131
MAN . e 131
MD . . e 132
MEET e e 132
MESSAGES e 133
MNSORT e e 133
MS e 133
NET . . e e 134
NEWPW . . . e e e 134
NEWS . . e 134
INEXT o e e e 135
OFF . e 135
OUTPUT . . . o e e s e e e e e e e e e 135
PCEXEC e 136
PHONE e 136
PING . . . e 136
PIPE . . . e 137
PLAN . o e 137
POLYSOLVE e e e 137
POST . . . e 137
PO . . e 138
IPREVIOUS e e e 138
PRINT . . . e 138
PROFILE e e e 140
PROG e 140
PURGE e 140
QF TP . . e 142
RD .. e 142
IRECORD e e e 143
RENAME e e 144

X MUSIC/SP User's Reference Guide

RN 145
ROUTE e 145
SCHED 146
SENDFILE 146
SENDMAIL . . . 147
SHOPAN . . 147
SHOWPFK . . 148
ISKIP 148
SORT . . e 149
ISTATUS . . 151
SUBMIT . . 152
SUMMARY . . 152
SYSDATE e 153
TAG . 153
TEDIT . . 154
TELL . . o 154
TELNET . . . 155
ITIME . . e e 155
TODO . . . 156
TREE 156
TUT 157
JUSERS 157
VER . . 157
VIEW 158
VM 158
WEB . . 160
WHOAMI . . 160
IWINDOW . . . e 161
XTMUS . e 161
XTPC 162
ZEROCNT e 162
Chapter 6. MUSIC Job Control Statements 163
Job Control Statements- Overview 164
Conventions e 164
Job Control Statement Descriptions 165
ICOM . 165
IDATA 165
TEND . . 166
TETC o 166
[FILE (Generd Overview) it 167
IFILE(Files) e e 168
[FILE (Temporary UDS) o e e 172
[FILE(Permanent UDS) e 173
[FILE (TapeUDS) e e e e 176
[FILE (Miscellaneous) o 180
[FILE (Printers) o o e 182
NID 183
/INCLUDE e e 183
IINFO . 185
I1JOB . 185
ILOAD . . . 185
JOPT 188

MUSIC/SP User's Reference Guide xi

Xii

IPARM . . 188

IPASSWORD 188
IPAUSE 188
ISY S 189
Chapter 7.Using TheEditor 191
Overview of theEditor 192
Editor Concepts 192
Starting and Ending the Editor 193
Editor Full-ScreenMode 197
Introductionto Full-ScreenMode 197
Screen Format for Full-ScreenMode 197
EditingKeys 199
Suggestions for Efficient use of Full-ScreenMode 202
CreatingaNew File 204
Input of Datafor the Editor 204
Common Editing Functions 206
Making ChangesontheCurrent Screen 206
MovingtheCursor 206
PagingUpandDown 206
Inserting and Deleting Characters 207
Insertingand DeletingLines 207
FILEandQUIT Commands 208
Getting Helpfor the Editor 208
Common Editor Commands, 208
MarkingaGroupof Lines 209
Prefix Area e 211
EditorCommands e 214
Notation e 214
Command Syntax e 214
String Separator e e 214
Functional Summary of Commands 214
Editor Command Descriptions 219
Advanced Features e 286
Starting Column Suffix--CN 286
Logical Commands 286
Defining Function Keysandthe X Command 287
Creatingyour own Editor, 288
EditingaLargeFile 289
Editing User DataSetFiles 289
Additional Editor Command Input 290
Specifying Editor Comments(* Command) 290
DefiningaTABkey 290
Using Full-Screen Mode Without FunctionKeys 291
Simulating Additional FunctionKeys 291
Blank-Filled Screen Display 291
Output Cursor Positioningo oo vt e e e e 291
The S Parameter on the SCAN and CHANGE Commands 292
RIGHT and LEFT Parameters on the WINDOW Command 292
Hexadecima Inputand Output 293

MUSIC/SP User's Reference Guide

Hexadecima InputFormat 294

Changing ScreenColors 294
Editor Macro Facility inREXX 297
Writing Editor Macros 297
ReturnCodes 297
TheEXTRACT Command 297
SampleMacros 304
Defining Prefix Macros 306
Editor Restart Facility 308
Introduction 308
Genera Description 308
Extentof Recovery 309
TheLOG Command et 309
EffectonPerformance 310
Suppressingthe Restart Feature 310
Restrictions 310
Sample Terminal Session o 311
Editor Restart for MultipleSessions 312
Chapter 8. Processors i i i e e e e 313
Overview of Processors o o i i i 314
MUSIC Compilers 314
MUSICLoaders e 315
MUSIC Linkage Editor 315
Load Module Executors 316
MUSIC Interpreters 316
Programming Tutorials 317
APL -SubsetVersion e 318
Running MUSIC/APL 318
Workstation Requirement- APLo 318
UsageNotes- APL 319
APL WorkspaceConcepts o o i 320
Initializingan APLWS 320
Using A WSLibrary-APL 320
APL PublicWorkspaces 321
APL SystemCommands 321
MUSIC/APLIBeams 322
Limiting TimeOption- APL, 322
Extension of Session TimeLimits-APL 322
References- APL 323
APL Interpreter - VSAPL 324
UsageNotes- VSAPL 324
Running VSAPL 324
Workstation Requirement-VSAPL, 325
APL SystemCommands 326
Workspace Concepts-VSAPL 326
Workspace Compatibility - VSAPL 327
Workspace Conversion of old MUSIC/APL Workspaces 327
Workspace Library Numbers-VSAPL 327
APL PublicWorkspaces e 327
Transporting VS APL Workspacesto Other Installations 328
Limiting TimeOption-VSAPL 329
Extension of Session TimeLimits-VSAPL 329

MUSIC/SP User's Reference Guide xiii

References- VSAPL 329

Assembler - ASM 330
MacroLibrary -ASM 330
Macro Instructions-ASM 331
SNAPMacro-ASM e 332
Input/Output - ASM 333
Usage- ASM 333
Parameters: Compile Step-ASM 334
Parameters: Loader Step-ASM 335
Parameters: Go Step-ASM L 336
TitleLines-ASM e 336
References- ASM e 336
Examples- ASM 336

Assembler (Loader) - ASMLG 339
Usage- ASMLG 339
Parameters- ASMLG 339
Example- ASMLG 340

IBM BASIC Environment - IBMBASIC 341
Usage- IBMBASIC 341
IBM BASIC programsasload modules 343
IBM BASIC Interlanguage Communications 343
IBM BASICVSAM Support o 344
References- IBMBASIC 344

BASIC Compiler-VSBASIC 345
VSBASICHighlights, 345
Language Specifications- VSBASIC 345
UsageNotes- VSBASIC 346
Continuation Statements- VSBASIC 347
Main Storage Requirements- VSBASIC 347
Control Statement Set Up-VSBASIC 347
VSBASICObjectModules 348
VSBASIC Compiler Parameters- /OPT Statement 348
Control of Input/Output Files- VSBASIC 349
Pre-Defined DDNAMES-VSBASIC 350
Examplesof VSBASICPrograms 350
VSBASICEditor e 353
VSBASICEditorCommands 355

IBM C/370 Compilers e 359
Usage-CI370 359
Available Unit Numbers and Buffer Space-C/370 359
Externa FileNames-C/370 359
Parameters: Compiler Step-C/370 360
Parameters: Loader Step-C/370 361
Parameters: Go Step-C/370 362
TitleLines-C/370 e 363
References- C/370 363
Example-C/370 363

CICSIVM-MUSIC Interface-CICS 364
Usage-CICS 364
Application Lists-CICS 365
CICSIVM Setup Fecility 366
References- CICS 368

COBOL Compiler-COBOL2 i 369
UsageNotes- COBOL2 i i 369
Input/Output - COBOL2 369
SystemNames-COBOL2 370

xiv. MUSIC/SP User's Reference Guide

External Names- COBOL2 i i 370

Usage- COBOL2 e 371
Parameters; Compile Step-COBOL2 372
Parameters: Loader Step 373
Parameters: Go Step-COBOL2 374
TitleLines- COBOL2 et 374
COBOL Il InteractiveDebugger o oo v v i i 374
References- COBOL2 o i 376
Examples- COBOL2 376
COBOL Compiler -VSCOBOL o oo e e 378
Input/Output - VSCOBOL o oo e 378
Direct AccessSupport -VSCOBOL 378
SystemNames-VSCOBOL it 379
Externa Names-VSCOBOL, 379
Usage-VSCOBOL e e e e 380
Parameters: Compile Step-VSCOBOL 380
Parameters: Loader Step 381
Parameters: Go Step-VSCOBOL o 382
TitleLines-VSCOBOL i 382
References- VSCOBOL o o 383
Examples-VSCOBOL 383
COBOL (Loader) - COBLG oo e e e e e 385
Usage- COBOLG e e e e 385
Parameters e 385
FORTRAN Compiler -VSFORT oo 387
AvalableVersions- VSFORT 387
Interactive Debug-VSFORT 387
Control Statements- VSFORT 387
Defining Program Files- VSFORT 388
Compiler Options on the /OPT Statement - VSFORT 389
Loader and MV'S Simulator Options on the /JOB Statement 389
Execution-Time Parameters- VSFORT 391
Block Letter Titles-VSFORT 391
Using Object Modules and Load Modules- VSFORT 391
UsageNotes- VSFORT o 392
Interlanguage Communication- VSFORT 393
MUSIC Extensionsto NAMELIST Input 3%
VS Fortran Interactive Debug (IAD) 394
Separation Tool - VSFORT o 396
Alternate Math Library (Version1Only) 396
SampleProgram-VSFORT 396
References- VSFORT o o 398
MUSIC/SPVSFORTRAN Debugger - TESTF 399
Invoking TESTF (VSFortranDebugger) 399
VS Fortran Debugger FunctionKeys 401
VSFortran Debugger Commands 403
Genera Purpose Simulation System-GPSS 408
Redtrictions-GPSS 408
Usage-GPSS 408
Reference-GPSS 408
Example-GPSS 409
Graphical DataDisplay Manager -GDDM 410
Command-GDDM e 410
UsageNotes-GDDM 410
Full-ScreenMenu-GDDM 411
References- GDDM 412

MUSIC/SP User's Reference Guide xv

Examples-GDDM 413

LinkageEditor-LKED e 414
Link-editing COBOL, VS Assembler and PL/I Programs 414
Usage-LKED 414
Parameters-LKED 415
Control Statements-LKED 416
LinkageEditor ReturnCodes 417
Reference-LKED 417
Example-LKED 417

Load ModuleExecutor -EXEC 418
COBOL,ASM andPL/l LoadModules 418
Usage-EXEC 418
Control Line-EXEC e 418
Example-EXEC 419

Load Module Executor - XMON 420
Usage- XMON e 420

LOADER- SystemLoader 421
Usage- LOADER 421
Parameters: Loader Step- LOADER 421
Example- LOADER 422

PASCAL Compiler - VSPASCAL i i e i 423
Usage- VSPASCAL e 423
Main Storage Requirements- VSPASCAL 424
Interlanguage Communication- VSPASCAL 424
External FileNames-VSPASCAL 424
Parameters: Compiler Step- VSPASCAL 424
Parameters: Loader Step- VSPASCAL 425
Parameters: Go Step-VSPASCAL o oo 426
TitleLines- VSPASCAL e 426
VSPASCAL InteractiveDebugger 427
References- VSPASCAL e 427
Examples-VSPASCAL e 427

PL/l Version 2 Optimizing Compiler - PLI 429
UsageNotes-PLI 429
Usage-PLI 430
Available Unit Numbers and Buffer Space-PLI 430
External FileNames-PLI 430
Parameters: Compiler Step-PLI 431
Parameters: Loader Step-PLI 432
Parameters: Go Step-PLIo 433
TitleLines-PLI e 433
PL/ESOrt . . . 433
References-PLI e 434
Example-PLI 434
PLITEST e e e 434

PL/ OSModeLoader-PLILG 438
Usage-PLILG 438
Available Unit Numbers and Buffer Spaces- PLILG 438
Parameters-PLILG e 438

PL/I Load Module Executor - XMPLI 440
Usage- XMPLI 440
Available Unit Numbers and Buffer Space- XMPLI 440

Restructured Extended Executor - REXX 441
InvokingREXX 441
Executing MUSIC Commands- REXX 441
Communicating with theworkstation- REXX 442

xvi MUSIC/SP User's Reference Guide

Accessingthe STACK -REXX i 442

MUSIO Command - REXX 443
EXECCommand-REXX 444
REXLIB Command- REXX, 444
Program Chaining- REXX 445
Interface with the PANEL subsystem-REXX 446
Cdlable MUSIC System Functions- REXX 446
Editor Macro Facility - REXX 446
Sample REXX programs 447
Pipellineson MUSIC/SP 448
RPGII-RPG 453
Control Statements-RPG 453
Usage-RPG 453
The /COPY Statement of Autoreport-RPG 455
SamplePrograms-RPG 455
ReferenceManuas-RPG 455
SAARPGI/370 456
Control Statements-RPG370 456
Usage-RPG370 456
Example-RPG370 456
References- RPG370 458
Chapter 9. System Subroutines 459
OVEIVIBW . . . o 460
Functional Summary of Subroutines 460
Subroutines Listed Alphabetically 466
Dynamic AccesstoFiles 534
OPNFIL Subroutine(OpenakFile) 534
CLSFIL Subroutine (CloseaFile) 534
SETINF Subroutine (Set Information foraNew File) 534
FILMSG Subroutine (Get Error Description) 535
CalingSequences 535
OptionKeywordsforOpen 537
OptionKeywordsforClose 537
Keywords for SETINF Access Control Options 538
CommonBlocksUsed 538
Error Codesand Descriptions 539
Examples 540
QFOPEN, QFCLOS, QFREAD, QFBKRD, QFRBA, QFREW 541
ITSSubroutines 544
Chapter 10. Utilities 549
Summary of Utility Programs 550
Archiving e 550
WorkingwithFiles 550
WorkingwithUDSFiles 550
SOrtiNg . . . 551
Batch Utilities 551
Miscellaneous Utilities 551
MUSIC/SP Access Method Services(AMS) 552
Definitionsand BasicConcepts 552
Command Language Syntax 553
Invoking AccessMethod Services 554

MUSIC/SP User's Reference Guide xvii

Access Method ServicesCommands 555

ARCHIV/IRETREV e 571
Archiving and RetrievingUser Files 571
ARCHIV Program 571
Retrieving Filess RETREV 572

Debug Facility 573
How DebugWorks 573
InvokingDebug 574
Other TOPICS o o o e e 579
FunctionKeys 582
DebugCommands 583
WatchPoint Facility 590

DSCOPY . . 593
Copying one UDSFileTo Another - DSCOPY 593

DSLIST . . 594
Examples 594

DSREN . . . 596
UDSRenameProgram o i 596
USNngDSREN 596
Non-Conversational DSREN 596

ENCRYPT/DECRYPT e e e e e 597
Parameters 597

EXARCHand EXREST 599
EXARCH 599
EXREST . . . 600

FILARC/FILRST/FILCHK e e 603
Dumping and Restoring MUSIC Files 603
Control Statements e 603
FileArchive (FILARC) 603
FileRestore(FILRST) 604
Dump Checkout (FILCHK) 605

FTPand TELNET fromMUSIC 607
CoNNECtion e 607
Login 607
Documentation 608

LBLIST . . 609
Printing SaveLibraries 609

PANEL 610
Fullscreen Panel Generator 610
ServicesProvidedby PANEL 610
DevelopingPanels 611
CreatingaNew Panel 612
Modifying an ExistingPanel L 612
Modification FunctionKeys 613
Examplesof ModifyingaPanel 615

xviii MUSIC/SP User's Reference Guide

StoringPanels 616

Accessing PanelsthroughaProgram 617
Codingexamples e 619
USage o 621
Panel Printing 621
REXX interfaceto PANEL 621
POLYSOLVE 624
OVEIVIBW . . . o 624
UsageNotes 624
Constants 625
Variables 625
Implied Operations i 625
Functions 625
EnteringaPolynomial 626
Continuingan Expressiono 626
Entering Coefficients 626
SOIUtioON . . . e 626
Example 627
PROFILE 629
OVEIVIBW . . . o 629
OpLioNS e 629
Example 631
SOMtiNG . . . o e 633
Overview of MUSIC SORT Facilities 633
MNSORT - MUSIC Main Programfor Sorting 633
DSORT Subroutine 636
SRTMUS Subroutine 640
Using COBOL'sSORT Feature 642
TAPUTIL . . . 643
USage 643
Parameters 643
NOteS 644
Examples 644
UDSARC/UDSRST/DSCHK e 646
Archiving and Retrieving User Data Set (UDS) Files 646
UDSARCProgram e e 646
Retrieving UDSFiless UDSRST 647
DSCHK Program 647
Contentsof InformationRecords 647
UTIL . 648
USage 648
Control Statements 648
Examples 651
VIEW 653
Summary of Commands 653
TheScroll Area 657
VMPRINT . 659
USage 659

MUSIC/SP User's Reference Guide xix

XX

ZERO.FFILE 660

Program to Write ZeroestoaFile 660
ApPPendiXeS . . . L 661
Appendix AL TIPS/IITAS . . . o o 662
Interactive Instructional Systems L 662
Appendix B.LEARN Program, 663
CourseSIgnONn e 663
CourseSign Off 663

Index 665

MUSIC/SP User's Reference Guide

Figure1l.1- Main Selection Screenof FSI 6
Figure1.3-CM MenuDisplay 7
Figure1.4-Cl MenuDisplay 8
Figure1.5-TODOMenuDisplay it 9
Figure2.1 - Sample NET3270 Configuration 31
Figure2.2- NET3270HelpScreen oo 32
Figure 2.3 - Screen display for SESSIONScommand 36
Figure3.1-/ID StatementforBatch 44
Figure3.2- OUTPUT Facility Screen oo oo i i e 51
Figure4.1- Screendisplay for TREEcommand 62
Figure7.1- Stepsfor UsingtheEditor 194
Figure7.2 - Screen Display in Full-ScreenMode 197
Figure 7.3 - Screen Display for InputMode 204
Figure 7.4 - Prefix Areaof theEditor 211
Figure8.1-Compilers 315
Figure8.2-Linkage Editor 316
Figure8.3-CICSInterface 364
Figure8.4-CICSInterfaceSetup oo 367
Figure85-COBOL IIDebug e e e e e 375
Figure 8.6 - Example of MUSIC's VS/FORTRAN Debugger Display 399
Figure8.7-Menufor GDDM 412
Figure 10.1 - Alter Keywords Used with VSAM Objects 556
Figure10.2 - Debug Memory Display o 576
Figure 10.3- Debug InstructionDisplay 577
Figure 10.4 - Displaying Watchpoints 591
Figure 10.5- Adding Watchpoints, 592
Figure 10.6 - Function Keysfor PANEL 613
Figure10.7-Flowof Panels 616
Figure10.8- SamplePanel 619

MUSIC/SP User's Reference Guide xxi

xxii MUSIC/SP User's Reference Guide

MUSIC/SP READER'S
User's Reference Guide COMMENT
August 1995 FORM

You may use thisform to communicate your comments about this publication, its organization, or
subject matter, with the under standing that the MUSIC Product Group may use or distribute what-
ever information you supply in any way it believes appropriate without inccurring any obligation to
you.

Possible topicsfor commentsare:

Clarity Accuracy Completeness Organization Cading Retrieval Legibility

If you wish areply, give your name, institution, mailing address and date:

What isyour occupation?

Number of latest Newdletter associated with this publication:

Thank you for your cooperation.

MUSIC/SP User's Reference Guide (August 1995)

Reader's Comment Form

fold and tape please do not staple fold and tape

Place
stamp
here

MUSIC Product Group
McGill SystemsInc.

550 Sherbrooke St. West
Suite 1650, West Tower
Montreal, Quebec H3A 1B9
CANADA

fold and tape please do not staple fold and tape

