
 MUSIC/SP Administrator's Reference

 Part V - Chapter 18 - 23 (AR_P5.cm PS)

 Part V. MUSIC/SP Internals

 Part V. MUSIC/SP Internals 359

 Chapter 18. System Internals
———————————————
 MUSIC/SP's Main Storage

Figure 18.1 shows the relationship between MUSIC/SP's real storage and virtual storage layouts.

 Virtual View Real View

 FLPA

 BPOOL

 RCBs

 ___________ PAGE

 TCBs POOL (2)

 NUCLEUS
 FLPA
 8MB ___________

 BPOOL

 RCBs

 TCBs

 U.R. NUCLEUS

 PAGE
 POOL (1)

 PAGE 0 --->
 0

 <--- PAGE 0
 0

Figure 18.1 - Main Storage Layout of MUSIC

MUSIC/SP uses virtual storage. Page and segment tables are used to map the real storage layout to the

360 MUSIC/SP Administrator's Reference - Part V

virtual storage layout. When MUSIC/SP is running the virtual storage layout is used by the majority of the
system. The real storage layout is only of concern to those components of the system handling the page
tables and low level I/O operations.

In the virtual view, the first 8 megabytes are taken up by an area called the User Region. Only a single user
task can occupy this area at any given instant. The nucleus starts at address 8 megabytes and is followed by
control blocks, buffers, and the Link Pack Area.

In the real view, the nucleus starts at address 30000 (hex). Thus any virtual addresses in the nucleus can be
converted to a real address by subtracting 7D0000 (hex). The User Region component for each user is
provided from the two page pool areas. At any instant only the pages for one user task are mapped to the
virtual User Region area. If there is not enough space in these page pools to store the User Region pages for
all user tasks, inactive tasks are paged or swapped to disk. The nucleus, control blocks, buffers and LPA are
never paged or swapped.

Nucleus: contains the MUSIC/SP operating system supervisor program.

TCBs: contains the Terminal Control Blocks. There is one TCB for every terminal I/O device
 defined to MUSIC/SP.

RCBs: contains the Region Control Blocks. There is one RCB for every possible user job that is
 in the user region area.

BPOOL: contains the Buffer Pool (buffer pool) used to transfer information between the user
 regions and the terminals.

Fixed Link Pack Area:
 contains high usage programs used by users. The use of this optional FLPA can improve
 MUSIC/SP's performance as you will see soon.

———————————————
The User Region

The User Region itself has different sections as is illustrated in figure 18.2.

 Chapter 18. System Internals 361

 8MB

 U.R. SERVICE AREA

 7MB

 PLPA

 3MB
 / / / / / / / / /
 / / / / / / / /
 / / / / / / / / /

 USER region
 / AREA / size
 / /

 X'1000' -------
 X'c00' PAGE 0
 0 (4K)

Figure 18.2 - User Region

User Program: This is where the users program is loaded. The maximum size of this area is 3 mega-
 bytes.

PLPA: The Pageable Link Pack area contains re-entrant modules that are called from programs
 in the user program area. This area extends from addresses 3 to 7 megabytes. The
 modules that can be loaded in this area have been preloaded on the systems page datasets
 during system initialization. This greatly reduces the loading overhead. Typically the
 PLPA contains compilers and system utilities that are commonly used.

Service Area: The User Region Service Area is used by the system supervisor in handling service
 requests from user tasks. It contains I/O buffers, save areas and stacks. One megabyte
 has been reserved for this area.

As mentioned above, not all users pages can be kept in memory at the same time. In addition, only one users
pages can be mapped to the user region at any given time. A major goal of the system is to make sure that all
the users get a fair share of the user region. There are three processes that work together to achieve this goal.

• The scheduler whose job it is to prioritize the requests for the user regions. The priority is based on two
 factors, one what kind of request it is and how long has the request been waiting. A job's priority is
 automatically set and readjusted by the system as the characteristics of the job changes.

• The paging process that attempts to keep only the most active pages of a job in main storage.

• The swapping process that can block page all the active pages of a job to auxiliary storage should the
 system determine that the storage can be better used by a higher priority job.

362 MUSIC/SP Administrator's Reference - Part V

———————————————
Nucleus Generation

The NUCGEN Utility is used to create the tape or punch file that when loaded writes MUSIC/SP's nucleus to
disk. The output of the program is a sequential data set in card image format. The data set consists of the
object decks for the MUSIC system and device configuration cards that define the physical I/O unit
addresses for the terminals, disks, etc. These card images are preceded by a stand-alone loader utility.

The SYSGEN1 utility can be used to write the nucleus directly to disk while MUSIC is running. The follow-
ing describes the process when this utility is not used.

The nucleus generation is initiated by an IPL from either the tape or the punch file produced by the
NUCGEN utility. The IPL loads a small stand-alone loader utility. This loader then loads the object deck
for the MUSIC system module SYGEN1 into main storage. SYGEN1 is a more powerful loader that uses
disk work areas on the MUSIC IPL volume. SYGEN1 reads in and relocates the remaining MUSIC system
modules. (Do not confuse this module SYGEN1 with the SYSGEN1 utility.)

Once the loading is complete, SYGEN1 moves a copy of the module storage map to the module HELLO.
(This map is used by the main storage dump utilities.)

The module SYGEN2 gains control once the loading is complete. It reads the device configuration cards and
builds device tables which will be used by HELLO when MUSIC itself is initialized.

SYGEN2 calls the module WMON to format and write the IPL information on the MUSIC SYSRES disk.
Then WMON writes the nucleus in core-image format to the dataset SYS1.MUSIC.NUCLEUS on the
MUSIC SYSRES disk. Control is then returned to SYGEN1 which writes a completion message to the
console and enters the wait state. The new nucleus can now be used by IPLing from the SYSRES disk.

———————————————
System Initialization

When the hardware LOAD function is performed, the MUSIC IPL text is read into main storage. This IPL
text is located on track 0. It was written to disk by the module WMON during the nucleus generation proce-
dure.

The module MFETCH reads in the MUSIC resident system from CKD disks and transfers to the initialization
module HELLO which resides in what will become the user region. On FBA devices, the IPL text written on
block 0 performs the function of MFETCH.

The following functions are among those performed. Main storage size and processing unit type are deter-
mined. Time and date are set. Free storage is zeroed and protection keys are set. Region Control Blocks
(RCBs), Free page storage pool, I/O device Unit Control Blocks (UCBs) and Terminal Control Blocks
(TCBs) are created. HELLO prints informative messages to the system operator concerning time, date and
disk drive utilization. If any unusual conditions are found, appropriate error messages are issued and initiali-
zation is halted.

HELLO calls the module DSINIT to process the information in the system catalog. Its major functions are:
Locate and read the system catalog, and allow the operator to modify it. Scan all ready disk packs, locate
necessary system data sets and construct the Data Extent Blocks (DEBs), Pseudo Device Blocks and Statis-
tics Blocks, positions the accounting dataset, load required modules into the Fixed Link Pack Area, and issue
any VM commands found in the catalog.

When initialization is complete, the modules MFETCH, HELLO and DSINIT are no longer required and the

 Chapter 18. System Internals 363

area they occupy is added to page pool 1. Control is then passed to the system scheduler/dispatcher module
URMON to initialize servicing of user jobs. The first thing it does is run the module JOBONE. job.

JOBONE first scans the Save Library index and deletes any temporary files left around from the last time the
system was run. JOBONE then loads the required modules from the load library into the PLPA (Pageable
Link Pack Area). It loads each member into the virtual address specified on the RESPGM catalog entry
which was read at IPL time. These addresses will be in the range X'300000' to X'6FFFFF'. Once loaded,
each member is written out to the page data set. Users are not allowed to sign on to the system till JOBONE
completes.

———————————————
Interrupt Processing

The System/370 architecture defines five interrupt classes:

 • Supervisor Call (SVC)
 • Input/Output (I/O)
 • External (EXT)
 • Program Interrupts (PI)
 • Machine Checks (MCK)

Supervisor Calls (SVC)

SVC interrupts are only caused by the SVC instruction. SVCs can be thought of as just a call to a routine.
The caller need not be concerned with location of the routine in storage. SVC routines always start in the
hardware Supervisor State with no I/O or External interrupts allowed.

When the hardware performs a SVC instruction it stores the current psw at storage location 20 (hex) and then
loads a new psw from storage location 60 (hex). It will store a word at location 88 (hex) that contains the
SVC number as the second half word.

When an SVC is issued control is transferred to the module TRACE which records the event in the system
trace table. (This trace table is printed by the PRDUMP storage dump utility.) TRACE then branches to the
module SYSSVC.

SYSSVC checks system status bits to determine if the SVC was issued in SYNC or ASYNC mode. If the
SVC is issued by a system interrupt handler, it is in ASYNC mode. If the SVC is issued by a user program
or by the system on behalf of a user program, it is said to be in SYNC mode. If in SYNC mode, transfer is
made to the module USRSVC where the SVC is decoded and the appropriate service routines called to handle
the request on behalf of the current user region. The user region service area (USRSVA) is used for buffers,
save areas and the stack. Storage in the user region is directly addressable by the SVC service routines.

If in ASYNC mode, then SYSSVC handles the SVC itself. These are system requests and do not pertain to
any particular user region, in fact the user region may not even be addressable at the time. Only a subset of
the SVCs are valid in this mode.

Appendix C lists the SVCs that are allowed in sync and async modes.

SVC Handling in Trap Mode

There is another layer possible in the handling of SVCs. An user program can request control whenever an
SVC is issued. This is known as TRAP mode. This mode is intended primarily for OS-Simulation, but is

364 MUSIC/SP Administrator's Reference - Part V

also available for other applications. If an application is running in TRAP mode, then SVCs will cause
control to be passed to an SVC processing routine that is part of the application. This SVC processor has no
special supervisor powers as the system switches back to problem state with interrupts enabled before trans-
ferring control. The SVC is decoded and the appropriate action is taken to perform the required task.

For example, when a COBOL program is running, the COBOL object code issues OS SVCs. USRSVC will
recognize that the program is running in trap mode and branch to the SVC handler OSTRAP which is in the
user region. OSTRAP then may wish to issue an equivalent MUSIC SVC to perform the required function.

Most MUSIC SYNC mode SVC numbers are in the range of 126 and higher and the supported OS SVCs are
from 0 to 125. This fact is used by the fast reflect SVC trap option. This fast reflect option is usually on in
OSTRAP and so only the SVC numbers 0 through 125 return to OSTRAP for processing. So OSTRAP get
control on OS style SVCs (0-125) but MUSIC's native SVCs (126-256) are handled directly by USRSVC.

I/O Interrupts

I/O interrupts are asynchronous interrupts. That is, they can occur at any time if the system mask in the
current psw is enabled for I/O interrupts. This is the case when running user programs. I/O interrupts are not
allowed while the system is processing SVCs on behalf of user programs except for those in OSTRAP.

When the hardware accepts an I/O interrupt it stores the current psw at storage location 38 (hex) and then
loads a new psw from storage location 78 (hex). Location BA (hex) will contain the I/O address associated
with the interrupt. The new I/O psw will cause the processing unit to transfer to the module TRACE which
will record the event in the system trace table. (This trace table is printed by the PRDUMP storage dump
utility.)

TRACE will check if the WAIT bit was on at the time of the interrupt and if so it will turn it off and update
the wait statistical counters. (See the discussion under topic "Wait State" in this chapter for further details.)

TRACE will then branch to the module DIOEX that will check to see if the interrupt is for a disk or tape
device. If so, it will update its queues and start more disk/tape I/O. (See the discussion under topic "Disk
and Tape I/O" in this chapter for further details.)

If the interrupt is not for disk or tape it will branch to the module MIOX. MIOX checks if the interrupt is for
a unit record device. Such devices are the card reader, card punch, batch line printer and the main system
console. If so, it will process the interrupt.

If the interrupt is not for a unit record device, MIOX will branch to the module TCS. TCS handles the inter-
rupts for the terminals. (See the discussion under topic "Terminal Handler" in this chapter for further
details.)

External Interrupts (EXT)

MUSIC uses the external interrupts for the interval timer, the clock comparator and the CPU timer. Inter-
faces to VM services such as IUCV, VMCF, and Logical Device also use external interrupts. Interval timer
interrupts are used only at system initialization time.

External interrupts are asynchronous interrupts. That is, they can occur at any time if the system mask in the
current psw is enabled for external interrupts. These interrupts are enabled when the system is running user
code.

When the hardware accepts an external interrupt it stores the current psw at storage location 18 (hex) and
then loads a new psw from storage location 58 (hex). The halfword at 86 (hex) contains a code that identifies
the kind of external interrupt. The new external psw will cause the processing unit to transfer to the module

 Chapter 18. System Internals 365

TRACE which will record the event in the system trace table. (This trace table is printed by the PRDUMP
storage dump utility.)

TRACE will check if the WAIT bit was on at the time of the interrupt and if so it will turn it off and update
the wait statistical counters. (See the discussion under topic "Wait State" in this chapter for further details.)

TRACE will then branch to the module URMON.

Clock comparator interrupts are used only by the dispatcher. The clock comparator is set if the dispatcher
found nothing to do at some point. When this interrupt comes through, the dispatcher will check its queues
again. Outstanding clock comparator interrupts are not cleared if the dispatcher is entered for other reasons.
Thus, it is possible to get these interrupts at a later time. Should this happen, they will be ignored.

CPU timer interrupts mean that a time slice has come to the end. URMON will then go to USRSVC to
handle it. The transfer to USRSVC is handled as if an SVC 256 had occurred at the location pointed to by
the external old psw.

When USRSVC processes the SVC 256, it will check to see if the job has used too much time. If so, then a
bit will be set. The dispatcher is then called, in all cases, to end the current time slice.

When the job is dispatched again, and when it returns to problem state, it will check the bit to see if the job
time has been exceeded. If so, a message will be printed and the job will be terminated.

Program Interrupts (PI)

Program interrupts (PIs) occur when the processing unit cannot perform an instruction because of (a) it
cannot access one of the required storage pages or (b) it found bad data (such as division by 0) or (c) by the
attempt to execute an instruction that is undefined or invalid.

Case (a) is known as a page exception. The PSW in this case will point to the actual instruction that caused
the reference -- not the one following it as is the case with most other program interrupts. The hardware will
store the virtual address of the page that could not be found at location 90 (hex). The low order 3 hex digits
of this value cannot be counted on to be exact.

When the hardware detects a Program Interrupt it stores the current psw at storage location 28 (hex) and then
loads a new psw from storage location 68 (hex). Location 8E (hex) contains the PI code.

This new program interrupt PSW will cause the processing unit to transfer to the module PAGER. This
module checks to see if it was a paging exception. If so, then this module will resolve the paging exception
if it can. Reference to a data page outside of the user region will cause the system to pass back a protection
check interrupt. This will appear as PI code 4. Reference to an instruction on an odd address boundary that
is outside of the region will be treated as specification error. This will appear as PI code 6.

If the PI was not be resolved as a paging exception then control is given to the module PITRAP. The action
PITRAP takes depends on whether the PI occurred in Supervisor or Problem state. It determines this from
the Problem State bit in the psw.

Supervisor State: PITRAP will issue a console message and stop the system by entering a wait state
 with all interrupt masks off. A re-IPL of MUSIC is required to recover from this
 condition.

Problem State: PITRAP enters the routine XERMON contained within PITRAP.

 XERMON contains routines to fix up the floating-point registers for program checks
 due to floating-point underflows or overflows.

366 MUSIC/SP Administrator's Reference - Part V

 If the user program has defined a program interrupt exit, then XERMON will branch
 to it. Otherwise the user program may terminate depending on the degree of severity
 of the error.

Machine Check Interrupt

Machine checks occur when the processing unit detects an error in its hardware. Examples include the detec-
tion of an unrecoverable parity error in storage. Channel checks may or may not cause a machine check
interrupt, depending on the processing unit model. Channel checks that are not presented as machine checks
are represented by certain bits on in the CSW presented with I/O interrupts. The module DIOEX checks for
the presence of these channel check bits. If found, DIOEX will branch to the module MCHINT.

When the hardware detects a machine check condition, it stores the current psw at storage location 30 (hex)
and then loads a new psw from storage location 70 (hex). This psw will cause the processing unit to transfer
to the module MCHINT.

MCHINT logs the error. The action taken depends on the type of error:

Soft Machine Check: The system is allowed to continue if the error counts have not been exceeded.

Hard Machine Check: If the error can be localized to a specific user's job, then only that job is terminated.
 Otherwise, the system is shut down.

———————————————
WAIT State

MUSIC enters a wait state when there is no processing unit work to do. (The wait state is indicated by the
Wait bit on in the current PSW.) The following are the three main reasons for wait states on MUSIC.

• All available user region work has been performed. This is known as the MUSIC idle wait state. The
 last bytes of the wait psw will be FFFFFF in this case.

• All user regions are all in wait state. This usually means that each one has some I/O to do. The last
 bytes of the wait psw will be FF00FF in this case.

• Some system function cannot proceed until some I/O is completed. The last bytes of the wait psw will
 point to the virtual location of the wait request.

MUSIC provides a technique of recording how much time is spent in wait state and for what reason. A task
that wishes to enter the wait state issues the MUSIC wait SVC followed by a 2 byte statistical counter
number. (The system macro LOOP generates the required sequence of instructions.)

The module SYSSVC processes this SVC request. It forms a psw with an instruction address set to retest the
completion of the event. The psw also has the wait bit on. This psw is then loaded and the system enters the
wait state.

Upon either an I/O or External interrupt, the old psw is inspected in the module TRACE to see if the wait bit
is on. If on, the bit is turned off and the time that the system was in wait state is recorded for statistical
purposes.

After the system processes the interrupt, it will reload the old psw and thus resume what it was previously
doing. If it was in wait state before, the old psw now has the wait bit off which will cause it to retest the
completion of the event. If the event is now complete, the task will continue, otherwise the wait SVC will be

 Chapter 18. System Internals 367

redone.

The WAITS utility program can be used to print the time information gathered by this process.

———————————————
Job Dispatching and Scheduling

Scheduler

Requests for user region service are processed by the scheduler which is located in the module URMON. For
example, when a terminal user enters a /ID command, TCS issues a $QUEIT SVC which is processed by
URMON. Depending on the type of request, URMON then places the request into one of some 9 queues.
These $QUEIT requests can come in at any time and do not have any immediate effect on the job currently
running in any region.

The items within each queue are serviced in a first in, first out (FIFO) basis. That is, they will be taken in the
order they requested service. The only exception to this is the futures queue which is ordered by the time the
user wants service. The futures queue is entered by a call to the DELAY subroutine, etc.

Each queue has a bias number which determines the relative priority between queues. Take for example the
following case. Suppose the conversational read queue has a bias of 10 and the full time slice queue has a
bias of 200. The system would attempt to give response times in that ratio if reads were getting 0.01 second,
then full time slice ones would get 0.2 seconds.

Installations can change the bias numbers by changing the table in URMON. These numbers can also be
changed dynamically.

Dispatcher

The module URMON contains the MUSIC dispatcher. Its job is to keep the user regions busy. It does that
by managing chains of Region Control Blocks (RCBs).

At IPL time the system builds a number of RCBs and chains them all into the free chain. Also at IPL time,
the system establishes the maximum multiprocessing level (MAXMPL). This MAXMPL is the maximum
number of RCBs that can be simultaneously in the active chain.

If any queue has some work that can be done, the system will try to add another RCB to the active chain if
the MAXMPL has not been exceeded.

An RCB will stay in the active until one of the following happens to the job represented by the RCB:

• The job exceeds its processing unit time slice. This time slice is determined at IPL time. It is approxi-
 mately one second divided by the MAXMPL number. Note that this time is pure processing unit time
 not elapsed time. The RCB is then placed in the dormant chain. The scheduler is called to add the job
 to the full time slice queue.

• The job exceeds its I/O time slice. This means that the job has performed more than 50 I/O operations
 in this time slice. The I/O count includes paging I/O. The RCB is then placed in the dormant chain.
 The scheduler is called to add the job to the full time slice queue.

• The job has ended. The RCB is then added to the free chain.

• The job requests input from the terminal. The RCB is then placed in the dormant chain. (TCS will call

368 MUSIC/SP Administrator's Reference - Part V

 the scheduler when this job is to be activated again.)

• The job has issued a tape rewind or other similar condition that specifically called the dispatcher to
 dispatch someone else. The RCB is then placed in the dormant chain.

———————————————
Swapping and Paging

Region Control Blocks

The region control blocks (RCBs) contain information about the user regions that are currently in main stor-
age. In addition to status information the RCBs contain I/O control areas and the page and segment tables.
Associated with the page tables are the page frames that are mapped to the user region. An RCB can be
active or dormant.

Active RCBs are those that are currently being given a time slice. The dispatcher manages the competition
between these tasks for CPU and I/O service. The maximum number of active RCBs that you can have at
one time is limited by the "Maximum Multi-Programming Level" (MAXMPL). This number is set during
system initialization based on the amount of free storage. It is normally between 3 and 10.

When the time slice ends the RCB becomes dormant. The dormant RCB and any pages associated with it
remain in main storage until the system needs pages to satisfy the requests of an active RCB. At this time the
module SWAPER will be called to free up some pages. SWAPER will call URMON to scan through the list
of dormant RCBs and select the one that it thinks will not be needed for a while. SWAPER will then write
all the main storage resident pages associated with that job to the swap data set(s). It will write a copy of the
contents of the RCB as part of the swap data. After the swap out operation is completed then the RCB can
be added to the free chain and the pages added to the free page list.

When the scheduler decides to continue a job, it will check to see if its RCB is in the dormant chain. If so, it
can be reactivated by simply adding the RCB to the active queue again. If the RCB cannot be found then it
must have been swapped to the swap data set(s). In this case, the system must find a free RCB and sufficient
free pages to hold the job again. This may require calling the SWAPER module to swap someone else out.

Maximum Real Region Size (MAXRRS)

The MAXRRS parameter limits the real storage available to a user task. The default value is 272K, but this
can be overridden in the NUCGEN job. The value of MAXRRS can have a large effect on performance. If
the storage requirements of a program are larger than MAXRRS, MUSIC/SP provides the required virtual
storage using both demand and block paging techniques. The larger MAXRRS, the less paging is required.
It is not a good idea to make MAXRRS too large however, since it can increase the swap load. The ideal
choice for MAXRRS depends on the job mix, the available main storage and the disk and channel facilities.

Swapping

The swap data set is formatted into 4K blocks. It is suballocated in terms of multiples of 10 blocks. Each of
these 40K areas is known as a Swap Set. By default the MAXRRS value is 272K. Adding the 8K for the
RCB gives a maximum of 280K that must be swapped. This will take 7 swap sets. SWAPER will attempt to
distribute them over the defined swap data sets. (SYS1.MUSIC.SWAPx). Since multiple swap data sets are
usually on separate channels, this will allow for overlapping of the time to do one swap set on one channel
with the time to do one on another.

 Chapter 18. System Internals 369

Paging

Paging does not directly get involved in job scheduling or swapping operations. No matter how big the
user's virtual storage size may be, the real storage allocated will never exceed MAXRRS. Once the
MAXRRS limit is reached the task will page. The paging algorithm is designed so that a task will only page
against itself and never take storage away from other competing tasks. This control has the following
benefits:

• A job with large virtual storage demands will not overwhelm the system.

• It limits the amount of swap I/O that has to be done even for large jobs.

• It tends to smooth all user's response times by not being so dependent on the number or characteristics
 of other simultaneously running jobs.

At job start time, no pages are assigned. The job control information including the page tables is stored in
the RCB. Pages will be assigned as page exceptions occur. The pages will be obtained from the system-
wide page pool. Up to MAXRRS of pages can be obtained per job from this pool.

After the MAXRRS limit has been exceeded, the PAGER module will scan the assigned pages to decide
which ones have not been used for a while. The state of the inactive page determines what to do next. The
choices are:

• The inactive page is entirely filled with binary zeros so it will be immediately added to the free page
 pool.

• A copy of the inactive page is also on the paging data set and thus it does not have to be written to disk.
 This allows the system to be able to immediately add it to the free page pool.

• The inactive page cannot be reused until a copy of its contents are written to disk. It is removed from
 the active page mapping and is added to the list of pages that must be written to disk on behalf of this
 user but is not added to the free page pool. If the list has grown to 8 pages then write all 8 in one I/O
 operation and when done add all 8 pages to the free page pool.

The blocking of page-out operations is called block paging and is a significant performance benefit over
performing a separate I/O operation for each.

Page-in operations are not blocked. This results in a better usage of the available main storage page frames.

PLPA members are loaded by simply updating the page tables in the RCB. When a specific PLPA page is
referenced, then the system will use this information to read in that page from the page data set.

The paging system gets informed of specific MUSIC requests to zero storage. This includes deleting PLPA
members and releasing storage at the end of processing phases such as compilers and loaders. Pages that get
zeroed in these ways are immediately added to the free page pool.

Notice that users page against themselves and not against each other. This results in a more consistent
response pattern. Also note that no paging is done if the user jobs never exceeds MAXRRS. The MUSIC
editor only needs about 80K to run and so it does not normally page.

370 MUSIC/SP Administrator's Reference - Part V

———————————————
Terminal Handler

The module TCS supervises all terminal I/O in MUSIC. When no program is running (*Go mode) TCS
reads a command from the terminal. With the exception of trivial tasks, executing the command usually
involves running a program in the user region. TCS schedules the user region program and waits for termi-
nal output or requests for input from the program. When the job has finished and all the output has been
processed the user is again prompted for a command.

MUSIC uses data spooling techniques to reduce overhead in communicating with terminals. For example,
when a program writes to a terminal, the data is simply moved into a buffer and the program allowed to
continue as if the I/O had taken place. The module SIOCS is responsible for placing the data into these spool
buffers. The terminal handler (TCS) fetches data from this spool and performs the physical I/O at whatever
rate the terminal can accept. Automatic synchronization is performed when input is required and at end of
job. The system informs TCS that data is pending on the spool by calling the routine WAKEUP. TCS then
fetches the data from the spool, one record at a time, and processes it according to it's type. There are three
basic types of spool records. The most common type contains output data which is sent to the terminal with
the appropriate control characters. The second type of spool record is used to set various terminal options
flags. These records are usually the result of calls to the $SETOPT SVC. The third type of spool record is
used to initiate a read from the terminal.

TCS is entered on a terminal I/O interrupt (IOTRAP) or from a user region request (WAKEUP). If TCS is
busy processing another terminal, the request is queued.

TCS calls several modules to perform part of the terminal support. The modules are:

TERMIO to perform device dependent functions such as CCW construction and I/O interrupt handling
 for 2741, 1050 and TTY terminals.

TM3270 to perform device dependent functions such as CCW construction and I/O interrupt handling
 for 3270s.

TRMCTL contains control blocks specifying many parameters which control the way in which the
 system communicates with remote terminals. Many parameters, such as line length, carriage
 return rate, tab and backspace characters can be specified for many terminal types.

 TCS refers to the information in this module by an index stored in the TCB. This index is
 set up by the SIGNON phase at /ID time based on the trmcls specification either given on the
 command or extracted from the user's userid code profile or the default one for the terminal
 type.

COMAND Processes the control commands entered by the terminal users.

CHKPFK is called by TM3270 to perform operations associated with program function keys such as
 multi-session requests, the retrieve function, and user defined operations.

DEFPFK processes the /DEFINE command.

NEWTCB manages the control block pool for multi-session support and provides the logic to add,
 delete, or move to a new session.

DSPOOL provides access to the input and output spool and the buffer pool.

FSIO serves as the interface between the terminal handler and the user region for full screen I/O
 requests.

 Chapter 18. System Internals 371

TRANTB contains all terminal translate tables except those used for 3270 APL.

APLTRN contains the translate tables used for the 3270 APL support.

TABSET inserts tab characters and idle characters in lines to be sent to a terminal. It uses the termi-
 nal's current tabs to ensure that the time needed to print program output is minimized.

TABCMD processes /TABIN and /TABOUT commands entered from terminals. It translates the values
 on the commands into internal form and places them into the appropriate TCB.

———————————————
Terminal Buffer Pool

During system initialization, an area of storage is allocated as the terminal buffer pool based on the BPOOL
parameter specified in the NUCGEN. Each buffer in this pool has a 512 byte data area and a 4 byte pointer
used in buffer chaining. With the exception of a small input area associated with each terminal, all terminal
buffers space is acquired dynamically from this pool. The module DSPOOL and its entry points provide two
levels of access to this pool.

The DSPUT and DSGET routines allow the caller to create and access chains of logical records in these buff-
ers. (In-core spool files). Two such chains are provided for each terminal, the input and output chains.
Terminal output, spooled input, and full screen I/O, transfer data between TCS and the user region using this
type of access.

The GETBUF and FREEBUF routines allow the caller free access to the buffer pool without imposing the
logical record format. The 3270 screen manager, conversational read, and the /DEFINE command use this
type of access. The FREEBUF routine is also used to free entire buffer chains when a job is cancelled or
abnormally terminates.

Since the buffer pool is a limited resource, users are limited as to the number of buffers they can own at one
time. When a user exceeds this limit, the user's job is temporarily stopped until more buffers become avail-
able. This limit is dynamically adjusted so that it is reduced as the number of available buffers is reduced. It
is possible for the system to run out of buffers. When this happens system performance will be effected
since all operations that require the buffer pool will have to wait for buffers to become available and almost
all terminal I/O requires the buffer pool.

Allocate at least four buffers for each active terminal. The COUNTS and BPOOL utilities can be used to
monitor buffer pool usage. If the total number of buffers used consistently approaches the number allocated
it is recommended that more buffers be allocated. If the total number used is consistently much less than you
have allocated the storage is being wasted. As noted above, it is normal for the user limit exceeded count to
be non-zero.

———————————————
Disk and Tape I/O

The module DIOEX supervises the MUSIC disk and tape I/O. DIOEX handles the actual I/O execution on
the selector channel(s). It will handle tape and disk, read and write requests, and special purpose functions.

DIOEX is entered by an SVC when a disk/tape I/O operation is required. It will validate the UCB number
given in the caller's argument list. If the UCB number is greater than the highest disk/tape UCB, DIOEX
will check if it corresponds to a valid Data Extent Block (DEB) number. (Most DIOEX requests use these
DEB numbers.) (The DEB's are created at MUSIC IPL time by DSINIT with the exception of those used to

372 MUSIC/SP Administrator's Reference - Part V

access User Data Set files. UDS DEB's are contained in the XFCB module and are initialized when the user
job starts.)

Once the request has been validated, DIOEX adds the request to the channel queue depending on what physi-
cal channel the disk/tape is on. If the channel is free, DIOEX will see if it needs to construct a channel
program. Most requests require that disk channel programs be constructed using information from the
caller's request block and the appropriate Unit Control Block (UCB) and DEB. When the channel program is
constructed, DIOEX will start the I/O.

DIOEX also performs the I/O interrupt handling for selector channels, including error detection, correction
and logging. If the I/O request signals that the I/O is complete, DIOEX will update the channel queue and
process the next request in the queue.

If an I/O error is indicated, a retry operation will be attempted.

The module UIO preprocesses all disk and tape I/O coming from user regions. It performs many of the func-
tions that DIOEX does such as looking up DEBs. The CCWs prepared by this module use indirect address-
ing to access the real storage pages involved in the I/O. It might have to call the PAGER module to page-in
part of a buffer. When the CCWs are prepared, URIO will call DIOEX to schedule the I/O. It will then call
the dispatcher to run another user until the I/O is complete. When the I/O is complete, the original task will
be redispatched and will then return to URIO so it can check the ending conditions and unlock the pages
involved in the I/O.

———————————————
User Region I/O

Most user region I/O requests result in an SVC that is handled by the module MFIO. Full details of the
MFIO SVC interface can be found in Chapter 20 - File System. This single SVC provides the interface to
the file system, the UDS file system, terminal input and output, tape, printers, punches and card readers.
There are two basic ways that an application can access files and I/O devices.

Applications can access files dynamically. When the open request is issued, MFIO returns an Internal Unit
Number that the application uses on all subsequent I/O requests. Some devices have unit numbers pre-de-
fined and need not be specifically opened.

The /FILE statement is used to define a file or I/O device for the duration of a job. In this case, the module
CTL opens the file and saves the internal unit number in one of two tables in page zero of the user region.
The application specifies either a DDNAME or Logical Unit Number when accessing the file. The system
translates this to an internal unit number using the tables set up by CTL.

I/O requests can specify either the internal unit number (1-255) or the logical unit number (1 - 15). Since the
logical unit number corresponds to a /FILE statement, the actual physical device can be changed by changing
the definition on the /FILE statement. Thus a program that reads from the terminal keyboard using logical
unit 9 can be changed to read from a tape by adding a /FILE statement that defines unit 9 as a tape. A
program using internal unit 9 will always read from the keyboard.

Unit numbers less than 16 are assigned to specific I/O devices or files. Unit number greater than 16 are
assigned when files are opened by MFIO dynamically. The following describes the handling of internal unit
numbers. Numbers 1 through 10 also correspond to the default logical unit numbers.

Units 1,2,3,4 These unit numbers are used to access the User Data Sets and tapes. MFIO calls the module
 FIOCS to process this request. FIOCS uses the control blocks in the module XFCB to buffer
 and control these four units. ($CTL, the execution start phase, processes the user /FILE
 cards and initializes fields in the XFCBs. The XFCBs are part of the module URSRVA.)

 Chapter 18. System Internals 373

Unit 5 This is the system input unit. Commands, programs and input data are read from this unit.
 MFIO calls the module SIOCS to process the I/O. SIOCS starts out reading the terminal or
 batch input spool. If a /INCLUDE statement is encountered it switches to reading the file
 named on the /INCLUDE statement.

Unit 6 This is the system output unit. Program output and messages are by default sent to this unit.
 MFIO calls the module SIOCS to handle the I/O. SIOCS writes the output to the terminal or
 batch output spool. On batch the output is sent to the printer. On a terminal the output is
 displayed on the terminal.

Unit 7 This unit is the system punch and it is rarely used these day. On batch it represents the card
 punch, on terminals the paper tape punch. Again SIOCS is called to do the I/O and the data
 is written to the batch or terminal output spool.

Unit 9 This is used when a program wants to read interactively from the terminal. On batch it is
 treated like unit 5. Again MFIO calls SIOCS. SIOCS writes a special record to the terminal
 output spool and then calls URMON to end the time slice. When the module that handles
 terminal (TCS) detects this special record, it reads the input from the terminal and resche-
 dules the program execution. Once the program regains control, MFIO passes it the terminal
 input.

Unit 10 This is the known as the HOLDING file. Some compilers write object programs to this file.
 MFIO will check if this is the first I/O on unit 10 in this job. If this is the case then it will
 create a file called @HOLD.sss. (sss is the subcode.) Any previously existing file with this
 name will be purged. Subsequent writes to unit 10 just add records to this file.

Units 16-255 These unit numbers are assigned when a file is dynamically opened using the OPEN request
 of the MFIO SVC.

———————————————
Batch Spooling

The module SPAM supervises the batch spooling in MUSIC. It logically consists of two processes: (1) read-
ing cards and writing them to the batch spool area on disk and, (2) reading the batch output spool area and
printing or punching the records.

Batch Input Spooling

SPAM constructs the CCWs to read from the card reader. It calls the module MIOX to initiate the I/O opera-
tion and perform most I/O error recovery. It calls the module XTXT to compress the card images into the
same format as used with /INPUT files. (Refer to the topic "Batch Input File Format" for a description of the
packing scheme.)

SPAM calls the module IOBUFR to buffer these compressed records into physical spool block format.
IOBUFR will perform the actual disk request when a spool buffer fills.

When a /ID card is detected the module CKCDE is called to perform the userid (code) checking function.
CKCDE calls the module CDSRCH to locate and read in the userid (code) record. (The job time and page
limits, etc, are not processed at this time. They will be handled later by CTL when the job starts running.)

When SPAM reads a /END card, the input spool file is closed and the user region job scheduler is called to
queue the job request.

374 MUSIC/SP Administrator's Reference - Part V

When SPAM reads a /PAUSE card, a console message is sent and spooling continues. When a /END card is
later detected, SPAM will check if the operator has responded to the PAUSE message yet. If not, the job
will not be queued at this time.

Batch Output Spooling

SPAM calls IOBUFR to read the output spool disk data set. Each logical record is prefixed with a one byte
output route code which indicates if the record is for the printer or punch. (The output records are in
compressed form with trailing blanks removed.)

SPAM forms the required CCWs to print or punch the record and call MIOX to perform the actual I/O.

Batch Internal Reader

Jobs submitted to the internal reader get written to the system data set SYS1.MUSIC.SUBMIT. Control
information exists in the first block of this file. The data set is divided into a number of sections (also called
queues), each representing one of the internal reader classes (1, 2,...). A submitted job occupies one block in
the appropriate queue.

The subroutine SBMJOB ($SUB:SBMJOB.S) places a job into the submit data set. It also initializes the
submit data set, if necessary. The routine SBREAD in the module SPAM reads the job from the submit data
set. The module CAR processes the /RDR console command, used by the operator to control the internal
reader.

For more information, refer to the comments and coding in SPAM and $SUB:SBMSET.S.

Batch Input File Format

Lines entered through batch as card images (80-character records) are compressed and blocked prior to being
written on disk. This packing conserves disk space and reduces data transfer time.

Each card image is compressed by removing high-order (trailing) blanks from the following 3 fields:

 Field 1: positions 1 to 6
 Field 2: positions 7 to 72
 Field 3: positions 73 to 80

Four 1-byte binary counts are appended to the compressed text to enable the line to be unpacked. The final
format is

 C L1 L2 Text C

where:

C total length of packed line, including control bytes. The C at the end of each line is used by the
 /DELETE command.
L1 length of field 1 after high-order blanks removed.
L2 length of field 2 after high-order blanks removed.
Text fields 1 to 3 in packed format.

 Chapter 18. System Internals 375

Example:

 Column 1 7 73
 17 FORMAT(I5) FORT0003

 appears as

 24 2 10 17FORMAT(I5)FORT0003 24

A blank line is stored as 04000004 (hexadecimal, 4 bytes).

The compressed lines are blocked into 512-byte physical blocks. A line is not split over a physical block.
The last line in a block is always followed by a zero byte to indicate end of buffer. Thus, each 512-byte
block may contain from 6 to 128 lines, depending on the amount of information in each line.

———————————————
Console I/O

The module CAR manages the I/O to the MUSIC system console.

CAR is entered by an SVC when a message to the console is requested. The console queue is updated and if
possible, the I/O started.

CAR is entered from MIOX upon a console I/O interrupt. The interrupt may indicate the completion of
some I/O activity. It could also indicate that the console REQUEST button has been pressed.

———————————————
Accounting Log

The module DICDOC handles writes to the MUSIC accounting log. Records are written to the log by using
an SVC. DICDOC buffers these records and does disk I/O when required through calls to DIOEX.

The ACTDMP utility program is used to read this detailed log and produce single accounting records for
each session. The format of the detailed log records is described below.

SPAM calls DICDOC to write the information from the /ID card read from the card reader. It also calls
DICDOC to write out details of a job's output such as how many lines were printed and how many cards
were punched.

SIGNON issues an SVC that calls DICDOC to write information from the /ID commands processed. TCS
calls DICDOC to record the number of characters transmitted to the terminal, information about /OFF
commands.

URMON calls DICDOC to write end of job records that contain the total amount of time used in the user
region.

Accounting Record Formats

The accounting data is stored on the system data set SYS1.MUSIC.ACCT. Each block on the file is 4096
bytes in length. The first block in the file contains pointers into the file. The remainder of the blocks contain
the actual accounting records.

376 MUSIC/SP Administrator's Reference - Part V

The accounting data is written block by block to the disk file by the system module DICDOC. The blocks
are written in ascending block number order until all the blocks have been used. Subsequent blocks will be
written to block numbers 2, 3, etc. The pointers in the first block contain information that will stop the
system from destroying blocks which have not been processed by the ACTDMP utility.

Each block ends with a four byte sequence number. This number is always one greater than the last block
written. A discontinuity in these numbers indicates the logical end of the file.

Several record formats are used to hold accounting information in the disk accounting file:

System Initialization Record

 Time of day Date Clock

 K H H M M M M / D D / Y Y C C C C

Notes:

1. K represents the character count of the record (all counts include themselves).

2. The CCCC represents the time of day clock which is in units of two's-complement three-hundredths of a
 second. The value is stored in 4 bytes.

/ID Record

 Logical Job Packed ID Line Clock
 CNT Unit Code

 K U U 0 1 X X X - - - X C C C C

General Accounting Information Record

 Logical Job Request
 CNT Unit Code Type Clock

 K U U J R C C C C

 Job Code

 02xx Job Request(xx is Request Type--see below)
 03 Job Selection
 06 Job Cancel or Job Cutoff (see below)
 07 End of Output (See below)
 08 /OFF Record

 Request Type (code 2 records only)

 01 /RUN or /EXEC
 02 /UPDATE
 03 /SAVE
 04 /PURGE
 05 Jobone system initialization phase
 06 /DISPLAY OR /LIST

 Chapter 18. System Internals 377

 07 /ID
 08 /RENAME
 09 /INPUT

End of Output Record (#7) (Terminal)

 Cnt Logical # of Clock
 Unit chars

 K UU 7 XXXX CCCC

End of Output Record (#7) (Batch)

 cnt crds rd crds pch lns prt tape, disk mounts

 K 0 7 XXXX XXXX XXXX X X

Job Cutoff (#6) Records

 Logical Job Cutoff Info Execution
 CNT Unit Code Code Bytes Time Clock

 K U U 6 C P KK T T T T C C C C

 Job Code

 Same as for General Accounting Information record.

 Cutoff Code

 01 Job Overtime
 02 Not used
 03 Normal EOJ
 04 Not used
 05 Abnormal EOJ
 06 System I/O Error
 07 Abnormal End of phase
 08 Not Used
 09 Cancel

Info Bytes (#6 records only)

P is processor identification set by CTL.

KK is the number of 4K pages allocated to the job. Minimum is 27 representing 108K.

UDS Delete Record (#10) (See module PST for details)

 Cnt Cde Cde cont'd Vol Ucb Type Details

 K CC A CCCCC VVVVVVV U

378 MUSIC/SP Administrator's Reference - Part V

Shutdown Record

 Shutdown
 CNT Code Clock

 K FF FF FF C C C C

Ordinarily the accounting records for terminals will be recorded in logical sequence. However, they are
recorded in time sequence, i.e., in order of their occurrence in the system. This means that /ID records for
other terminals can be recorded before another job occupying the processing unit is done. The end of output
rcd (#7) for batch may occur before or after the end of job record or after the next /ID record. The #7 records
for terminals can occur anytime.

Accounting Record Notes

1. The execution time portion of a job cutoff entry is in service units times 300. It is the total chargeable
 time for the job.

2. /ID's are placed in the Accounting File in packed input format.

3. The accounting records are packed into 4096-character blocks on disk. A record with CNT = 0 indi-
 cates end-of-buffer. The last four bytes contains a sequence number. This number is incremented by
 one for each subsequent record. A discontinuity of these numbers indicates the logical end of the file.

4. Number 6 records usually occur after number 3 records. The exception is that a number 1 record (/ID)
 can occur between a number 3 and a number 6.

———————————————
User Code Table

The User Code Table contains the information required by MUSIC for each userid authorized to use the
system. This information includes passwords, time limits, options, privileges, etc. (Userids on MUSIC are
sometimes called the user's code.) The table resides in two system data sets: SYS1.MUSIC.CODINDX,
which is a 2-level index, and SYS1.MUSIC.CODTABL, which contains the individual userid records. Each
userid, consisting of 16 characters with trailing blanks, is represented by a code record, which is pointed to
by an entry in the index. The index provides quick access to any record, and also allows records to be added
and deleted easily.

An SVC ($GETCOD, processed by module CDSRCH) is used to get the code record for a given userid. The
SVC searches the index for the userid, then reads the corresponding code record into main storage. For
example, at sign-on time, the module SIGNON uses this SVC to verify the user's password and fill in fields
in the user's Terminal Control Block (TCB). It is also used by module CKCDE for batch jobs, and by the
CODUPD and PROFILE programs.

The Code Table Update utility (CODUPD) is a conversational program which adds, changes, displays, and
deletes code records. Usage of CODUPD, along with the various code record fields, is fully described in the
Chapter 17 - System Utility Programs. A restricted version of this program (PROFILE) enables users to
change and inspect some of the fields in their code records, such as passwords, default time limit, auto-pro-
gram name, etc. PROFILE usage is described in the MUSIC/SP User's Reference Guide.

The Code Table Dump/Restore utility, CODUMP, is used to dump the entire code table to tape or a sequen-
tial file, for backup purposes. It can also restore the code table from a dump. The restore function recreates
the index, compressing it at the same time. CODUMP is described in the Chapter 17 - System Utility

 Chapter 18. System Internals 379

Programs.

Source for CODUPD, PROFILE and CODUMP is stored under code $COD in the Save Library (or on the
MUSIC source tape). Code $COD also contains some subroutines that are useful for scanning and modify-
ing the code table. File $MCM:CODENTRY.M contains the macro that defines the code record contents.

Code Table Structure

The code table index (SYS1.MUSIC.CODINDX) contains the master index record (the first record of the
data set) and the second level index records. The data set is referred to by Data Extent Block (DEB) number
234. Each record is normally 4096 bytes, but a shorter length may be used. The master index record is kept
in main storage, for faster code lookup.

Data set SYS1.MUSIC.CODTABL contains the actual code table records, one for each userid, pointed to by
entries in the index. It is referred to by DEB number 233. Each record is 512 bytes.

Both DEBs use a pseudo device format, with 10 logical tracks per logical cylinder and 40 (code table) or 11
(index) records per logical track. Use of a pseudo format does not affect the number of records per real
track.

The userid is a 16-byte key that is used for indexing the code records. Each index record has one or more
18-byte entries, each entry being a userid followed by a 2-byte pointer. The entries are in increasing order by
key, and (unless the record is full) the last entry is followed by 18 hex FF bytes. An entry in the master
index record contains the highest key of an index record and the pointer is the number of that index record
(the index records after the master are numbered 1,2,3...). An entry in an index record points to a code
record (the records in the code data set are numbered 0,1,2,...).

The maximum number of code records is limited by the number n of entries per index record. The maximum
number of code records is n*n (assuming that the code data set is big enough). Index records are normally
4096 bytes long, so n = 4096/18 = 227, and the biggest code table could hold 227*227 = 51529 records.

The CODUPD program keeps track of unused index and code records by means of bit maps, which it builds
at the start of each CODUPD run. CODUPD is the only program allowed to add or delete code records. All
other programs can only get or change records (but they must not change the 16-byte userid at the beginning
of the code record).

To avoid wasted space in index records when adding a large group of consecutive codes or subcodes, they
should be added in increasing sorted order, i.e. the ADD commands should be sorted by userid.

Code Search SVC

The $GETCOD supervisor call instruction is used to search the code table index for a given code/subcode
and read the code record into main storage. The SVC can also be used to request information about the code
table, and to mark the main storage copy of the master index record as invalid. For the calling sequence and
return codes, refer to the source of system module CDSRCH (under code $SYS). Subroutines CDSVC,
CDPRM and INVAL (source under code $COD) can be called from a Fortran program to issue the SVC.

380 MUSIC/SP Administrator's Reference - Part V

 Chapter 19. Direct Access Storage
———————————————
 Overview

Two classes of direct access storage devices are supported by MUSIC: count-key-data (CKD) devices such
as 3375 and 3380, and fixed block architecture (FBA) devices such as 3310 and 3370. Data records on CKD
packs are accessed by cylinder, track and record number, and the records may be of various lengths. Records
on FBA packs are accessed by a single block number (0,1,2,...) and are all of fixed length 512 bytes.

All disk packs used by MUSIC are in the standard OS/VS format. That is, they use normal volume labels
and volume table of contents (VTOC). MUSIC CKD packs differ from OS in that most data sets are prefor-
matted, which allows for more efficient access techniques. Furthermore unallocated tracks on UDS packs
are preformatted in anticipation of future allocation, as described later on in this chapter. Preformatting is
not required on FBA volumes since all blocks are of fixed length.

For CKD packs, the VTOC on MUSIC's IPL pack must not be greater than one cylinder. Format-5 DSCBs
on CKD disks are used to keep track of free space, and the free space entries are maintained in order by disk
address.

The format-5 DSCBs on FBA disks are not used (there is a single dummy format-5).

For purposes of data set allocation, blocks on FBA devices are grouped into logical tracks. A logical track is
defined by MUSIC as a set of 32 512-byte blocks, in which the block number of the first block is a multiple
of 32. All MUSIC FBA data sets must start and end on logical track boundaries. MUSIC's allocation
routines automatically adjust to these boundaries.

Data sets allocated by MUSIC fall into one of two categories: SDS and UDS.

System Data Sets (SDS) contain all system controlled data such as spooling and swap areas, accounting files,
Save Libraries and system residence data sets. A system data set must occupy only one extent. A system
data set has a name of the form SYS1.MUSIC.xxxxxxx, where xxxxxxx is from 1 to 7 characters. The
MUSIC/SP file system, the Save Library, is contained within these data sets.

User Data Sets (UDS) can be created by users by means of a /FILE statement. A UDS may occupy from 1 to
5 extents. A UDS has a name of the form ccccxxxx, where cccc is the 4-character sign-on code of the owner
and xxxx is from 1 to 4 characters. Despite the name, most users never use User Data Sets. The MUSIC/SP
Save Library is where most user files are stored.

These two types of data sets can be intermixed on the same physical pack. However, to allow for easier
dump/restore operations, it is recommended that they not be intermixed. If user allocation is allowed on SDS
volumes on CKD disks, then you must ensure that all the free space on the pack is preformatted to conform
with the UDS requirements (ie. 512-byte records, no key). For example, before deleting a system data set,
use the FORMAT utility to format its space to 512-byte records. The FMFREE utility can be used to format
all the free space on a CKD volume.

All SDS packs are permanently mounted at IPL time. UDS packs normally are permanently mounted but
batch jobs may make use of temporarily mounted disk packs.

A UDS CKD pack must be pre-formatted using the MUSIC disk format utility before it can be used for user
data sets.

A SDS pack is not normally pre-formatted, but any data set allocated on the pack must be formatted prior to

 Internals - Chapter 19. Direct Access Storage 381

its use.

At IPL time, the system initialization routine reads the system catalog (a data set on the IPL volume). This
catalog provides (among other things), the data set names of all system data sets to be used. The volume
label of the pack on which each SDS is to be found may also be listed. All ready disk packs are scanned. All
SDS are located and control blocks are constructed to later allow system routines to use them. Any pack on
which a SDS is located is marked as a SYSTEM pack. All other disk packs are marked as UDS packs.

———————————————
System Data Sets

The following is a discussion of each type of SDS. This topic is useful if the installation wishes to expand or
optimize these data sets for the configuration. Unless otherwise mentioned, the following rules should be
assumed.

 1. A SDS name must begin with the three characters SYS. The usual naming convention is to start a
 SDS name with SYS1.MUSIC.. The names used on the distribution system are shown at the begin-
 ning of each section.
 2. The block size specified for each data set must be used. It cannot be altered. If the wrong block
 size is used, system errors may occur.
 3. On the first line of each description, following the data set name, is the following information:

 data-set-name identification, block-size

 The identification and data set name are specified in the catalog. Certain data sets are not listed in
 the catalog. For these, no identification is shown.
 4. All data sets listed are needed for MUSIC operation.
 5. All MUSIC SDS must be one extent as multiple extent SDS data sets are not allowed.

Save Library Index
 SYS1.MUSIC.UIDX U000,512
 This data set contains the index of the MUSIC Save Library. Each file in the library is located
 through as reference to the data set. The usual size for this data set is 15552 records.

Save Library Space
 SYS1.MUSIC.ULnn Unnn,512
 This type of data set contains MUSIC files. They are numbered starting from 01 up to a maximum
 of 180. Each data set is referred to as a Library space. The nn above refers to the space number.
 At least one must be present. The starter system comes with several defined. New library volumes
 must be added in numeric order. Once a volume is added to the Library, it becomes part of the set
 and there is no quick way to remove it. Each library space can be up to 114,504 records in size.

Batch Input Spooling
 SYS1.MUSIC.BATCHIN B001,512
 This data set is used for input spooling for batch card reader/printer jobs. If it is not available to the
 system, batch jobs can not be processed. The number of records allocated to this file should be at
 least one sixth the number of cards to be read in for any single job. In practice, more than six cards
 will normally be placed in each record. The maximum number of records which will be used is
 32767.

Batch Output Spooling
 SYS1.MUSIC.BATCHOT B002,512

382 MUSIC/SP Administrator's Reference - Part V

 This data set is used for both printer and punch output spooling for batch jobs. It should be avail-
 able if batch jobs are to run. Output lines are stored in compressed format with trailing blanks
 removed. A single record may hold several lines. The output from any executing programs may
 exceed the size of the data set. In this case, the job is temporarily suspended until all output
 already spooled to disk is printed or punched. Then the job is continued, re-using the spooling
 area. The maximum number of records of this data set that will be used by the system is 32767.

User Region Swap 1
 SYS1.MUSIC.SWAP1 F203,4096
 This data set is used to store user jobs while they are being executed and not resident in main stor-
 age. The block size used is always 4096 bytes. The system divides the blocks into groups of 10.
 Each group is called a swap set. A user's job can use up to nK of real main storage, where n is
 MAXRRS specified in NUCGEN. That size together with the RCB control block of 8K totals
 (n+8)K. Thus a job may require a total of (n+8)/40 swap sets. These swap sets can be divided up
 among the swap data sets SWAP1, SWAP2 and SWAP3. A job may use considerably less real
 storage, resulting in fewer space sets used. Each swap data set size can range from 10 to 64,000
 blocks.

User Region Swap 2
 SYS1.MUSIC.SWAP2 F204,4096
 This data set and SYS1.MUSIC.SWAP3 are optional. They are of benefit only when each of the
 swap data sets are located on different disk channels. When this condition is met, the swap load is
 distributed among the channels such that they may be concurrently transferring parts of a single
 user's task. This can provide a significant performance enhancement. All the swap data sets
 should be approximately the same size, as the system will attempt to divide the swap load evenly
 between them and when it runs out of space of any one it will not be able to perform the swap oper-
 ation.

User Region Swap 3
 SYS1.MUSIC.SWAP3 F205,4096
 See notes under SYS1.MUSIC.SWAP2 above.

Temporary User Data Sets
 SYS1.MUSIC.SCRATCH F206,512
 If a user job specifies UDS(&&TEMP) on a /FILE statements, this is an indication that the user
 wants a scratch file. This is one which is to be deleted at end of job. Instead of going to the trouble
 (and overhead) of allocating and then deleting a UDS, the system gives to the user a portion of this
 SDS. It in effect sub-allocates the UDS within this SDS. This data set is the exception to the
 normal SDS pack rule. It may reside on a normal UDS pack. A pack will not become a SYSTEM
 pack solely due to this data set. Of course, if any other SDS is found on the pack, it then becomes a
 SYSTEM pack. This data set can be up to 8176 tracks long. (On an FBA device, 1 track is consid-
 ered to be 32 blocks.) Note that any job currently running may use this space and that any job may
 request up to 8,000 512-byte records of space (although most jobs do not use this much).

Page Data Set 1
 SYS1.MUSIC.PAGE1 F207,4096
 This data set is used to store infrequently used pages of user jobs while they are being executed.
 The block size used is always 4096 bytes. The system divides the blocks into groups of 8. Each
 group is called a page set. The maximum amount of page space that could be used per job depends
 on the maximum region the job has requested. This size is given on the /SYS REGION= statement
 associated with the job. Some additional storage beyond this size can also be paged. This holds
 items such as Save Library I/O buffers.

 The first page data set must be big enough to hold all pages associated with the pageable link pack
 area modules. If your installation has fixed head devices such as a 2305, then it would be desirable
 to have this data set on it.

 Internals - Chapter 19. Direct Access Storage 383

 Each page data set size can range from 8 to 64,000 blocks.

Page Data Set 2
 SYS1.MUSIC.PAGE2 F208,4096
 This data set and SYS1.MUSIC.PAGE3 are optional. They are of benefit only when each of the
 page data sets are located on different disk channels. Unlike the swap data sets, the page data sets
 need not be the same size.

Page Data Set 3
 SYS1.MUSIC.PAGE3 F209,4096
 See notes under SYS1.MUSIC.PAGE2.

Batch Internal Reader
 SYS1.MUSIC.SUBMIT F225,512
 This data set is used with the internal batch reader support. Its minimum size is 200 blocks. A
 typical size is about 1800 blocks, which allows up to 250 jobs in queue 1 and up to 100 jobs in
 each of queues 2 to 16.

System Load Library
 SYS1.MUSIC.LOADLIB F226,2048
 This data set holds the processors and phases that may be loaded into the user region or link pack
 areas. It should contain at least 4000 records. Typical size is 12000 records. The LDLIBE utility
 program is used to initialize and maintain the load library. The directory should allow for at least
 600 members.

Resident System Residence
 SYS1.MUSIC.NUCLEUS F227,note below
 This is the SDS in which the core-resident part of MUSIC resides. It is read into main storage at
 IPL time. The block size is 6400 for count-key-data devices and 512 for FBA devices. It should
 be at least 80 records long (1000 records if FBA device). It must reside on the IPL volume and its
 name must be as shown.

MUSIC Accounting File
 SYS1.MUSIC.ACCT F232,4096
 This data set is used to record all accounting data regarding computer and terminal usage. Records
 are entered here at such times as terminal sign-on and sign-off, job start and job end. The system
 will use whatever size data set is allocated. This data set must be initialized using the =RESET
 special IPL option before it can be used for the first time.

User Authorization Code Table
 SYS1.MUSIC.CODTABL F233,512
 This data set contains one record for each userid authorized to use the system. The maximum
 number of user code records in the code table depends on the block size B of the
 SYS1.MUSIC.CODINDX data set: the maximum number is (B/18)**2. Normally B is 4096,
 resulting in a maximum of 51529 codes or the number of records in SYS1.MUSIC.CODTABL,
 whichever is less. The total number of records in the data set must not exceed 52000. The number
 of records must be at least 40.

User Authorization Code Table Index
 SYS1.MUSIC.CODINDX F234,4096
 This data set contains the various index records which enable the system to quickly locate a
 specific code table entry. A completely full code table should require only (B/18)+2 records in this
 data set, where B is the block size of SYS1.MUSIC.CODINDX. However, due to fragmentation it
 is recommended that more records be allocated. This is particularly required when many additions
 and deletions are made to the code table. A recommended size is 1.5 * (B/18) records (i.e. about
 340 records for the standard blocksize 4096). The Code Table Dump/Restore (CODUMP) utility

384 MUSIC/SP Administrator's Reference - Part V

 can be used to compress the code table to eliminate fragmentation.

 The total number of records in the data set must not exceed 700. The number of records must be at
 least 11.

 The standard and maximum block size of the index is B = 4096. A smaller block size may be used,
 but there is no advantage in doing so.

Spooling Area Status
 SYS1.MUSIC.HPOOL -,6400
 This data set is used by the system initialization at a system START to record the spooling areas
 and Save Libraries in use. It must reside on the IPL volume and its name must be as shown. It is
 only one track long.

Permanent Volume List
 SYS1.MUSIC.HVLIST -,80
 This data set is used to record the list of permanent volumes mounted at IPL time. Its name must
 be as shown, and it must reside on the IPL volume. The minimum number of records required is
 one plus the number of permanently mounted volumes.

System Data Set List
 SYS1.MUSIC.DSLIST -,6400
 This data set logs the data set names and volumes of all current system data sets in use at IPL time.
 It may be used by statistical and error logging or analysis routines. It is one record long, its name
 must be as shown, and it must reside on the IPL volume.

Generation Load Utility
 SYS1.MUSIC.GENLOAD -,446
 This data set is used during the time the system nucleus is being loaded on disk. It is not required
 during normal operation of MUSIC, but since it is rather small in size, it is recommended that it
 always be present. Its size is at least 100 records, its name must be as shown, and it must reside on
 the IPL volume of the generated system.

System Catalog
 SYS1.MUSIC.CATALOG -,80
 This data set is used to contain the MUSIC system catalog which describes the MUSIC SDS files
 and their location. This catalog is used only at MUSIC IPL time and must be located on the IPL
 volume. It should have at least 300 records.

———————————————
Accessing Data Sets

Data on disk can be accessed in a variety of ways. The most basic method is to invoke the disk I/O scheduler
passing the Unit Control Block (UCB) number of the disk to be used, and the absolute cylinder, head, and
record of the data on the pack. This method is in general only used at system start-up time and by certain
error and recovery routines.

The more common method is not to refer to the UCB, but to a Data Extent Block (DEB) number. There is
one such number for every system data set used by the system. In addition to the DEB number, the routine
indicates which record(s) of the data set it wishes to read or write. It may use a record number for this (first
record of data set is number one, etc), or it may pass a pseudo-device CCHHR disk location. In the latter
case, the program assumes that the data in the SDS is arranged as if it were a disk with a specific number of
records per track, and heads per cylinder. It constructs what it considers the correct cylinder, head, record
address. The disk scheduler converts this to a record number according to the pseudo-device format of the

 Internals - Chapter 19. Direct Access Storage 385

data set (that is, the number of pseudo records/track and tracks/cyl.). The record number is then normally
processed. Each data set which may be accessed in this way has a pseudo-device format specified in the
catalog.

For more information about the System Catalog, refer to the EDTCAT utility in Chapter 17.

———————————————
Allocating MUSIC System Data Sets

MUSIC system data sets are allocated in a similar manner to user data sets. However, several extra parame-
ters are available on the /FILE statement.

All MUSIC system data set have data set names of the following form:

 SYS1.MUSIC.xxxxxxx

The last identifier is a 1-7 character alphanumeric string, the first of which is alphabetic. Since the /FILE
statement only allows a maximum of 8 characters in a data set name, the percent character (%) is used to
abbreviate 'SYS1.MUSIC.'. A system data set is limited to one extent.

Instead of defining the size of the data set in number of records, the number of tracks is specified via the
NTRK parameter. This parameter is only valid when the data set starts with the % character. The NREC
parameter may not be used to allocate system data sets. For a data set on an FBA (fixed block architecture)
device, one track is considered to be 32 512-byte physical blocks.

The BLK parameter must be used to specify the block size of the data set. For an FBA data set, this is the
logical block size; a logical block is composed of one or more physical 512-byte blocks, and each logical
block starts on a new physical block.

The MUSIC VIP code privilege is required to allocate or delete a system data set.

An example of a job to allocate a system data set follows. This will be a new batch input spooling data set.
The BUFNO parameter avoids the unnecessary allocation of buffers in the user region.

 /ID appropriate parameters
 /FILE 1 UDS(%BATCHIN) NTRK(250) BLK(512) VOL(MUSICX) NEW BUFNO(0)
 /LOAD IEFBR
 /END

Note that IEFBR is a dummy program which simply returns control to the system.

Extra parameters are available (although not often used). They allow a data set to be allocated at a specific
absolute address on a disk pack. For example:

 CC(cc) HH(hh)

The values in parenthesis are the starting cylinder and head addresses of the new data set (in decimal). For
this allocation to be successful, sufficient free space must be available at the specified address. The 'LISTV'
function of the DSKDMP utility may be used to inspect the position of free extents on disk packs. On FBA
devices, specify cc as 0 and hh as the logical track number (the starting physical block number divided by
32).

The figures below are useful for calculating the number of tracks needed for data sets. Figures 19.1 and 19.2
give the track capacity (number of records) for various size records. Figures 19.3 - 19.5 review some disk

386 MUSIC/SP Administrator's Reference - Part V

device characteristics.

 RECORD SIZE R E C O R D S P E R T R A C K

 (IN BYTES) 2314 3340 3330 2305M1 2305M2 3350 NAT

 8 0 4 0 3 4 6 1 2 8 5 3 7 2

 4 4 6 1 3 1 3 2 2 1 6 2 3 3 0

 5 1 2 1 1 1 2 2 0 1 5 2 0 2 7

 1 0 2 4 6 7 1 1 1 0 1 2 1 5

 2 0 4 8 3 3 6 5 6 8

 4 0 9 6 1 2 3 3 3 4

 6 4 0 0 1 1 2 2 2 2

 VTOC DSCBS 2 5 2 2 3 9 1 8 3 4 4 7

 Figure 19.1 - Disk Device Track Capacity (Part 1 or 2)

 RECORD SIZE R E C O R D S P E R T R A C K

 (IN BYTES) 3375 3380 3390 9345

 8 0 7 5 8 3 7 8 6 7

 4 4 6 4 3 4 9 5 2 4 4

 5 1 2 4 0 4 6 4 9 4 1

 1 0 2 4 2 5 3 1 3 3 2 8

 2 0 4 8 1 4 1 8 2 1 1 7

 4 0 9 6 8 1 0 1 2 1 0

 6 4 0 0 5 6 8 6

 1 5 4 7 6 3

 1 7 6 0 0 2

 VTOC DSCBS 5 1 5 3 5 0 4 5

 Figure 19.2 - Disk Device Track Capacity (Part 2 of 2)

 Internals - Chapter 19. Direct Access Storage 387

 2314 3340 3340 3330 3330 2305 2305 3350
 M35 M70 M1,2 M11 M1 M2 NATIVE

 Max BLKSIZ 7294 8368 8368 13030 13030 14136 14660 19069

 Trks/Cyl 20 12 12 19 19 8 8 30

 No. of Cyl 200 348 696 404 808 48 96 555

 Capacity mb 29.1 35 70 100 200 5 11 317

 Capacity mb
 Blksize 512 22.5 25.6 51.3 78.6 157 2.9 7.8 230

 Capacity mb
 Blksize 4096 16.3 34.2 68.4 94.3 188 4.7 9.4 272

 Xfer Rate kb 312 885 885 806 806 3000 1500 1200

 Av Access ms 60 25 25 30 30 0 0 25

 Rot Delay ms 12.5 10.1 10.1 8.4 8.4 2.5 5.0 8.3

 Figure 19.3 - Disk Device Characteristics (Part 1 of 3)

388 MUSIC/SP Administrator's Reference - Part V

 3375 3380 3380E 3380K 3390 3390 3390 9345 9345
 /arm /arm .2 .3 .2

 Max BLKSIZ 35616 47476 47476 47476 56664 56664 56664 46546 46546

 Trks/Cyl 12 15 15 15 15 15 15 15 15

 No. of Cyl 959 885 1770 2655 1113 2226 3339 1440 2156

 Capacity mb 409 630 1260 1890 946 1892 2838 1000 1500

 Capacity mb
 Blksize 512 235 312 625 937 418 837 1256 453 678

 Capacity mb
 Blksize 4096 377 543 1087 1631 820 1641 2461 884 1324

 Xfer Rate kb 1859 3000 3000 3000 4200 4200 4200 4400 4400

 Av Access ms 19 16 16 16 9.5 12.5 12.5 10 11

 Rot Delay ms 10.1 8.3 8.3 8.3 7.1 7.1 7.1 5.6 5.6

 Figure 19.4 - Disk Device Characteristics (Part 2 of 3)

 3310 3370-1 3370-2 9332 9335
 per per
 arm arm

 Block Size 512 512 512 512 512

 Capacity mb 64.5 285 364.9 184 412

 Capacity bk 126016 558000 712752 360036 804714

 Xfer Rate kb 1031 1859 1859 2500 3000

 Av Access ms 27 20 19 19.5 18.0

 Rot Delay ms 9.6 10.1 10.1 9.6 8.3

 Figure 19.5 - Disk Device Characteristics (Part 3 of 3)

———————————————
Adding Disks to MUSIC

All MUSIC packs use standard OS/VS type formats. That is, they have standard labels and VTOCS. This
label and VTOC must be created before attempting to use a new disk on MUSIC. The Device Support

 Internals - Chapter 19. Direct Access Storage 389

Facility program (DSF) can be used to perform this initialization. In addition, it is useful in detecting and
correcting disk errors. A copy of DSF can be loaded by IPLing from the SOURCE tape. For more informa-
tion see Device Support Facilities User's Guide and Reference (GC35-0033).

The OS/VS IEHDASDR or standalone IBCDASDI programs can be used to initialize non-FBA disks. The
MUSIC utility INITFBA can be used to initialize FBA devices.

When initializing a pack any volume name may be used, as long as no two packs (to be used at the same
time) have duplicate names. The user is cautioned against changing the name of the MUSIC1 UDS volume
as certain execution procedures (for example PL/I) refer to it.

If a volume is to be used for User Data Sets, it should be formatted as documented under the Disk Format
Utility (FORMAT). A VOLUME specification should be added to the MUSIC system catalog to enable
users to allocate on this pack. All that is then required is to ensure that it is online when MUSIC is next
loaded. In addition, the DSLIST file should be changed to include this new UDS pack (last statement of
file). Take care to ensure that the file remains execute-only (XO). If the DSACT program is used, its control
statements should also be changed to include the new volume.

If a volume is to be used for System Data Sets (SDS), it must be mounted and ready at IPL time. Any
required data sets should be allocated as detailed in the previous topic of this chapter. The data sets should
then be formatted using the Disk Format Utility (FORMAT).

The DSCOPY program can be used to move the contents of system data sets from one disk to another with-
out using tape. The catalog statements in file SYSCAT should be modified to reflect the new data set loca-
tions. The catalog creation utility (EDTCAT) should be run to create a new catalog. The system should then
be reloaded. If the code table was newly created, a current copy (dumped before reloading) should be
restored using the code table dump/restore program. If a new subroutine library was allocated, it should be
recreated by performing a subroutine library edit. If new Save Library data sets were allocated, formatted,
and specified in the catalog, they are automatically incorporated into the Save Library at IPL time.

The case of moving existing Save Library data sets is a somewhat special case. Care must be taken to ensure
that nothing on the entire Save Library changes from the time any of the data sets is copied until the time the
system is loaded using this new library.

It is recommended that the starter system (after generation) be preserved so that in the case of any failure of
the production system, a workable, compact system is still available.

 Migrating MUSIC to a Different Type of Disk

Take the following steps to convert DASD.

1. Initialize the new volumes, using e.g. DSF as in the MUSIC/SP Administration Guide, "Installation"
 chapter. Configure your existing MUSIC system so that the new volumes are accessible to it, as extra
 volumes. You will probably need to assign different volume names to the new volumes for now, to
 avoid duplicate names -- e.g. MUSNWX, MUSNW1. You will rename the new volumes later, to their
 standard names MUSICX, MUSIC1.

2. Format the new volumes like UDS volumes, i.e. 512-byte blocks. Use FORMAT program with /INC
 FMTUDS. See control statements in description of FORMAT utility in MUSIC Admin. Reference.
 This job (and most jobs that follow), requires the /VIP ON command to be entered before you run it.

3. Allocate the new system data sets. These are all the SYS1.MUSIC.xxxxxxx data sets that MUSIC
 needs. See the chapter "Direct Access Storage" in the Admin. Reference. Use your existing data sets as
 a guide.

390 MUSIC/SP Administrator's Reference - Part V

4. Format any system data sets which do NOT have blocksize 512, using the FORMAT program. They
 are SWAPn, PAGEn, LOADLIB, NUCLEUS, CODINDX, HPOOL, HVLIST, DSLIST, GENLOAD,
 CATALOG.

From this point on, keep all users off of MUSIC, and stop all BTRMs, until the migration is complete.

5. Use DSCOPY to copy any system data sets which contain data: UIDX, ULnn, SUBMIT, LOADLIB,
 CODTABL, CODINDX. (Do not copy NUCLEUS and CATALOG, since they will be generated
 below.)

6. Copy UDS files:

 Note: If your users do not use UDS files, or if you have only a few UDS files, you can skip this step
 and copy the UDS files manually, using DSCOPY.

 a. Scan old VTOC's (using STDSCB routine) to produce job stream of DSCOPY jobs, preserving
 LRECL, backup, and number of records.
 b. Temporarily REP the module PRE to not update the date of last access: DS1REFD field in
 format-1 DSCB, near label PREB106.
 c. Submit the DSCOPY jobstream to batch.
 d. Run a program to copy some format-1 DSCB fields from old VTOC to new:
 - date and time of creation
 - date and time of last accounting
 - date of last access
 - opened-for-write bit

7. Prepare the new system catalog (with ultimate volume names) and use EDTCAT program to write it to
 the new IPL volume.

8. Prepare a NUCGEN tape for the new system: new unit addresses, device types. This involves running
 your $GEN:NUCGEN.JOB file (updated as required), with output to tape. See the NUCGEN utility in
 the Admin. Reference.

9. Rename the new volumes to their final names, by using the NEWID option of the FORMAT utility.
 This needs /VIP ON.

10. Shutdown MUSIC and remove the old volumes.

11. IPL the new NUCGEN tape.

12. IPL the new system and test.

 Internals - Chapter 19. Direct Access Storage 391

 Chapter 20. File System
———————————————
 Save Library

MUSIC/SP's file system is called the Save Library. Physically the Save Library consists of a group of
system data sets named SYS1.MUSIC.ULnn and an index data set called SYS1.MUSIC.UIDX. The system
manages this common pool of disk space to provide file space for the users. Users need not be concerned
about the physical organization of these data sets. Logically, each user has their own private set of files. The
ownership of these files is based on an ownership id, which in most cases, is the userid that is used to logon
to the system. The exception is for userids that have subcodes - the subcode is excluded for file ownership
since these users share the same set of files.

File Names

A file name consists of a 1 to 17 character name. These file names can be stored in directories. These direc-
tories give the file system a tree-structured hierarchical structure.

The file system can refer to any file in the system by using what is called a "fully qualified" file name. All
files in the system have a unique fully qualified name. An example of a fully qualified name is:

 ABCD:CS100\NOTES

In the above example, ABCD refers to the ownership id. Note the colin (:) is used to separate the ownership
id from the rest of the name. The file name is NOTES and it is located in the directory called CS100.

The file system has reserved 64 characters to hold the fully qualified name field. The directory and file name
portion including any "\" characters can be up to 50 characters in length in total.

Usually users only use the filename part when referring to their own files. The ownership id and the colon
can be prefixed in front of the directory and file name portions to refer to files belonging to other users. If a
file has been stored with the share (SHR) attribute then any user can access that file. An administrator with
the FILES privilege can access any file by prefixing file names with an ownership id.

Files can also placed in something called the Common Library. In this case a special index entry is created
so that all users can reference the file without having to prefix the file name with the ownership id. Files for
MUSIC/SP commands and utility program are in this Common Library. Files that are to be accessible to all
users would normally be placed in this library. There is an option in the user profile that can be set to allow
or disallow saving files in the Common Library.

Record Formats

The following record formats are supported (FC is the most used format):

F Fixed Format. All records are the same length and are physically stored on disk that way. Direct
 access is possible with such a file since each record occupies a fixed and predictable position on
 disk. The system maps the fixed format records to the physical 512 byte blocks. Records less than
 512 in length are packed into the physical blocks but do not span those blocks. Records greater than
 512 may span blocks but, each new record must start at the beginning of a physical block.

FC Fixed Compressed. To the application, all records appear to have the same record size. The record

392 MUSIC/SP Administrator's Reference - Part V

 size is defined when the file is created. Internally the file is compressed with repeated character
 sequences of four or more of the same character reduced to two bytes. Trailing blanks at the end of
 each record will never be written to disk. Logical records may span 512-byte disk boundaries though
 the user never needs be concerned about the internal representation of this file type.

V Variable Length. Each record is written to disk without compression. The length of each record is
 also written so that the length may be returned when it is read. The system keeps track of the size of
 the largest record written. The maximum record length is 32760. Trailing blanks at the end of each
 record may be truncated, by user option, so that they will never be written to disk. Logical records
 may span 512-byte disk boundaries though the user never needs be concerned about the internal
 representation of this file type.

VC Variable Compressed. Internally the file is compressed with repeated character sequences of four or
 more of the same character reduced to two bytes. The length of each record is also written so that
 the length may be returned when it is read. The system keeps track of the size of the largest record
 written. The maximum record length is 32760. Trailing blanks at the end of each record may be
 truncated, by user option, so that they will never be written to disk. Logical records may span
 512-byte disk boundaries though the user never needs be concerned about the internal representation
 of this file type.

U Undefined. This format allows the user to use any style data handling desired, although the user
 must do the deblocking or blocking since the logical record routines will not attempt to handle it.

Record Size

The maximum record size is 32760 bytes. The minimum length is 0 for V and VC, and 1 for F and FC.

File Sizes

The minimum file size is four 512-byte records for a total of 2048 bytes.

The first 512-byte record of a file is used by the system to keep control information about the file. This
record is called the header.

There is no absolute limit to the size of a file. A file's initial allocation must be satisfied in one library space.
Since a single library space can hold up to 57 million bytes, that limits the initial size of a file. For any
particular user, the system administrator can set a personal limit to be smaller than this.

Direct Access Support

Regardless of the format, records in all files can be accessed directly by telling the file system to position
itself at a particular location in the file. This feature is particularly useful with fixed format files, where the
application knows the positioning information in advance.

For all formats except U, file positioning information is given in the form of a relative byte address (RBA).
The RBA is relative to the first block of the file. The RBA of the first usable byte in the file is 512 since the
file's header occupies the first 512 bytes. The RBA of the second usable block in the file is 1024. Record
format U files are positioned by physical block number.

The access methods supported by MUSIC allow direct access based on record number on fixed format files.
OS-style NOTE and POINT operations can be done on all files excepting format U. A Write Rule is used to
avoid the security exposure of accessing the old contents of file written by the previous user. (See Usage
Notes for details.)

 Internals - Chapter 20. File System 393

Dynamic Access

Files can be dynamically created, deleted, opened, closed, expanded and read or written into during the
execution of a program.

RAS

Reliability and serviceability is enhanced through the following techniques:

 The bitmaps, used to manage file space, are checked with a check-sum technique. When a purge opera-
 tion is done, the system checks when bits are added back to the maps to detect the case of freeing space
 already freed. In this case, the total bit count is maintained correctly. If the checksum fails, the system
 will remove this space group from future allocations. The system will keep running.

 Should a part of the library be unavailable, (due to failure of disk drive, for example), the system will
 still be able to operate. Attempt to use files in the unavailable space will result in a message to the user.

 Should the master index get destroyed, it is possible to recreate it in most cases by scanning the library
 spaces since the file header has an unusual character sequence at the start of it. Headers of purged files
 are zeroed.

User Controls

Associated with each userid is a User Control Record (UCR) that controls the amount of file space that the
user can have. Even privileged users cannot save a file under a userid that has no UCR record. The UCR
record contains the maximum amount of space the user can allocate per file and maximum total space for all
the user's files. The record also contains the amount of space currently used. All space amounts are
expressed in units of K bytes (K=1024). (Since the basic allocation unit is currently set to 2K, the space used
amounts will be even multiples of 2.)

Usage Dates

The system maintains three dates: date last opened for writing, date last opened for reading only, and the
date the file's header was created. The time of day that the file was last opened for writing is also main-
tained.

Audit Information

With each file is maintained the full userid of the creator and last writer.

There is an option to maintain a usage count for each file recording the number of accesses.

Access Control

The basic options are PRIVATE and PUBLIC. A private file can be accessed only by its owner. Public files
can be read by any user but only written by the owner. A user can select that a file can be added to but not
read or written in any other way (APPEND). A file can be EXECUTE-ONLY, meaning that it can only be
read by the systems job startup routines. User's can run the programs in these files but cannot look at them.
The access control can differentiate between two classes of users: file owners and others. Thus a file can be
execute only to others but not to the file owner. A number of combinations of access controls are available.
The utility FILECH can be used to set or modify them.

394 MUSIC/SP Administrator's Reference - Part V

Tag Field

Each file has a 64 byte tag field. This field can be used for any purpose the user wishes. It is not read or
written as part of the data of the file but is part of the system information in the file's header. For example, it
could be used to hold a phrase to describe the contents or usage of the file. Directory names can also contain
a tag field.

Installation Field

Each file has a 16-byte installation dependent field that can be used for any purpose. It is reserved for use by
installations other than McGill or for features that McGill wishes to use and never be part of the distributed
MUSIC system.

Extendable

The Save Library index is a separate data set allowing it to be expanded or put on a faster device should that
be desirable. This data set contains the hash numbers used with the index.

The number of concurrently open files can be expanded by the re-assembly of MFIO and MFIOCB. The
space used per open file is 108 bytes. The number of open files bears no relation to the number of available
buffers.

The size of the buffer pool used by the SL routines is also expandable. Each buffer requires 512 bytes.

———————————————
Naming Conventions

Refer to the MUSIC/SP Users Reference Guide publication for a complete description of file naming conven-
tions and directories. The following is a summary of the conventions.

File Names

The file name can be up to 17 characters in length. The user's current directory name is prefixed to the file
name and can result in a string of up to 50 characters long. A "\" character will separate the directory prefix
from the file name portion.

The user can prefix the userid (excluding subcode) and/or a directory to a file name. This is useful to refer to
files owned by other users or to files in other directories. The general form of the fully qualified name is:

 USERID:directory\filename

Character Set

The following characters are allowed in the ownership id and file name fields:

 letters: A through Z (Upper Case Characters Only)
 numbers: 0 through 9
 special characters: the five (5) characters: # $ @ _ .

The special character "\" can be used when it follows the rules of the tree-structured directory naming

 Internals - Chapter 20. File System 395

conventions.

The file name can include more special characters than ownership ids. They are:

 - + % ! & ~

The first character of the file name cannot be any of these special charaters or a period (except for the special
name of &&TEMP).

National Language File Suffix

File names can be suffixed by the 3 special character sequence "{@}" when used to open old files. This is
used in the support of national languages. It allows programs to refer to different files depending on the
user's language preference.

At open time, the system will replace these 3 characters with a single character taken from the national
language option in effect. For example, if a user has selected the national language option of Portuguese,
then opening with the character string "MSG{@}" will result in the attempt to open the file "MSGP".
Should that file not exist, then an attempt will be made to open file "MSG". If the current language selected
was English, then the file suffix is ignored. The 3-character file name suffix is not counted as part of the 17
character name although the generated name must be 17 characters or less.

The national language suffix characters are:

 blank English
 F French
 K Kanji (Japanese)
 P Portugeuse
 E Spanish
 G German

Reserved File Names

File names should not start with the commercial 'at' sign (@) since certain system utilities will use names of
this form. The search order for files starting with this character is also different. For example:

 @ADMIN.xxx Used by ADMIN system facility
 @ADMIN.CONFIG Configuration file in the NUCGEN
 @AMS.sub Used by VSAM's AMS
 @APLW.wsname VS APL workspaces
 @APLv.vvvvvv Used to store VASPL external variables
 @APL.DUMP.nn Used to hold dump of VS APL
 @AUTHSCHED Used by SCHED
 @CF.xxxx Used to hold CONF xxxx
 @CI.xxxx Used by CONF
 @CONF.sub Used by CONF utility to store user's full name
 @CONLOG Used by CONLOG
 @CW.sub Used by Waterloo C
 @ELOG.sub.nn Editor restart file.
 @GNJOB Used by GENPCH
 @HOLD.sub Holds the user's write 10 output
 @INPUT.sub Holds the user's /input file
 @date.SCHED. Used by TODO to hold user's monthly schedule.
 @INI.xxx Used by FSI

396 MUSIC/SP Administrator's Reference - Part V

 @INI.LISTING Used to hold job output run under FSI
 @INI.sub Used to hold the FSI options.
 @LEARN Holds the restart info of the LEARN command of IIPS
 @LIB Used by /library command to hold list of files
 @MEMO Used by the now obsolete MEMO facility
 @NAMES Used to hold the MAIL directory.
 @PRT Used by the print screen utility (F9)
 @REMIND Used by REMIND
 @REXX.sub Work file used by REXX
 @EXEC.sub Work file used by the exec command of REXX.
 @SENDFILE Used by the SENDFILE program.
 @SORT.TMP Used by SORT macro for editor.

Qualification

The 17-character file name can have the period characters anywhere within it (ie not at the beginning or end).
Examples of valid names are RM.LETTER.05DEC77, PROG.V1.L1, THISISALONGNAME.

For example, MAIN.SRC could contain the source and MAIN.OBJ could contain the object deck for the
program MAIN.

The qualification can be used to give the appearance of a PDS as in the example: SCRIPT.MAIN,
SCRIPT.FORMAT, SCRIPT.SAMPLE, etc.

Notice that CMS's naming conventions of filename/filetype can be directly mapped to filename.filetype.

Specifying Ownership Ids

The ownership id is the userid excluding any subcode. It can prefix the file name as in the example:
OWNERID:FILENAME. Note the use of the colon (:) to separate the ownership id from the file name as
well as specifying the presence of an ownership id.

If the ownership id starts with an asterisk (*), it takes on the following meanings:

 *com:filename means look into the common library only
 *usr:filename means look into the user's private library only

Temporary Files

Temporary files exist only for the duration of a single job. The only data set name that specifies a temporary
file is &&TEMP.

Temporary files are always deleted when closed unless a rename to some permanent name is done at that
time.

Internally the system will use a filename of the form .nnnnnn where nnnnn is a number that starts at 1 at IPL
time and is increased by one each time a temporary file is allocated. The system will purge any temporary
files that exist at IPL time through a routine in the transient phase $PUS.

 Internals - Chapter 20. File System 397

———————————————
Save Library Usage Notes

• When one user has a file open for writing, others are locked out as with the UDS system. DISP=WSHR
 can be used for valid multiple write situations.

• Write Rule. Only affects direct access operation. The system remembers the highest block number
 written. You may never write beyond this point unless it is the next highest record. This scheme
 prevents a security exposure that would otherwise result.

• Only one end-of-file (EOF) mark is permitted per file. The UDS system allows any number of end of
 file marks. There is no special character string that cannot be written to the file. The location of the eof
 mark is stored in the file's header and is thus not part of the file's data.

• Tape I/O will normally be buffered by the system to correspond to the LRECL and BLKSIZE given on
 the /FILE command. If RECFM=U is given, then each IO request reads and writes a complete block.

• The minimum record length for reads from file types RDR and TERM is 80 bytes. For other file types
 the minimum is one byte for RECFM=F and FC files and zero bytes for RECFM=V and VC files.

• Should the file run out of space during a write operation, the system will automatically add secondary
 extents. The amount of secondary space added as well as the maximum size is controlled by attributes
 stored with the file.

———————————————
Assembler Language Interface

Overview

This section describes the macros and control blocks that constitute the assembler language interface to the
MUSIC file system. A high level language subroutine interface is also available. It is described in Chapter
22.

In order to use a file the user must OPEN the file. If the file does not exist, there is an option that will have
the open create one at this time. Several other options exist on the open and are discussed below. Once the
file has been successfully opened, the user can then read and write records to and from the file. Two general
techniques exist to read and write to the file. One is the unbuffered technique. With this technique, the user
must provide the block number that starts the read or the write request. Logical record deblocking with this
form of request is the user's responsibility.

The other, more common access method, is to allow the system to do the logical record deblocking. With
this technique, the user need not be concerned with how the logical records are mapped into the physical disk
records. There are four record formats: F, FC, V and VC. The meanings of these four formats were
discussed in a previous section.

Once the read and write operations have been completed, you then CLOSE the file. On the close operation
you can specify that the file be deleted from the system, or kept, or renamed to some other name.

All the requests reference a MFIO argument list. The user may choose to use the same argument list for all
files that will be referenced in a program, or the user can choose to have different ones for each file. The
argument list is composed of two sections: one a fixed section which must always be given. This is
followed by a list of optional argument pointers. Pointers can be given to optional arguments which have no
meaning for the specific request currently being used.

398 MUSIC/SP Administrator's Reference - Part V

WARNING: Do not attempt to use the MFIO interface from within the MUSIC resident system modules.
They are designed to be used by code in the User Program or Link Pack areas.

Macros

The following five macros are used. These not only give access to the Save Library file system, but are used
to access tapes, UDS files, terminals, and other I/O devices.

MFARG This macro is used to set up an argument list. Several MFARG's can be given to set up one
 argument list. The argument list is not generated until a MFGEN macro is used. It is quite
 common to have several MFARG macros in sequence terminated with a MFGEN macro.

MFGEN This macro completes the argument list definition defined by a series of MFARG macros.

MFVAR This macro can be used to create any of the argument blocks pointed to by the MFARG
 macro.

MFSET This macro alters the request options in an argument list. It performs no system request but
 just sets the required bits for a future request. Register 1 is altered by this macro.

MFREQ This macro issues the SVC that performs the request defined in the argument list. Register 1
 is altered by this macro.

req-name parameter

The req-name parameter is used in several macros to specify the type of request. The valid req-name param-
eters are given below:

OPEN The open function is to be performed.

CLOSE The close operation is to be performed.

DIRSRV A directory service function like CD, MD, or RD is to be performed.

FSIO Perform 3270 full screen operations.

IO Perform a read or write or control request using the logical record deblocking routines. The
 file's RECFM determines how the deblocking will take place.

EXTRACT Extract information about this file but do not open it. The user must have enough privileges
 to at least read the file in order that the extract operation be done.

JOBI Perform the job initialization functions. This call is used internally and can never be done
 from a user program.

JOBT Perform the job termination function. This call is used internally and can never be done
 from a user program.

LIBR Return the parameters which enable the caller to perform a LIBRARY operation.

MISC Performs miscellaneous functions.

MSG Get error message text (treated like an I/O read).

 Internals - Chapter 20. File System 399

UIO Perform an unbuffered read-write request. The read/write request always starts at the begin-
 ning of the 512-byte disk block and continues for as many blocks as required to satisfy the
 length field. The file's RECFM has no effect on this type of I/O.

USERCTL Read or write a user control record (UCR).

MFARG Macro

The following are the operands that may be placed on this macro:

req-name Specifies the request code to be assembled into the argument list. The request code of
 numeric 0 may be used if none is to be assembled into the list.

(option1,option2,...)
 Specifies the options to be assembled into the argument list. Options are separated from
 each other by commas and the entire list must be enclosed in parentheses. Refer to the
 comments under the various request types for valid option names.

optional parameters
 Specify the optional parameter name in keyword format followed by the Assembler label of
 the optional argument. Refer to the separate list below for the valid names.

ULAB= Specifies the Assembler label that will be generated on the one byte internal unit number in
 the argument list.

U=n Specifies that a unit number of n is to be assembled into the argument list.

RLAB= Specifies the Assembler label to be generated on the one byte return code returned by the
 various requests.

PICT=Y This parameter can be used to have the macro generate a diagram showing the layout of the
 argument.

The label field of this macro will generate a corresponding label if it is used on the first MFARG macro in a
sequence. Otherwise the label will be associated with the optional parameter pointer given on the macro.
Because of this second usage, the user should use separate MFARG macros when the user wishes the labels
to be associated with the specific optional parameter names.

The MFARG instructions (one or more) are followed by an MFGEN macro instruction, which causes the
argument list to be generated. An optional operand AREA=location on MFGEN causes MFGEN to generate
executable instructions to create an MFIO argument list at the specified location, using information from the
MFARG instructions. This makes it easier for reentrant code to set up an MFIO argument list in a work area
defined by a DSECT. A label may be used on MFGEN if the AREA option is present. When AREA is used,
MFGEN modifies register 1.

Optional Parameters

The optional parameters on the MFARG macro are given in a keyword format. For example,
XNAME=FNAME would be used to specify that the optional parameter XNAME should point to a label
called FNAME in the user's program. The valid optional parameter names are given below:

ARG Points to the buffer location and length associated with the current read or write operation.
 For certain types of I/O, this control block will also contain the starting record number or
 RBA locator.

400 MUSIC/SP Administrator's Reference - Part V

BUPNUM Points to the argument that contains the backup tape number associated with the last backup
 operation done for this file. This number may be zero indicating no backup done yet for this
 file. This number can be set by privileged users via the SETBFG option on the CLOSE
 request.

EOFPT Points to the argument area which contains the highest block number written and the
 displacement of the last written byte within that block.

EXTNTS Points to the argument area which contains the extent list of the file.

FSARG Points to the 3270 full screen I/O argument. This contains the buffer addresses, lengths and
 control options used by the interface.

INFIN Points to the information to be assigned to a new file. Such information includes its records
 size, its record format, and its access control.

INFOUT Points to the location of the control block which is to be filled in by the system to contain
 information about an existing file. INFOUT may point to the same location as INFIN.

LIBR Points to the optional argument area used in conjunction with the LIBR request.

XNAME Points to the file name or the ddname of the file (64 characters).

NAME Points to the file name or the ddname of the file (22 characters). The XNAME parameter
 should be used for new code as it can handle longer names.

RNAME Points to the returned file name (64 characters).

PHYS Points to the control block that will contain the current record length and RBA information
 after a read or write operation.

TAG Points to the tag field to be associated with a new file or the location where the system is to
 move in the tag information of the existing file. The tag information is only returned if the
 user is the owner of the file.

UCTL Points to the argument area used to access and modify the user control record for a specific
 library code. A non-privileged user can only read the user's own UCR record.

HINFO Points to the argument area that contains the usage information from this file's header. This
 argument replaces UINFO used before ownership ids could be longer than 4 characters. The
 only case to use UNIFO is for EXTRACT requests that use the header location on input.

UINFO This argument was used before ownership ids could be longer than 4 characters. The only
 case to use UNIFO is for EXTRACT requests that use the header location on input. Use
 HINFO for other cases.

XINFO Points to the 40-byte argument area that contains additional usage information from the file's
 header. The first 4-byte word contains the time of day (in units of 1/300 sec) of creating or
 last open for write.

MFVAR Macro

This macro is used to generate any optional argument that may be required. The argument name that is to be
generated is given as the first operand. The name is the same as the req-name given on the MFARG macro.
A keyword parameter of PRE=prefix, may be used to specify a four character prefix to be placed in front of

 Internals - Chapter 20. File System 401

the generated labels within the argument. The keyword parameter of PICT=Y, can be used to generate a
diagram to show the layout of the various fields in this argument.

MFSET Macro

The operands in this macro are as follows:

arg-name This specifies the Assembler label of the argument list to be used for the request. The label
 is the one given of a MFARG macro.

req-name This specifies the request type to be moved into the argument. Omit this parameter if the
 request type is not to be changed from a value previously set in the argument.

R=(option1,option2,...)
 This is used to specify the request options to replace those in the specified argument.

M=(option1,option2,...)
 This specifies the request options that are to be modified in the specified argument. Notice
 that this form only modifies the specified option bits and keeps the remaining ones
 untouched. You can omit the req-name operand, meaning that you do not wish to alter the
 request code in the argument list. You may use a minus sign immediately in front of any
 option to specify that option is to be turned off in the current argument list.

MFREQ Macro

The options for this macro are as follows:

arg-name Points to the Assembler label associated with an argument list generated by a MFARG
 macro.

EOF=eofadr Specifies the Assembler label to branch to should an end-of-file condition be found during a
 read operation.

BAD=badadr Specifies the Assembler label to branch to if an unusual condition occurred during the
 processing of this request.

OPEN Request

The OPEN request passes a data set name, a ddname, or a PDS member name to the SL and upon the
successful completion, the system will set the one byte internal unit number in the argument list.

An OPEN by data set name (dsname) is independent of any /FILE JCL definitions. It is a true dynamic
OPEN. Various options are available at open time to say whether an existing file with that name is accepta-
ble and whether a new file is to be created if none exists with that name.

An OPEN by ddname requires that a valid /FILE JCL definition be in effect for this ddname. This OPEN
retrieves the internal unit number associated with the ddname. The EOFB field in the EOFPT argument is
returned for SL and UDS files. The RSIZ and RFM fields of INFOUT are also returned. For files, the PRM
field of INFOUT returns the current file size. The file has already been opened when the /FILE JCL was
checked. Therefore, the OKOLD option must always be given. The LU option can be given to mean that the
first word of the ddname field is the binary logical unit number.

An OPEN by PDS member name uses the root name given on a valid /FILE JCL definition to form a

402 MUSIC/SP Administrator's Reference - Part V

dsname. Once formed, the OPEN proceeds similarly to an OPEN by dsname. If the dsname cannot be
found, it will create a new file if OKNEW is given. If OKNEW is not given, other root names will be tried
in the order specified on the /FILE JCL.

At least one of the options RDOK, WROK must be given.

The various options that can be specified with the OPEN request are as follows:

DDNAME The name provided is a ddname. Only the ddname OPEN will be attempted.

DDORDS An attempt will be made to perform an OPEN by ddname. If the ddname is not found, an
 OPEN by dsname will be done.

MEMBER An OPEN by PDS name will be done. The name field contains the ddname as the first eight
 characters followed by the member name as the next eight characters.

LU Used with DDNAME. The OPEN is to be done on a logical unit number. The full word
 logical unit number is in the first 4 bytes of the name argument.

OKNEW Specifies that the OPEN will create a new file if one does not exist.

OKOLD Specifies that an existing file can satisfy the OPEN request.

RDOK Specifies that the user will be reading from the file.

WROK Specifies that the user will be writing to the file.

APPOK Specifies that the user wishes to write records only to the end of the file. The file will be
 positioned to the end in anticipation of these writes. The WROK option must also be given.

NODATE Specifies that the date last opened for reading will not be updated. This option is only valid
 for privileged users. When the file is opened for writing, this option has no effect.

SETUI Specifies that the usage information given with the open request is to be used with the new
 file. This option requires that the user be privileged. This option can use the HINFO or
 UINFO parameters. Do not use both.

POSEND Specifies that the file pointers are to be set so that writes done will add records to the file.

NOEFPUP Do not update the EOF pointer at CLOSE or TCLOSE time. This option is ignored if the
 RLSE option is used.

NOEFPLO Do not lower the EOF pointer at CLOSE or TCLOSE time.

ENQSHR Forces the enqueue operation to be done in share mode. Normally the enqueue operation
 will be done in share mode only when WROK is not used.

ENQEXCL Forces the enqueue to be done in exclusive mode. This means that no other user can access
 the file while this one is open. A user who is not allowed write access to the file cannot use
 this option. Normally the enqueue operation will be done in exclusive mode when WROK is
 used.

XONLY Used only from the module SIOCS to inform MFIO that reads of execute only files are valid
 at this time.

JOBOPN Specifies that the file is to be kept open until the end of the job. CLOSE requests on the file

 Internals - Chapter 20. File System 403

 will be handled as if the TCLOSE option was also given. This option is used by the module
 CTL when opening a file specified on a /FILE statement.

EOJDEL This option is used in conjunction with JOBOPN to delete a file at the end of a job.

EOJREL This option is used in conjunction with JOBOPN to perform the RLSE option at the end of
 the job.

PGMP Use merged program and user privileges for file access.

DIRNOK Allows the user to create and read the directory file. It also allows the creation of files into a
 non-existent directory. This option requires the MAINT privilege, otherwise this option is
 ignored.

NORAM Do not use RAM disk copy of the file. Valid with OKOLD.

CLOSE Request

The following options are defined for the CLOSE operation:

DEL Specifies that the file is to be deleted from the library.

REPL Specifies that a new file name is to be associated with the existing file. If a file already
 exists with that name, it is to be deleted. If a file does not exist, then this option will have
 the same effect as the RENAME option. New access control flags are assigned to the new
 name from the INFIN argument that should be provided when this option is used. Other
 parts of the INFIN and TAG arguments are not used by CLOSE. The new name cannot be
 the same as the original file name. This option does not set the RNAME field.

RENAME Specifies that the file is to be renamed to another name only if that new name does not exist
 on the library. New access control flags are assigned to the new name from the INFIN argu-
 ment that should be provided when this option is used. Other parts of the INFIN and TAG
 arguments are not used by CLOSE, except for logical record length when the SETEFP
 option is used. This option does not set the RNAME field.

RLSE Specifies that any unused space at the end of the file is to be released. This means that the
 file is to be made as small as possible to hold the existing data.

TCLOSE Specifies that the CLOSE function is to be performed but that the file is to remain open for
 further requests. The current end of data pointer is updated in the file's header. RLSE is the
 only other option that can be given when TCLOSE is used.

SETBFG Specifies that the backed up bit in the index entries for this file are to be set. The backup
 tape number specified by the BUPNUM is also to be set in the index. This option is only
 valid for privileged users.

SETEFP Specifies that the pointer to the end of the written data is to be updated with the value speci-
 fied in the EOFPT argument. The file's record size will be set to the value given in the RSIZ
 field of the INFIN argument. This allows the maximum record size to be set for a variable
 length file. The SETEFP option is only valid for privileged users and exists primarily for the
 MFREST utility and the COPY command.

GETEFP Refresh the EOF pointer. The file remains open. This option does not decrease the EOF
 pointer. This option cannot be used with other CLOSE options.

404 MUSIC/SP Administrator's Reference - Part V

RESET Do not do pending I/O, but update header block, setting line count to zero and end-of-file
 pointer to the start of the file. This sequence is logically equivalent to, but faster than, a
 rewind operation followed by a write end-of-file. The file is closed.

CTAG Set a new tag field when the file is closed. The new tag is taken from the TAG argument.

PGMP Use merged program and user privileges for file access. This option is used with REPL or
 RENAME.

DIRNOK Allows the user to create and read the directory file. It also allows the creation of files into a
 non-existent directory. This option requires the MAINT privilege, otherwise this option is
 ignored.

The above options can be used in combination. Should a request such as RENAME fail to work, the user
may issue additional CLOSE requests. When the CLOSE requests is successful, the unit number in the argu-
ment list will be set to 0.

IO and UIO Requests

These requests are used to perform read, write and control operations on the file. The valid options are as
follows:

LU The unit number in the argument list is a logical unit 1 to 15. The system will use this
 number to index into $LUXTAB to determine the internal unit to use. This option is used
 mainly by FORTRAN to perform its I/O. ($LUXTAB is initialized by CTL and may be
 altered by giving /FILE JCL with numeric ddname.)

RD Read a record from the file.

WR Write a record to the file.

WEOF Specifies that an end-of-file operation is to be done on the file. Not valid with the UIO
 request. (Notice that with the SL, only one end-of-file marker can exist on the file.)

REW Specifies that a rewind operation is to be done on the file. Not valid with the UIO request.

BSP Specifies that a backspace operation is to be done on the file. Not valid with UIO request
 and SL files.

FILL Specifies that the user's buffer is to be filled with blanks should the current record read from
 the file be smaller than the user's buffer. Not specifying this option is no guarantee that the
 fill function will not be done. Not valid with the UIO request.

TRUNC This specifies that blank characters are to be truncated from the record that is being written
 to the file. Only meaningful for RECFM=V or VC files. The record will then appear to
 have no trailing blanks on it. Not valid with the UIO request.

RBA The IO request is to start at the specific location within the file given by the relative byte
 address (RBA) contained in the ARG parameter. Use this operation with care if write opera-
 tions are being performed. This option is not valid with UIO requests.

USERL The caller's request length is to override the file's record size for the current IO operation of
 RECFM=F files. This option is used by FORTRAN when doing direct access operations.

 Internals - Chapter 20. File System 405

EXTRACT Request

This request is used to obtain information about a file without opening it. (An OPEN request can also obtain
the same information.) The options are as follows:

DIRLOC Specifies that the location of the file's header is given in the UINFO argument. Do not use
 the HINFO parameter. (Note the "header" used to be called the file's "directory". The name
 has been changed to avoid confusion with directories that the user see.) In this case the
 UINFO argument is 4 bytes in the form 00XXYYYY where XX is the library number and
 YYYY is the space unit number (as in the index entry). This saves the index search that
 would otherwise be done. This option can only be used from a privileged program. It is
 used by the LIBRARY command. Note that the file name argument must still be provided
 when DIRLOC is used.

PGMP Use merged program and user privileges for file access.

DIRSRV Request

The Directory Service request usually takes a directory name as input. Upon the successful completion, the
system will return a 64 byte RNAME field as a result.

The directory name can either be passed to the DIRSRV request in the NAME field if the directory is 22
characters or less, or in the XNAME field if the directory is 64 characters or less.

Directory names prefixed by with strings like "..\", ".\", and ".." will be resolved by using the current direc-
tory.

The various options that can be specified with the DIRSRV request are as follows:

DIRCD Changes directories from the current directory to the specified directory.

DIRMD Creates a new directory.

DIRRD Removes an empty directory.

DIRQD Queries the current directory. Works like DIRCD but does not change the current directory.

MSG Request

This request is used to obtain the message text corresponding to the error code set in the argument list.
Should not be called if error code is 0. The ARG argument defines the location and maximum length for the
returned message. A length of 70 is considered ample for message texts. Unused location in the message
buffer will be blanked.

USERCTL Request

This request is used to read and write a UCR record. A non-privileged user can only read the user's own
UCR record. The options are as follows:

SETUCR Specifies that the maximum allocation limit fields in the UCR are to be replaced with the
 ones specified in the calling argument.

REPUCR Specifies that the user control record is to be replaced entirely with the one specified in the

406 MUSIC/SP Administrator's Reference - Part V

 calling argument.

CODE Specifies that the ownership id associated with the UCR record is to be taken from the
 NAME argument. Otherwise the ownership id will be that of the current user. Maximum
 length is 16 characters with a blank terminating the field if shorter.

DELUCR Specifies that the UCR record for this ownership id is to be deleted from the index.

LIBR Request

This request returns arguments to enable the caller to do a scan of the Save Library Index. For example, the
LIBRARY command issues this request to determine the first and last block numbers of the index it will
have to read. If the caller passes a 4-character ownership code, then only the block numbers corresponding
to that segment will be returned.

LIBNAM Gets name from XNAME field instead of from the LIBR parameter.

MISC Request

This request is used to perform miscellaneous functions as follows:

SETLUX Takes the one byte internal unit number given in the basic argument and places it in the logi-
 cal unit cross reference table (LUXTAB) at location corresponding to the full word logical
 unit number given in the NAME argument.

SETDDN Adds a ddname to the ddname table (if not already there), and associates an internal unit
 number with the ddname. The step number in the table entry is set to zero, so that the
 ddname will apply to all steps of the job. The ddname is taken from the first 8 bytes of the
 file name argument. The internal unit number is taken from the basic argument block. If
 there is not enough room in the ddname table, the ddname is not added, and error 31 is
 returned.

FSIO Request

This request is used to perform full screen I/O operations to 3270 type terminals. The basic request block
should contain pointers to the FSARG and PHYS blocks. U=9 should also be specified. The FSARG block
contains lengths and pointers to the 3270 data stream buffers. The actual length of the input read is returned
in the PHYS block. Chapter 22 - System Programming contains detailed information of the assembler and
subroutine interfaces to this facility.

———————————————
File System Messages and Return Codes

Special Conditions

 Error 1 END OF DATA SET ENCOUNTERED (see also error 44)
 Error 2 INCORRECT LENGTH

Errors in Calling ARG

 Error 10 INVALID REQ

 Internals - Chapter 20. File System 407

 Error 11 INVALID REQ PARAMETER
 Error 12 FILE NAME INVALID
 Error 19 INVALID ARGUMENTS IN CALL TO SERVICE SUBROUTINE

Violations of MUSIC Conventions

 Error 20 TOO MANY OPEN FILES
 Error 21 NOT YOUR LIBRARY
 (Not authorized to store under this code.)
 Error 22 NOT YOUR FILE
 Error 23 VIOLATION OF WRITE RULE
 Error 24 ATTEMPT TO READ BEYOND END OF WRITTEN INFO
 Error 25 WRITE THEN READ SEQ INVALID
 Error 26 YOUR USERID CANNOT CREATE FILES ACCESSIBLE BY OTHERS
 Error 27 YOUR USERID CANNOT CREATE FILES IN THE COMMON INDEX

File Existence Errors

 Error 30 FILE NOT FOUND
 Error 31 DDNAME NOT FOUND (see also error 35)
 (on a SETDDN request, error 31 means that there
 is not enough room in the ddname table)
 Error 32 FILE ALREADY EXISTS
 Error 33 FILE IN USE
 Error 34 COMMON NAME USED BY SOMEONE ELSE
 Error 35 UNIT NUMBER NOT DEFINED
 (or ddname undefined by user request such as by
 specifying UNDEF on a /FILE statement.)
 Error 36 SUBDIRECTORY DOES NOT EXIST

Restrictions Imposed by FILE

 Error 40 SPACE QUOTA EXCEEDED FOR THIS USERID
 Error 41 SPACE QUOTA EXCEEDED FOR THIS FILE
 Error 42 CANNOT ADD SPACE TO THIS FILE
 Error 43 REQUESTED ACCESS OR OPERATION NOT ALLOWED
 Error 44 REQ BEYOND EXTENT OF FILE
 Error 45 FILE RECFM NOT DEFINED
 Error 46 FILE CANNOT BE READ SEQUENTIALLY
 Error 47 INSUFFICIENT SPACE FOR BUFFER ALLOC
 Error 48 MIN RECORD LEN IS 80 FOR THIS FILE TYPE

System Temporary Limits

 Error 50 FILE NOT ON-LINE
 Error 51 NOT ENOUGH FREE DISK SPACE
 Error 52 NOT ENOUGH FREE DISK SPACE (IDX)

408 MUSIC/SP Administrator's Reference - Part V

System Integrity Errors

 Error 60 RD I/O ERROR IN FILE
 Error 61 WR I/O ERROR IN FILE
 Error 62 RD I/O ERROR IN SYSTEM AREA
 Error 63 WR I/O ERROR IN SYSTEM AREA
 Error 64 INDEX IN ERROR
 ERROR 65 HEADER IN ERROR
 Error 66 MAP INTEGRITY ERROR
 Error 67 INDEX/HEADER MISMATCH

System Coding Errors

 Error 70 SYSTEM FILE ERROR (logic error in system module)

———————————————
Control Blocks

Basic Caller's Request Block

 0
 MAJOR | REQ FLAG 1 | REQ FLAG 2 | REQ FLAG 3
 OP | (MINOR OP) | |
 4
 ULCB # | RESERVED | RESERVED | RESERVED
 | | |
 8
 RETURN | RETURNED STATUS FLAGS
 CODE |
 12

NAME--Data Set or DDNAME (old format 22 character name)

 Same as XNAME but is only 22 characters long

 Label DC CL22' ' NAME

XNAME---Data Set or DDNAME

 CAN BE IN 4 FORMS:

 1) DSNAME EG. CODE:FILENAMEXXXXXXX (MAX 64 CHARS)
 EG. FILENAMEXXXXXXX (MAX 50 CHARS)
 EG. DIR1\DIR2\DIR3\FILENAME (MAX 50 CHARS)
 2) DDNAME EG. DDDDDDDD (MAX 8 CHARS)
 3) DDNAME AND MEMBER NAME EG. DDDDDDDDMMMMMMMM (MAX 16 CHARS)
 EG. DDDD MMMMMM (MAX 16 CHARS)
 4) BINARY LOGICAL UNIT NUMBER (4 BYTES)

 Label DC CL64' ' XNAME

 Internals - Chapter 20. File System 409

RNAME---Returned NAME from MFIO

 RNAME is a 64 byte long field

 General format is

 CODE:DIR1\DIR2\FILENAME

 One use for this arg is to return the filename actually found
 on an open request.

 Label DC CL64' ' RNAME

INFIN/INFOUT---Size and Attributes

0
 INFIN: PRIMARY SPACE ALLOC IN K BYTES
 INFOUT: CURRENT FILE SIZE IN K BYTES
4
 SECONDARY SPACE ALLOC. IF>0 THEN IS AMT IN K BYTES
 IF=0 THEN AMT IS CURRENT + 50%
 IF-N THEN AMT IS CURRENT + N%
8
 MAX SPACE LIMIT FOR FILE IN K BYTES
12
 INFIN: RSIZ IF RECFM=F,FC | RECFM | (RESERVED)
 INFOUT: MAX RSIZ WRITTEN | |
16
 <----------------FILE ACCESS CONTROL FLAGS-------------->
 GEN CTL INFO| OWNER ACCESS | NOBODIES ACC | RESERVED
20

Label DS 0F
 **FILE SIZE SPECIFICATIONS
xxxxPRM DC A(0) PRIMARY SPACE WANTED IN K BYTES
xxxxSEC DC A(0) IF >0 THEN IT IS AMT IN K BYTES
 IF =0 THEN AMT IS CURRENT + 50 %
 IF -N THEN AMT IS CURRENT + N %
xxxxMAX DC A(0) SPACE LIMIT IN K BYTES
 -1 MEANS UNLIMITED

 **LOGICAL RECORD CONTROL
xxxxRSIZ DC AL2(0) RSIZ IF RECFM=F OR FC
xxxxRFM DC AL1(0) RECFM
 =X'00' RECFM=U (NO LOGICAL RECFM DEF)
 =X'01' RECFM=F (FIXED)
 =X'02' RECFM=FC (FIXED COMPRESSED)
 =X'03' RECFM=V (VARIABLE)
 =X'04' RECFM=VC (VAR COMPRESSED)
 DC AL1(0) RESERVED FOR CARR CTL TYPE

410 MUSIC/SP Administrator's Reference - Part V

 GENERAL CONTROL FLAGS

 EQU B'10000000' FILE IS IN COMM INDEX
 EQU B'01000000' MAINTAIN USAGE COUNTS IN DIRECT
 EQU B'00100000' FILE IS A VSAM FILE

xxxxGCTL DC X'00' GENERAL CONTROL FLAGS

 ACCESS CONTROL BITS (USED FOR NEXT 3 BYTES)

 NOTES:
 -BITS NORD+NOWR MEANS NO ACCESS
 -IF XO TO OWNER, NO ATTRIBUTES CAN BE CHANGED
 -ONLY THE OWNER (OR A PRIVILEGED USER) CAN REPLACE OR
 DELETE THE FILE

 EQU B'10000000' NO KIND OF READ ACCESS ALLOWED
 EQU B'01000000' NO KIND OF WRITE ACCESS ALLOWED
 EQU B'00100000' ONLY RD ACCESS IS EXEC-ONLY
 EQU B'00010000' ONLY WR ACCESS IS APPEND

xxxxACOW DC X'00' ACCESS CONTROL FOR OWNERS
xxxxACNB DC X'00' ACCESS CONTROL FOR NOBODIES
xxxxACPJ DC X'00' ACCESS CONTROL FOR PROJECT MEMBERS

ARG---Read/Write Arg

0
 POSITIONING INFO (RBA OR DA BLOCK NUMBER)
4
 LENGTH OF I/O OPERATION IN BYTES (0-32760)
8
 BUFFER ADDRESS
12

Label DS 0F
 **THE FOLLOWING WORD IS USED TO PASS POSITIONING INFO
xxxxSBNU DS 0F STARTING BLK NUMBER (UIO ONLY)
xxxxIRBA DS 0F RBA FOR RWB REQUESTS ONLY
 DC A(0) POSITIONING INFO (SEE ABOVE)

xxxxRLEN DC A(0) LENGTH OF REQ (BYTES)
xxxxRBUF DC A(0) LOCATION OF BUFFER

PHYS---Returned Physical Info

0
 ACTUAL LOGICAL RECORD LENGTH OF DATA
4
 POSITIONAL INFO IN RBA FORM
8

 Internals - Chapter 20. File System 411

Label DS 0F
 *THESE ARGS ARE VALID ONLY FOR BUFFERED READ/WRITE REQUESTS
xxxxARSZ DC A(0) ACTUAL LOGICAL RCD LEN ON DISK
 (IE LENGTH OF VAR RECORD BUT NOT
 NUM OF BYTES IN COMPRESSED RCD)
xxxxORBA DC A(0) RBA OF START OF THIS RECORD

TAG---Tag Information

0
 64 BYTES OF TAG INFORMATION (INITIALLY HEX 0'S)
64

Label DC XL64'00' TAG FIELD

LIBR---Arg for LIBRARY Req

0
 FOUR CHAR LIBRARY OWNERSHIP CODE
4
 START BLOCK NUMBER IN INDEX TO START SEARCH
8
 BLOCK NUMBER IN INDEX TO END SEARCH
12
 DEB NUMBER
13

Label DS 0F
xxxxLBCD DC CL4' ' OWNERSHIP ID FOR LIBR OPERATION
xxxxLBSB DC A(0) START BLOCK NUMBER OF SEGMENT
xxxxLBEB DC A(0) ENDING BLOCK NUMBER OF SEGMENT
xxxxLBDB DC AL1(0) DEB NUM OF INDEX DATA SET

UCTL---User Control Record Arg

0
 MAX TOTAL SPACE THAT CAN BE ALLOCATED IN K BYTES
4
 MAX SPACE THAT CAN BE ALLOC PER FILE IN K BYTES
8
 CURRENT AMT OF SPACE ALLOCATED IN K BYTES
12
 HIGHEST AMOUNT ALLOCATED IN K
16
 RESERVED FOR FUTURE USE
20

412 MUSIC/SP Administrator's Reference - Part V

Label DS 0F **ALL UNITS ARE K BYTES (K=1024)
xxxxMAXS DC A(0) MAX SPACE THAN CAN BE ALLOC TOTAL
xxxxMAXF DC A(0) MAX SPACE PER FILE

xxxxACUR DC A(0) AMT CURRENT ALLOCATED
xxxxAHWM DC A(0) HIGHEST AMOUNT ALLOCATED
 DC A(0) RESERVED FOR FUTURE USE

HINFO--Usage Information from File's Header for 16 char userids

0
 OWNERSHIP CODE (1-16 CHARS WITH BLANK FILL)
16
 USAGE COUNT (IF KEPT FOR THIS FILE)
20
 CREATION DATE DATE LAST REFERENCED ONLY
24
 DATE LAST OPENED FOR WRITE /// RESERVED ///
28
 USERID OF CREATOR (1-16 CHARS WITH BLANK FILL)
44
 USERID OF LAST WRITER (1-16 CHARS WITH BLANK FILL)
60
 INSTALLATION DEPENDENT FIELD (16 BYTES)
76
 *NOTE
 *This argument replaces UINFO used before ownership ids
 *could be longer than 4 characters.
 *The only case to use UNIFO is for EXTRACT requests that
 *use the header location on input.

 Label DS 0F
 *NOTE:THE OWNERSHIP AND USERIDS ARE 1 TO 16 BYTES
 * LONG WITH BLANK FILL.
 xxxxHIFC DC CL16' ' OWNERSHIP ID OF CREATOR
 xxxxHIUC DC F'0' FILE USAGE COUNT (IF KEPT)

 **DATE INFORMATION.
 * DATE NUMBER IS DAYNUM+(YEAR-1970)*366
 xxxxHICD DC AL2(0) DATE THIS DIRECTORY ITEM WAS CREATED
 xxxxHIRD DC AL2(0) DATE FILE WAS OPENED ONLY FOR READING
 * (MAY BE =0)
 xxxxHIMD DC AL2(0) DATE FILE WAS OPENED FOR WRITE
 DC AL2(0) RESERVED

 xxxxHICI DC CL16' ' USERID OF CREATOR
 xxxxHIWI DC CL16' ' USERID OF LAST WRITER

 xxxxHIID DC XL16'00' INSTALLATION DEPENDENT FIELD

 Internals - Chapter 20. File System 413

UINFO--Usage Information from File's Header

0
 FOUR CHARACTER OWNERSHIP CODE
4
 USAGE COUNT (IF KEPT FOR THIS FILE)
8
 CREATION DATE DATE LAST REFERENCED ONLY
12
 DATE LAST OPENED FOR WRITE
14
 USERID OF CREATOR (7 CHARACTERS MAX)

 RESERVED
22
 USERID OF LAST WRITER (7 CHARACTERS MAX)

 RESERVED
30
 INSTALLATION DEPENDENT FIELD (16 BYTES)
46

Label DS 0F
 *NOTE THE FIRST WORD IS USED TO PASS THE HEADER LOC ON
 *CERTAIN TYPES OF EXTRACT REQUESTS.
xxxxUIFC DC CL4' ' OWNERSHIP ID PART OF FILE NAME.
xxxxUIUC DC F'0' FILE USAGE COUNT (IF KEPT)

 **DATE INFORMATION.
 DATE NUMBER IS DAYNUM+(YEAR-1970)*366
xxxxUICD DC AL2(0) DATE FILE WAS CREATED
xxxxUIRD DC AL2(0) DATE FILE WAS OPENED ONLY FOR READING
 (MAY BE 0)
xxxxUIMD DC AL2(0) DATE FILE WAS OPENED FOR WRITE

xxxxUICI DC CL7' ' USERID OF FILE'S CREATOR
 DC C' ' RESERVED
xxxxUIWI DC CL7' ' USERID OF LAST WRITER
 DC C' ' RESERVED

xxxxUIID DC XL16'00' INSTALLATION DEPENDENT FIELD

XINFO--Extra Usage Information from File's Header

0
 TIME OF DAY (1/300 SEC) OF CREATION OR LAST OPEN FOR WRITE
4

 RESERVED FOR FUTURE USE

40

414 MUSIC/SP Administrator's Reference - Part V

Label DS 0F
xxxxXITD DC F'0' TIME OF DAY (1/300 SEC) OF CREATION
 OR LAST OPEN FOR WRITE (OR 0 IF BEFORE
 TOD SUPPORT BEGAN)
xxxxXIRS DC 9F'0' RESERVED FOR FUTURE USE

EOFPT--Pointers to End of File

0
 TOTAL NUMBER OF LOGICAL RCDS WRITTEN TO FILE
4
 HIGHEST BLOCK NUMBER WRITTEN (0 IF NOTHING WRITTEN)
 FOR UDS, THIS IS NUMBER OF LAST BLOCK OF THE DATA SET.
8
 DISPL OF LAST WRITTEN BYTE
10

Label DS 0F

 THE FOLLOWING IS THE NUMBER OF LOGICAL RECORDS WRITTEN TO THE
 FILE.
 THIS NUMBER MAY BE 0 EVEN IF THE FILE CONTAINS INFORMATION AS
 THIS FIELD CANNOT BE CORRECTLY MAINTAINED IN ALL CASES.

xxxxNLRC DC A(0)

 THE FOLLOWING IS THE 512-BYTE BLOCK NUMBER LAST WRITTEN.
 IF NUMBER IS 0, THEN THE FILE IS EMPTY.

xxxxEOFB DC A(0)

 THE FOLLOWING IS DISPLACEMENT INTO THE BLOCK OF THE 1ST BYTE
 BEYOND THAT LAST WRITTEN.
 FOR EXAMPLE, =512 IF BLOCK ALL WRITTEN.
 (CAUTION--THIS NUMBER MAY NOT BE 0 FOR AN EMPTY FILE.)
xxxxEOFD DC AL2(0)

EXTNTS--Extent List of File

0
 NUM OF EXTENTS (MAX 16)
2
 LIB SPACE #
3
 SPACE # OF START LOC # SPACE UNITS IN EXTENT

 REPEAT OF LAST 5 BYTES FOR 15 MORE EXTENTS
82

 Internals - Chapter 20. File System 415

Label DS 0H
xxxxEXTC DC AL2(0) COUNT OF NUMBER OF EXTENTS (MAX 16)

 ** EXTENT INFO FOLLOWS.
 PER EXTENT: FIRST BYTE IS LIB SPACE NUMBER WHERE EXTENT IS
 LOCATED (1,2,...)
 NEXT HALF WORD IS STARTING SPACE UNIT NUMBER OF
 EXTENT (1,2,...)
 NEXT HALF WORD IS NUMBER OF SPACE UNITS IN EXTENT.
xxxxEXTI DC 16XL5'00' EXTENT INFO

BUPNUM--Backup Tape Number

0
 BACKUP NUM
1

Label DC AL1(0) BACKUP TAPE NUMBER

FSARG--FSIO ARG

0
 CONTROL INFO FOR FULL SCREEN I/O
4
 LENGTH OF WRITE OPERATION (0 IF NONE)
8
 BUFFER ADDRESS FOR WRITE
12
 LENGTH OF READ OPERATION (0 IF NONE)
16
 BUFFER ADDRESS FOR READ
20

 Label DS 0F
 xxxxFSFG DS XL4'00' FLAGS TO CONTROL FULL SCREEN I/O
 xxxxFSWL DC A(0) WRITE LENGTH
 xxxxFSWB DC A(0) WRITE BUFFER LOCATION
 xxxxFSRL DC A(0) READ LENGTH
 xxxxFSRB DC A(0) READ BUFFER LOCATION
The control flag definitions are described in the FSIO section of
Chapter 22.

———————————————
Internals - Save Library

Tree-Structured Hierarchical Processing

By default, the current directory is set to the root directory when the user signs on to MUSIC. The character
string associated with the current directory is stored in the XTCB control block. It can be set and queried by
the DIRSRV service request of MFIO or by the CD command. If a user issues the "CD \ABC\DEF"
command, the field in the XTCB will be set to:

416 MUSIC/SP Administrator's Reference - Part V

 AL1(8),C'ABC\DEF\'

A count of hex 0 would indicate the root directory.

Directory names are stored in the file system like ordinary user files. Their name always ends in a backslash
(\) character. Suppose a user creates a directory using the "MD SAMPLE" command. This will cause the
file system to create a file called "SAMPLE\". This file is stored like any other file that a user may own.
The contents of the file are not used. This is very different to many other systems which actually store the
names of all the files that are part of a directory with a directory file. The main use of the directory file on
MUSIC is to establish that the user has issued a MD command.

You cannot normally create or delete a directory file. That should be done with the MD or RD commands or
by the equivalent DIRSRV MFIO request. The MUSIC backup and restore utilities can directly create and
delete directory names. This is done through the use of the DIRNOK special request on some MFIO calls.

Suppose a user creates a file called TEST after he has set the current directory to "SAMPLE". The file will
be stored under the name of "SAMPLE\TEST". This allows for direct access to all files on the system with-
out having to read any directory files first.

Data Set Overview

The Save Library consists of a number of data sets. All these data sets have a blocksize of 512 bytes. There
is one index data set that contains the names of all the files. The remaining data sets contain the actual data.
The Save Library can be expanded by adding more of these data sets, however, there is only one index data
set.

Index Data Set

The index data set contains the names of all files and a pointer to the start of each one. It also contains the
UCR records. The first few blocks in this data set contain the system control data that is used at IPL time.
Such information includes hashing numbers and a field that contains the number of data spaces. The remain-
der of the index data set is split into several sectors. All the file names belonging to any one given user will
be found entirely within one sector. Thus, the LIBRARY command need only search one sector to find the
names of all the files stored under one code. There is an overflow sector in the index data set that contains
records which could not fit within the proper sector because there was no space in the specific record that
was pointed to by the hashing process.

In order to locate a specific file the system first takes the code part of the file name and determines what
sector it maps to. It then takes the file name, and using the hashing process, locates the specific disk block
within that sector that would contain the specified file name. Upon reading the block, the system can deter-
mine whether the file does in fact exist. (The hashing scheme is set so that if multiple users who are sharing
the same index sector use the same file name, it will probably map to different index blocks.)

To locate an item in the common library, the system considers all the primary sectors as being one large
sector and hashes the file name to locate a specific index block.

Space Data Set

Each space data set starts off with several blocks that contain control information. One of the blocks
contains a bitmap which indicates which space units are used within this data set.

The remainder of this data set is used to contain users' data. The first block of any user file is reserved for
system use. This block contains the file header. In the file header are the various attributes and

 Internals - Chapter 20. File System 417

characteristics of the user's file. (The header block used to be called the directory block. It was renamed to
avoid confusion with directories that the user can create.)

Bitmap

The bitmap is stored in up to 7 512-byte blocks that start at block 2. The first four bytes contain a check
sum. This field is used to check the validity of the map and is calculated by an arithmetic process involving
the addition of the remaining words in the map. (Consult the system code in module MFIO for a complete
description of how this is calculated.)

The check sum is followed by a two byte bit count containing the number of free space units in this data set.

The bit count field is followed by a bitmap. The bitmap shows exactly which units are free. Each bit corre-
sponds in order with the space unit number available. Thus the bit after the counter is the status of space unit
one, the next, space unit two. If the bit is on, then the space unit is free and hence, can be allocated.

File Header

The first block of each file contains its header. This header contains such things as the access control infor-
mation, the ownership id (userid without subcode), usage dates and the file's extent information.

ULCBs

A set of User Library Control Blocks (ULCB) exist in the service area of the user region. These control
blocks contain information about open files. They are contained in the system module MFIOCB.

Buffer Pool

A buffer pool exists for the use of Save Library I/O. This pool is located in the system module MFIOCB.
Each buffer in the pool can be assigned to any file. They are assigned dynamically as required using a
scheme similar to a paging scheme.

Logical Record Formats

The following describes how the logical records are stored on the Save Library's 512-byte physical blocks.

Fixed Format (F)

With this format, the first logical record contained in any disk block always starts at the first byte of the disk
block. When the record size is not greater than 512, then no logical record spans a disk block. Unused space
may therefore exist at the end of each block.

When the logical record size is greater than 512, each logical record starts at the beginning of a disk block.
Overflow from one block is continued at the first byte of the next block. Unused space may exist at the end
of the last block used for each record.

418 MUSIC/SP Administrator's Reference - Part V

Variable Format (V)

The first two (2) bytes of each disk block are used to contain the displacement to the start of the first logical
record in that block. The remaining 510 bytes are always used. Logical records exceeding one disk block
will continue at the third byte of the following block. Each logical record is preceded by a 2 byte count
containing the number of bytes in the record plus two.

Compressed Format (FC and VC)

The only difference between FC and VC is the meaning of the file's record size. For FC files, the record size
means that all records will appear to be this size. Trailing blanks will always be removed from FC files
before compression and supplied on expansion. For VC files, the record size means the length of the largest
record in the file so far.

The first two (2) bytes of each disk block is used to contain the displacement to the start of the first logical
record in that block. If no logical record starts in this block, the first two bytes are zero. The remaining 510
bytes are always used. Logical records exceeding one disk block will continue at the third byte of the
following block. Each logical record may be composed of a number of segments. Each starts with a 1 byte
descriptor. A repeated text segment is used when four or more bytes in sequence are the same. One byte
segments are also represented by the repeated text format. The three types of segments are:

1. Non-repeated text. Format: D string
 The D byte is the length of the string minus one. D may range from X'01' to X'7F' representing string
 lengths of 2 through 128 bytes. D may not be zero.

2. Repeated text. Format: D C
 The D byte is the number of times to repeat the character C plus X'7F'. D may range between X'80' and
 X'FE' representing a repeat count of 1 to 127.

3. Record end. Format: X'FF'
 This segment indicates the logical end of the record.

———————————————
Working with Files

• Reference to another user's private file is done by prefixing the ownership id to the file name. The
 ownership id is usually the same as the userid. The only exception is when subcodes are used. Thus
 ABCD:HISFILE refers to the file HISFILE belonging to userid ABCD. This ownership id prefix is
 accepted in EDIT, RENAME, SAVE, PURGE and other similar commands.

• To change ownership of files you can use the RENAME command. To change a long list of files, use
 the FILECH utility. The COPYCOL command of the Editor is useful in the preparation of the input to
 this program.

• Use the TAG command of the Editor to help keep track of the contents of files. This is particularly
 useful when you own a large number of files.

• A COM option can be specified on the Editor FILE and SAVE commands. This has the effect of forc-
 ing the file name to be placed in the common index. A private file in the common index can be
 accessed only by its owner or by a privileged user. This feature can be used to reserve names in the
 common index, or to share files between privileged users without the need for public files.

• The "LIBRARY abcd:*" command lists all the files belonging to the ownership id ABCD. The

 Internals - Chapter 20. File System 419

 "LIBRARY ab*:*" command lists all the files belonging to the set of ownership ids that start with the
 letters AB.

 You can select only certain names within a ownership id. The "LIBRARY *:@learn" command lists all
 the files called @LEARN belonging to anyone.

• Use "LIBRARY *:* COM" to list all files in the common index. These files were saved with the COM
 or PUBL option.

• Use the ATTRIB utility to find the owner of a public file. Thus "ATTRIB xxxx" displays who owns the
 file xxxx.

• The FPRINT utility is useful to list a large number of files with page headings.

• To purge a number of files, first create a file that contains a list of the file names. Then use the
 "PURGE <list" command.

• Even privileged users will be unable to store files under unused userids. This is because a UCR record
 for the userid must exist before files can be stored with that userid. UCR records are automatically
 added by CODUPD when userids are added. You can use the UCR utility to add UCR records directly
 without requiring a corresponding sign-on userid.

• The following technique can be used to activate the usage counting of a file. Edit the file and type the
 editor command FILE * CNT.

• The FIXINDEX and MFHASH utilities are useful for direct inspection and alteration of the Save
 Library Index should that be required.

• Note that when you set up an execute-only file, you should put in a /SYS NOPRINT statement in the
 file so that the system will know not to print any /FILE statements that follow.

• You can specify a ownership id on the CD command by using the following format:

 CD \ownerid:\dir

———————————————
Working with UDS Files

This topic contains tips and techniques for working with User Data Set (UDS) files. These are OS style data
sets that are supported by MUSIC. Each file has its own VTOC entry and may occupy from one to five
extents. Despite the name, most users' data is stored in the Save Library and UDS files are only kept around
for compatibility with past releases. An entry in the user's profile sets the maximum number of tracks that
can be used for a UDS file.

• The LISTV command of the DSKDMP utility is used to list the contents of the VTOC. This gives a
 comprehensive list of all UDS (and SDS) files on any disk. It is also useful in determining the amount
 of free space on the disk.

• The EDITOR can edit UDS files. Define the UDS file as logical unit 4. Remember to specify the OLD
 option on the /FILE statement if you want to file the changes.

• When UDS files are deleted, their contents are not erased. Therefore, subsequent users who allocate
 UDS files may be able to read the information stored there by the previous user of that disk space. (This
 is not the case with regular files.) The ZERO.FILE utility described in the MUSIC/SP User's Reference

420 MUSIC/SP Administrator's Reference - Part V

 Guide, can be used to clear the contents of a file that contains sensitive information.

• To be able to list the UDS files owned by specific users, first create a file SYSDSL which is the same as
 the file DSLIST with the last line removed. Then run the following job:

 /INC SYSDSL
 VOL='volume1,'volume2',DSNS='userid*'

 where volume1,volume2 are the names of the UDS volumes to scan and userid is the file ownership id
 of the files that you want to list. The DSNS parameter can specify a data set name pattern, containing
 wild characters * and ?.

 Internals - Chapter 20. File System 421

 Chapter 21. Load Library and Link Pack Area
———————————————
 Load Library

The system load library is in the dataset SYS1.MUSIC.LOADLIB. Private load libraries can be created in
UDS files. These libraries contains relocatable machine language programs that are loaded into memory
using the SVC $LODSVC. The OS LOAD and LINK macro instruction can also be used to load programs
from these libraries. The system load library contains the modules for system utilities, the editor, the assem-
bler, compilers, system interfaces and commands. Private libraries are used when specific applications
require large program libraries. A example of this is the PL/I transient library.

The LDLIBE utility program is used to create and maintain load libraries, LDLIST lists information about
the contents of load libraries, and SYSREP can be used to make machine language modifications (ZAPs or
REPs) to the programs in a load library.

System performance can be significantly improved by placing programs from the system load library in
either the Fixed or Pageable Link Pack Areas. In addition to the loading overhead being reduced, this also
reduces system paging and swapping loads.

Modules in the Fixed Link Pack Area (FLPA) are loaded into memory during system initialization. If the
module is reentrant it can be executed directly from the FLPA. The pages of the module are never involved
in paging or swapping. If the module is not reentrant, it is copied to the user region before execution. This
memory to memory load is much less overhead than loading from the load library on disk.

Modules in the Pageable Link Pack Area are copied from the load library to the system's page data sets
during system initialization. To be eligible for the PLPA a program must be reentrant. When a PLPA
module is loaded, the system simply adjusts the user's page tables to point to the area of the page data set that
contains the module. The pages are brought in to memory as required by demand paging. This greatly
reduces loading overhead. Paging overhead is also reduced since the PLPA pages never have to be paged
out.

Entries in the system catalog determine which modules are placed in the FLPA and the PLPA.

———————————————
Load Library Member Formation Procedures

This section contains the job control statements used for creating the modules in the system Load Library.
Most of the members are formed by running two jobs. The first job uses the Linkage Editor (/LOAD LKED)
to create a load module file, from the object decks as input. The second job uses LDLIBE to copy the
member from the load module file to the Load Library. Refer to the LDLIBE utility for an explanation of the
options.

The LPA copies and main storage directory entries for these members will not be updated until the next time
MUSIC is IPLed. Some of the jobs that follow use the REPL=T option. Using REPL=T means that an
attempt will be made to use the same space occupied by the previous version. It may be advisable to rename
old members and then use REPL=F if you are not sure the new module will work or if you do not plan to
re-IPL MUSIC right away.

422 MUSIC/SP Administrator's Reference - Part V

$CTL Module Formation

 Refer to files $SYS:CTL.LKED and $SYS:CTL.APPLY for the two jobs required.

$FNPAK1 Re-entrant Subroutine Package

 Refer to files $SUB:$FNPAK1.LKED and $SUB:$FNPAK1.APPLY for the jobs required.

$INP Module Formation (/INPUT Command)

 Refer to files $SYS:INPUT.LKED and $SYS:INPUT.APPLY for the two jobs required.

$LST Module Formation (/LIST Command)

 Refer to files $SYS:LIST.LKED and $SYS:LIST.APPLY for the two jobs required.

$OSTRAP Module Formation

 Refer to files $CMP:OSTRAP.LKED and $CMP:OSTRAP.APPLY for the two jobs required.

$PRE Module Formation

 /FILE LMOD NAME(xxx) NEW(REPL)
 /LOAD LKED
 /JOB MAP,NOGO,NOSEGTAB,NOSEARCH,MODE=OS
 .ORG 1000
 ENTRY PRE
 <---------object for PRE. (Source stored under code $SYS)
 NAME $PRE

 /FILE 1 N(xxx)
 /INCLUDE LDLIBE
 LIBE='SYST',IN=1
 NAME='$PRE',RENT=F,REPL=T

 Internals - Chapter 21. Load Library and LPA 423

$PST Module Formation

 /FILE LMOD NAME(xxx) NEW(REPL)
 /LOAD LKED
 /JOB MAP,NOGO,NOSEGTAB,NOSEARCH,MODE=OS
 .ORG 1000
 ENTRY PST
 <---------object for PST. (Source stored under code $SYS)
 NAME $PST

 /FILE 1 N(xxx)
 /INCLUDE LDLIBE
 LIBE='SYST',IN=1
 NAME='$PST',RENT=F,REPL=T

$PUR Module Formation (/PURGE Command)

 Refer to files $SYS:PURGE.LKED and $SYS:PURGE.APPLY for the two jobs required.

$REN Module Formation (/RENAME Command)

 Refer to files $SYS:RENAME.LKED and $SYS:RENAME.APPLY for the two jobs required.

$REX Module Formation

 Refer to files $REX:REXX.LKED and $REX:REXX.APPLY for the two jobs required.

$ROUTING Module Formation (Route Name Table)

 Refer to file $PGM:$ROUTING.S for instructions.

$SAV Module Formation (/SAVE Command)

 Refer to files $SYS:SAVE.LKED and $SYS:SAVE.APPLY for the two jobs required.

$SIGNON Module Formation

 Refer to files $SYS:SIGNON.LKED and $SYS:SIGNON.APPLY for the two jobs required.

$UPD Module Formation (/UPDATE Command)

 Refer to files $SYS:UPDATE.LKED and $SYS:UPDATE.APPLY for the two jobs required.

$XMON Module Formation

 Refer to files $LKD:XMON.LKED and $LKD:XMON.APPLY for the two jobs required.

424 MUSIC/SP Administrator's Reference - Part V

APL Module Formation

 See file $APM:MUSAPL.LKED for the link edit job. See file $APM:MUSAPL.PUTSYS for the
 LDLIBE job.

APLVSXEC Module Formation

ASM Module Formation

 See files $CMP:ASM.LKED and $CMP:ASM.APPLY for the two jobs required.

ASMLG Module Formation

 See files $CMP:ASMLG.LKED and $CMP:ASMLG.APPLY for the two jobs required.

BLKLET Module Formation

 /FILE LMOD NAME(xxx) NEW(REPL)
 /LOAD LKED
 /JOB MAP,NOGO,NOSEGTAB,NOSEARCH,MODE=OS
 .ORG 0000
 <---------object for BLKLET. (Source stored under code $CMP)
 NAME BLKLET

 /FILE 1 N(xxx)
 /INCLUDE LDLIBE
 LIBE='SYST',IN=1
 NAME='BLKLET',RENT=F,REPL=T

CBMANIP Module Formation

 Refer to files $VSM:CBMANIP.LKED and $VSM:CBMANIP.APPLY.

CMPMON Module Formation

 Refer to files $SYS:CMPMON.LKED and $SYS:CMPMON.APPLY for the two jobs required.

 Internals - Chapter 21. Load Library and LPA 425

COBOL Module Formation

 /FILE LMOD NAME(xxx) NEW(REPL)
 /LOAD LKED
 /JOB MAP,NOGO,NOSEGTAB,NOSEARCH,MODE=OS
 .ORG 4600
 <---------object for COBOL. (Source stored under code $CMP)
 NAME COBOL

 /FILE 1 N(xxx)
 /INCLUDE LDLIBE
 LIBE='SYST',IN=1
 NAME='COBOL',RENT=F,REPL=T

DICT1 Module Formation (Spelling Dictionary)

 Refer to Chapter 12 - TODO Facilities under the topic "Installing a System Word Dictionary in the
 PLPA".

DMSREX Module Formation

 Refer to files $REX:DMSREX.LKED and $REX:DMSREX.LD for the two jobs required.

EDIT Module Formation

 /FILE LMOD NAME(xxx) NEW(REPL)
 /LOAD LKED
 /JOB MAP,NOGO,PRINT,STATS,NOSEGTAB,MODE=OS
 .ORG 1000
 <---------object for EDIT. (Source stored under code $EDT)
 NAME EDIT

 /FILE 1 N(xxx)
 /INCLUDE LDLIBE
 LIBE='SYST',IN=1
 NAME='EDIT',RENT=F,REPL=T

426 MUSIC/SP Administrator's Reference - Part V

EDITOR Module Formation

 /FILE LMOD NAME(xxx) NEW(REPL)
 /LOAD LKED
 /JOB MAP,NOGO,PRINT,STATS,NOSEGTAB,MODE=OS
 .ORG 1400
 <---------object for EDITIO. (Source stored under code $EDT)
 <---------object for EDITOR. (Source stored under code $EDT)
 <---------object for EDTFIX. (Source stored under code $EDT)
 <---------object for TSUSER. (Source stored under code $EDT)
 <---------object for SUBMIT. (Source stored under code $PGM)
 <---------object for PRINT. (Source stored under code $PGM)
 <---------object for QSCAN. (Source stored under code $PGM)
 <---------object for DUMMY. (Source stored under code $EDT)
 NAME EDITOR

 /FILE 1 N(xxx)
 /INCLUDE LDLIBE
 LIBE='SYST',IN=1
 NAME='EDITOR',RENT=T,REPL=T

EDTDSP Module Formation

 /FILE LMOD NAME(xxx) NEW(REPL)
 /LOAD LKED
 /JOB MAP,NOGO,PRINT,STATS,NOSEGTAB,MODE=OS
 .ORG 0000
 <---------object for EDTDSP. (Source stored under code $EDT)
 NAME EDTDSP

 /FILE 1 N(xxx)
 /INCLUDE LDLIBE
 LIBE='SYST',IN=1
 NAME='EDTDSP',RENT=T,REPL=T

EXEC Module Formation

 /FILE LMOD NAME(xxx) NEW(REPL)
 /LOAD LKED
 /JOB MAP,NOGO,NOSEGTAB,NOSEARCH,MODE=OS
 .ORG 1000
 <---------object for EXEC. (Source stored under code $LKD)
 NAME EXEC

 /FILE 1 N(xxx)
 /INCLUDE LDLIBE
 LIBE='SYST',IN=1
 NAME='EXEC',RENT=F,REPL=T

 Internals - Chapter 21. Load Library and LPA 427

FORTG1 Module Formation

 See file $FG1:FG1.GEN for generation procedure.

IBCOM Module Formation

 See file $LM1:LM1.GEN (Fortran Mod I library) or $LM3:LM3.GEN (Fortran Mod II library) for
 generation procedure.

IEFBR Module Formation

 /FILE LMOD NAME(xxx) NEW(REPL)
 /LOAD LKED
 /JOB MAP,NOGO,NOSEGTAB,NOSEARCH,MODE=OS
 .ORG 0000
 <---------object for IEFBR. (Source stored under code $CMP)
 NAME IEFBR

 /FILE 1 N(xxx)
 /INCLUDE LDLIBE
 LIBE='SYST',IN=1
 NAME='IEFBR',RENT=T,REPL=T

IFOXnn Module Formation

 /FILE LMOD NAME(xxx) NEW(REPL)
 /LOAD LKED
 /JOB MAP,NOGO,NOSEGTAB,NOSEARCH,MODE=OS
 /INCLUDE $CMP:VSASM.LKED

 /FILE 1 N(xxx)
 /INCLUDE LDLIBE
 LIBE='SYST',IN=1
 NAME='IFOX00',RENT=F,REPL=T
 NAME='IFOX01',RENT=F,REPL=T
 NAME='IFOX02',RENT=F,REPL=T
 NAME='IFOX03',RENT=F,REPL=T
 NAME='IFOX04',RENT=F,REPL=T
 NAME='IFOX05',RENT=F,REPL=T
 NAME='IFOX06',RENT=F,REPL=T
 NAME='IFOX07',RENT=F,REPL=T
 NAME='IFOX11',RENT=F,REPL=T
 NAME='IFOX21',RENT=F,REPL=T
 NAME='IFOX31',RENT=F,REPL=T
 NAME='IFOX41',RENT=F,REPL=T
 NAME='IFOX42',RENT=F,REPL=T
 NAME='IFOX51',RENT=F,REPL=T
 NAME='IFOX61',RENT=F,REPL=T
 NAME='IFOX62',RENT=F,REPL=T

428 MUSIC/SP Administrator's Reference - Part V

IGIALL Module Formation:
IGIEXT Module Formation:
IGIGEN Module Formation:
IGIPAR Module Formation:
IGIUNF Module Formation:

 See file $FG1:FG1.GEN for the generation procedure.

IISRENT Module Formation

 See file $IIS:IIS.GEN for the generation procedure.

IKFCBLnn Module Formation

 See file $GEN:COBOL4.GEN or $GEN.VSCOBOL.GEN for the generation procedure.

ILBOPRM0 Module Formation

 See file $GEN:VSCOBOL.GEN for the generation procedure.

JOBONE Module Formation

 Refer to files $SYS:JOBONE.LKED and $SYS:JOBONE.APPLY for the two jobs required.

LIBRARY Module Formation (/LIBRARY Command)

 /FILE LMOD NAME(xxx) NEW(REPL)
 /LOAD LKED
 /JOB MAP,NOGO,NOSEGTAB,NOSEARCH,MODE=OS
 .ORG 1000
 ENTRY LIBCMD
 <---------object for LIBCMD. (Source stored under code $SYS)
 <---------object for MFINDX. (Source stored under code $SUB)
 <---------object for MATCH. (Source stored under code $SUB)
 <---------object for SSORT. (Source stored under code $SUB)
 NAME LIBRARY

 /FILE 1 N(xxx)
 /INCLUDE LDLIBE
 LIBE='SYST',IN=1
 NAME='LIBRARY',RENT=F,REPL=T

 Internals - Chapter 21. Load Library and LPA 429

LKED Module Formation
LKEDPHS1 Module Formation:
LKEDPHS2 Module Formation:
LKEDPHS3 Module Formation:

 /FILE LMOD NAME(xxx) NEW(REPL)
 /LOAD LKED
 /JOB MAP,NOGO,NOSEARCH,MODE=OS (note: option NOSEGTAB not used)
 .ORG 0F80
 OVERLAY A
 <---------object for SYSIO. (Source stored under code $LKD)
 <---------object for LKDMON. (Source stored under code $LKD)
 <---------object for SBLOPN. (Source stored under code $PGM)
 OVERLAY B
 <---------object for PHASE1. (Source stored under code $LKD)
 <---------object for PREP1. (Source stored under code $LKD)
 OVERLAY B
 <---------object for PHASE2. (Source stored under code $LKD)
 <---------object for PREP2. (Source stored under code $LKD)
 OVERLAY B
 <---------object for PHASE3. (Source stored under code $LKD)
 <---------object for PREP3. (Source stored under code $LKD)
 NAME LKED

 /FILE 1 N(xxx)
 /INCLUDE LDLIBE
 LIBE='SYST',IN=1
 NAME='LKED',SEG=2
 NAME='LKED',RENAME='LKEDPHS1',SEG=3
 NAME='LKED',RENAME='LKEDPHS2',SEG=4
 NAME='LKED',RENAME='LKEDPHS3',SEG=5

LKEDEXEC Module Formation

 See $LKD:LKEDEXEC.LKED and $LKD:LKEDEXEC.APPLY for the two jobs required.

430 MUSIC/SP Administrator's Reference - Part V

LOADER Module Formation

 /FILE LMOD NAME(xxx) NEW(REPL)
 /LOAD LKED
 /JOB MAP,NOGO,NOSEGTAB,NOSEARCH,MODE=OS
 .ADD 004300 STRTUC
 .ADD 001000 IBCOM#
 .ADD 002394 FIOCS#
 .ADD 002840 ADCON#
 .ADD 003CE8 IHNERRM
 .ORG 001000
 <---------object for LLOADER. (Source stored under code $LDR)
 NAME LOADER

 /FILE 1 N(xxx)
 /INCLUDE LDLIBE
 LIBE='SYST',IN=1
 NAME='LOADER',RENT=F,REPL=T

OLOADER Module Formation

 /FILE LMOD NAME(xxx) NEW(REPL)
 /LOAD LKED
 /JOB MAP,NOGO,NOSEGTAB,NOSEARCH,MODE=OS
 .ADD 004800 STRTUC
 .ORG 001000
 <---------object for OLOADER. (Source stored under code $LDR)
 NAME OLOADER

 /FILE 1 N(xxx)
 /INCLUDE LDLIBE
 LIBE='SYST',IN=1
 NAME='OLOADER',RENT=F,REPL=T

PLI Module Formation

 /FILE LMOD NAME(xxx) NEW(REPL)
 /LOAD LKED
 /JOB MAP,NOGO,NOSEGTAB,NOSEARCH,MODE=OS
 .ORG 4600
 <---------object for PLI. (Source stored under code $CMP)
 NAME PLI

 /FILE 1 N(xxx)
 /INCLUDE LDLIBE
 LIBE='SYST',IN=1
 NAME='PLI',RENT=F,REPL=T

 Internals - Chapter 21. Load Library and LPA 431

QLOADER Module Formation

 /FILE LMOD NAME(xxx) NEW(REPL)
 /LOAD LKED
 /JOB MAP,NOGO,NOSEGTAB,NOSEARCH,MODE=OS
 .ADD 004300 STRTUC
 .ADD 001000 IBCOM#
 .ADD 002394 FIOCS#
 .ADD 002840 ADCON#
 .ADD 003CE8 IHNERRM
 .ORG 001000
 <---------object for QLOADER. (Source stored under code $LDR)
 NAME QLOADER

 /FILE 1 N(xxx)
 /INCLUDE LDLIBE
 LIBE='SYST',IN=1
 NAME='QLOADER',RENT=F,REPL=T

RLOADER Module Formation

 /FILE LMOD NAME(xxx) NEW(REPL)
 /LOAD LKED
 /JOB MAP,NOGO,NOSEGTAB,NOSEARCH,MODE=OS
 <---------object for RLOADER. (Source stored under code $LDR)
 <---------object for SBLOPN. (Source stored under code $PGM)
 NAME RLOADER

 /FILE 1 N(xxx)
 /INCLUDE LDLIBE
 LIBE='SYST',IN=1
 NAME='RLOADER',RENT=T,REPL=T

SORT Module Formation

 /FILE LMOD NAME(xxx) NEW(REPL)
 /LOAD LKED
 /JOB MAP,NOGO,NOSEGTAB,MODE=OS (note: NOSEARCH is not used)
 .ORG 0000
 <---------object for SRTMRG. (Source stored under code $CMP)
 NAME SORT

 /FILE 1 N(xxx)
 /INCLUDE LDLIBE
 LIBE='SYST',IN=1
 NAME='SORT',RENT=F,REPL=T

432 MUSIC/SP Administrator's Reference - Part V

VSAM Module Formation

 Refer to files $VSM:VSAM.LKED and $VSM:VSAM.APPLY.

VSAPL Module Formation

 See file $APV:VSAPL.LOAD.LKED for the link edit job. See file $APV:VSAPL.LOAD.PUTSYS for
 the LDLIBE job.

VSBASCMP Module Formation

 See file $BAV:VSBASIC.GEN for the generation procedure.

VSBASIC Module Formation

 /FILE LMOD NAME(xxx) NEW(REPL)
 /LOAD LKED
 /JOB MAP,NOGO,NOSEGTAB,NOSEARCH,MODE=OS
 .ADD 005000 CMPADR
 .ORG 1000
 ENTRY SYSIO
 <---------object for SYSIO. (Source stored under code $BAV)
 <---------object for VSBMON. (Source stored under code $BAV)
 NAME VSBASIC

 /FILE 1 N(xxx)
 /INCLUDE LDLIBE
 LIBE='SYST',IN=1
 NAME='VSBASIC',RENT=F,REPL=T

VSBASLIB Module Formation

 See file $BAV:VSBASIC.GEN for the generation procedure.

———————————————
Link Pack Area Considerations

The Link Pack Areas are used to hold resident copies of transient system and compiler modules. These
modules are read in from the system data set SYS1.MUSIC.LOADLIB.

The Fixed Link Pack Area (FLPA) and Pageable Link Pack Area (PLPA) are loaded at during system initiali-
zation based on the names given on RESPGM statements in the system catalog. These copies are subse-
quently used by the system avoiding the I/O overhead involved in loading them each time they are required.
The LPA program can be used to display the current contents of the FLPA and PLPA.

FLPA modules are loaded into real memory and remain resident there. There is obviously not enough room
in real memory to load all load library modules. High usage modules are the best candidates for the FLPA.
By default, a number of system utility modules such as SIGNON and EDITOR are put in the FLPA. If an
FLPA module is reentrant, then it can be used directly by the user program. This not only reduces the load

 Internals - Chapter 21. Load Library and LPA 433

time but also cuts down on the swap and paging load. If it is not reentrant, a copy is made in the user region
when requested.

PLPA modules are placed on the system's paging datasets during the initialization process. There is no real
storage penalty for putting a module in the PLPA, but the module must be reentrant to be eligible. When a
PLPA module is requested the system only need adjust the page table of that user. Any required page is then
read in as required using the system page mechanism.

The utility LDCNTS can be used to determine how often a module is used. Most installations will find that
the following are the most commonly used and therefore should be in the FLPA: $CTL, $PRE, $PST, $LST,
EDIT, EDTDSP, EDITOR, and $SIGNON. Other good candidates are $OSTRAP, $XMON, EXEC,
IBCOM, $REX, and DMSREX.

The following members must be in either the FLPA or PLPA: RLOADER, EDITOR, EDTDSP.

The member $ROUTING must always be in the FLPA. Even though it is reentrant it will not work in the
PLPA as some nucleus routines refer to it.

Keeping VSBASCMP and VSBASLIB routines resident means that about 50K larger VS BASIC programs
can be handled in the same size user region.

Keeping all C/370 modules resident has shown a marked reduction in compile times. The routine names are:
EDCP, EDCO, EDCT, EDCXV, EDCX24, and IBMBLIIA.

The current sizes of modules on your system can be listed by running the LDLIST program. Non-reentrant
modules in the FLPA will typically use 15% more space than indicated here due to space needed to hold the
relocation information. The items marked RENT are reentrant modules and hence are suitable for the PLPA
as well as the FLPA.

434 MUSIC/SP Administrator's Reference - Part V

 Chapter 22. System Programming
———————————————
 Overview

This chapter contains information of interest to system programmers who want to add new functions or make
modifications to MUSIC/SP. Before undertaking a programming project there are some basics you should
know.

The source for MUSIC is available on the source tape. This source is not only useful when you want to
make modifications, but contains many valuable comments and programming examples. Some features of
MUSIC internals that are not documented in manuals are described in detailed comments in the source
modules themselves.

There are a number of choices available when adding a new program or command. The command could be
written in REXX and interpreted directly from the REXX source. It could be written in a high level language
or assembler and run from a load module or object deck. A load module could be run from the system Load
Library or the LPA. A new command could be added to the system nucleus itself. The method chosen
depends of the type of application and required performance characteristics.

You should keep track of any local modifications or additions so they don't get forgotten when applying
maintenance or going to another release of the system. Also keep your own source separate from the base
system source.

———————————————
Naming Conventions For System Files

MUSIC system files follow a set of naming conventions based on the suffix used. The most common
suffixes used are the following:

 Source files end in .S

 Object decks end in .OBJ

 Files containing linkage editor control cards end in .LKED

 Files containing load modules end in .LMOD

 Files containing program data end in .DATA

 Files containing macro definitions end in .M

Usage of $ Userids on MUSIC

All system files are stored under an ownership userid that starts with a dollar ($) sign. Files associated with
different system functions are stored under different userids as follows. (For the latest table of $ userids see
the file CATALOG.)

$ACT Contains the files associated with the session accounting program.

 Internals - Chapter 22. System Programming 435

$ADM Files associated with the ADMIN program for the system administrator.

$ADS Files for the site's Ads Facility. These files are not distributed with MUSIC. They are created
 by the site.

$ADZ Data files for the SAMPLE ADS (classified ads) Facility.

$APM Contains the files associated with MUSIC/APL.

$APV Contains the files associated with VS APL.

$AXF Contains the files associated with VS Assembler (XF).

$BAV Contains the files associated with the VS Basic compiler.

$BBS The BBS utility program, which is used for HELP, ADS, CWIS, and other applications. Files
 with names starting $BBS:@CIO are a SAMPLE CWIS.

$BMK Benchmark programs, for comparing and measuring machine and system speeds.

$CIC Contains the files associated with IBM CICS.

$CMP Contains the files associated with OS simulation and the VS Assembler.

$COD Contains files associated with sign-on code utilities.

$CON Contains the files associated with the CONF and CONFMAN utilities.

$CSL Contains the Contributed Software Library.

$DEM Contains the files containing demonstration programs and games.

$DW2 Contains the files associated with IBM DisplayWrite/370.

$EDT Contains the files associated with the Editor.

$EMD Contains files associated with the Mail facility operation.

$EML Contains the source for the MAIL facility.

$EMM Userid owning the mailbox containing the site's mail profile defaults that are copied to new
 mailboxes at creation time.

$EMP Contains the files associated with the postmaster for the MAIL facility.

$EMS Electronic Marks Submission facility.

$EMn $EM1,$EM2,... Contain the outgoing mailboxes for the RDMAILER tasks that process incom-
 ing mail.

$FG1 Contains the files associated with the FORTRAN IV (G1) compiler.

$GDM Contains the files associated with IBM GDDM.

$GEN Contains the files used by system generation functions.

436 MUSIC/SP Administrator's Reference - Part V

$GPS Contains files associated with the GPSS product.

$HLP Contains the files used by the HELP commands. Files with prefix "@ED." are used with the
 Context Editor HELP facility. Files with prefix "@GO." are used with the *GO mode HELP
 facility. Files with the prefix "@FC." are used with the MUSIC/FCS facility.

$IBB Contains the files associated with IBM Basic.

$IBC C/370 and C/370 Version 2, Compiler and Library.

$IIS Contains the files associated with the Interactive Instructional Presentation System (IIPS) and
 with the Interactive Instructional Authoring System (IIAS).

$IMD Contains the files associated with IBM GDDM IMD.

$INT Contains the files associated with the Full Screen Interface (FSI).

$ITS Contains the files associated with the indexed text searching utilities.

$IVU Contains the files associated with IBM GDDM IVU.

$JCL Model job control card files for the SUBMIT program.

$KRM KERMIT file transfer (part of the CSL - Contributed Software Library).

$LDR Contains the MUSIC loaders.

$LKD Contains the MUSIC Linkage Editor.

$LM1 Files to generate the FORTRAN Mod I Library.

$LM3 Files associated with the FORTRAN Mod II Library.

$MAN Contains the files associated with the online manuals.

$MBx $MBA,$MBB,... Contains mailbox files for the MAIL facility.

$MCC Contains CMS macros. (CMS is a component of VM.) These macros are needed to assemble
 IIS source.

$MCM Contains the MUSIC system macros. They are used when assembling system source.

$MCS Client-server programs for interfacing with PC workstations.

$MCU Contains the MUSIC user macros (mainly OS macros).

$MDxx ($MDAA,...$MDZZ, $MD00,...$MD99) Mail data files.

$MEM Contains files associated with the MEMO utility.

$MON Contains some auto sign-on programs.

$PAN Contains the files associated with the 3270 PANEL subsystem.

$PCW Files associated with the Personal Computer Workstation (PCWS).

 Internals - Chapter 22. System Programming 437

$PGF Contains the files associated with IBM GDDM PGF.

$PGM Contains the files associated with miscellaneous main programs.

$PIP Contains the files associated with the pipe cmd.

$PLI PL/I Optimizing Compiler and Libraries.

$PL2 PL/I Version 2 Compiler, Library and Test Facility.

$PLK Contains the files associated with IBM GDDM (PCLK feature).

$PRT Print queue and print files.

$PUB Default anonymous FTP code.

$RDR Contains the batch jobs submitted to the MUSIC internal reader.

$REX Contains the files for the REXX command executor.

$RG2 RPG/370 Compiler and Library (5688-127).

$RPG Contains files associated with the RPG II compiler product.

$SCR Contains the files associated with MUSIC/SCRIPT.

$SRV Contains the files for applying service and installing optional products.

$STP Files associated with STATPAK. (Not distributed with MUSIC/SP.)

$SUB Contains the files associated with the subroutine library.

$SYS Contains the MUSIC system source.

$TCP Contains the files associated with TCP/IP.

$TDO Contains the files associated with the Time, Office, and Documentation Organizer (TODO).

$TPC Files associated with the PC co-axial connected file transfer program.

$TUT The TUTORIALS facility: tutorials on programming languages such as Rexx, Fortran, etc.

$VCT Vector Facility Simulator (5798-DWF).

$VC2 Contains the files associated with VS COBOL II.

$VF2 Contains the files for VS Fortran, Version 2.

$VMR Contains the reader queue used by the VMREADX utility.

$VP2 Contains the files associated with VS PASCAL.

$VSC Contains the files associated with VS COBOL.

$VSF Contains the files associated with the VS FORTRAN compiler product.

438 MUSIC/SP Administrator's Reference - Part V

$VSM Files associated with the VSAM (Virtual Storage Access Method).

$VSP Contains the files associated with the VS PASCAL compiler product.

$WWS Sample data files for Web server.

$XXX Contains miscellaneous dummy files.

$001 Contains workspaces distributed with VS APL for lib 1. (Not distributed with MUSIC.)

$002 Contains workspaces distributed with VS APL for lib 2. (Not distributed with MUSIC.)

$003 Contains workspaces distributed with MUSIC for VS APL lib 3.

———————————————
Source Key File

The file SOURCE.KEY contains a list of all the system files. All of these files can be found on the
MUSIC/SP distribution tapes. Not all of these files are included in the Save Library when you install
MUSIC/SP. For example source code is not loaded onto your system to save disk space.

An * beside a file name means that the file is on the tape but is not restored during system generation.

The LIBRARY command can be used to obtain a list of the files currently on your system. For example,
type the command "LIBRARY $PGM:*" to obtain a list of all the files under the ownership userid of $PGM.

Use the MFREST utility to restore selected files from the source tapes as required. Consult the file
CATALOG for sample usage of MFREST. This file also contains information on how to locate which tape
specific files are on.

———————————————
Modifying MUSIC's Nucleus

You must recreate the system nucleus to change the I/O configuration, modify a nucleus module or add a
new module to the nucleus. The ADMIN facility can be used to make routine configuration changes. You
should understand what goes on behind the ADMIN menus however, if you want to actually change the
nucleus code.

Change the Source

If required, restore the source for the existing module from the distribution tape using MFREST. Source for
the nucleus modules is stored under the userid $SYS. Make your changes using the editor. Use the FLAG
command of the editor to identify your changes. This is done by issuing the following Editor command:
"FLAG DEL=*/,COL=73". File the changed version using a different name from the original.

Assemble the Module

The file SYSASM is setup to assemble system modules. The following JCL is used to assemble the system
module XXXX and save the object deck in the file XXXX.OBJ.

 Internals - Chapter 22. System Programming 439

 /FILE SYSPUNCH NAME(XXXX.OBJ) NEW(REPL)
 /INCLUDE SYSASM
 /OPT DECK
 =XXXX

Modify the NUCGEN Job Stream

This can be done using the ADMIN facility or by simply editing the file $GEN:NUCGEN.JOB. The
NUCGEN utility reads the base system object decks from the file $GEN:NUCLEUS. It then reads the
device control cards and replacement object decks from the input data stream. As output, the NUCGEN
program produces a file which contains an IPLable loader, the object decks for the system modules including
the replacements, and the new device control cards. The output can be written to a file or to tape. The tape
option is useful in that it provides a good backup copy of the nucleus. This output file can optionally be used
as the base system input file for a subsequent run of the NUCGEN program.

To replace a system module an /INCLUDE statement pointing to the new object deck should be placed after
the DEVEND statement. If more than one copy of that module is found, the first one is used.

If you are adding a new module to the nucleus, edit the file $GEN:MDLSYG and add)OBJ statement for the
new module where you you want it to appear in the nucleus. It should be placed somewhere between the
modules URMON and PROTND.

Install the Nucleus

Before installing the new nucleus make sure that you have a backup copy of the old nucleus on tape. If the
nucleus was written to tape, attach a tape drive to the MUSIC virtual machine, shutdown MUSIC and IPL
from the tape drive. If the nucleus was written to a file use the SYSGEN1 utility to install it directly. The
ADMIN facility also uses this technique. Once the nucleus is installed reload the system and test out your
changes. If you are making changes to system code, the tape method is preferred, since if something goes
wrong you always have the tape from the previous NUCGEN as a backup. This is only true of course if you
used the tape method the last time.

Backup copies of the MUSIC nucleus can also be kept in CMS files. Punch the file created by the NUCGEN
job to a CMS machine, read it in and save it in a CMS file. To install the nucleus, punch a copy of the file to
MUSIC and IPL the file from the virtual card reader. (Specify the no header option on the punch command).

Under VM, you can also setup a second copy of MUSIC to be used as a test system. This is very useful in
debugging and testing system changes during normal working hours. If you are considering making major
modifications to the nucleus this option should not be overlooked.

———————————————
Modifying Applications, Utilities and Commands

This section gives a general overview of the steps required to modify or add applications, utilities or
commands. The basic procedure involves three steps: get the source off the distribution tape if required;
make the changes; install the new version.

Restore Source from Tape

You can use the ADMIN facility to restore source files as described in the MUSIC/SP Administrator's Guide
under the topic "Restoring System Source Files".

440 MUSIC/SP Administrator's Reference - Part V

Alternately, the MFREST utility is used to restore files from the distribution tapes. Consult the file
CATALOG to find out what tape a specific file is on and sample jobs to restore them. When restoring
groups of files with MFREST, never specify REPL=T unless you really mean it and always specify FIXUP='
' unless you specifically want it to do name fixup. The files you restore from the distribution tape depend on
what you want to do. If you have a lot of disk space you may want to restore all the files and have the
convenience of having everything online.

Install the New Version

The procedure to follow here depends on the language used and on whether the program is run from a load
module or from the load library.

If the program is written in REXX there is very little to do after the source changes are made since REXX
runs directly from source. You can make REXX programs more efficient by removing comments and
compressing the source using the REXDCOM and REXCOMP commands. This is only important for large
programs or programs that are used frequently. (Remember to keep the original copy with the comments
around). To install the new version simply replace the contents of the original file with the new REXX
source.

Programs written in other languages must be compiler or assembled. They can then be made into load
modules. Load modules can be executed directly or put in the Load Library. Files have been set up to assist
you in performing these steps. The source files for many programs contain the control statements required to
compile or assemble that program. Simply executing the file will automatically produce the object file. You
create the load module by running the LKED file for the program. Sometimes an LD or APPLY file is also
available to copy the load module to the system load library. (The load library is described elsewhere in this
manual).

Suppose you are changing the AUTOPR utility.

$PGM:AUTOPR.S Contains source. Executing this file compiles the source and produces the
 object program.

$PGM:AUTOPR.LKED Executing this file creates the load module.

———————————————
Making Changes with REPs

The Replace (REP) statement is a convenient method of making small changes to the MUSIC system without
the need for reassembling the modules.

The REP statement is considered by the MUSIC loaders as a special form of a TXT statement found in
object modules. The REP statement is normally inserted in the object module after the TXT statements and
before the RLD statements. It will also work when placed just before the END statement of an object
module if the information in the REP statement is not subject to relocation.

The first character on REP card can be punched by the combination of the 12-2-9 punches using the multi-
punch key on a card punch. Alternately it can be entered while using the Context Editor's hexadecimal input
feature. The 12-2-9 punch is hexadecimal 02. For example, type the following commands to place a hexa-
decimal 02 in position 1 of a line:

 xin;o 02;ain

The format of the REP cards is as follows:

 Internals - Chapter 22. System Programming 441

 card col. 0000000001111111111
 1234567890123456789

 .REP aaaaaa ssscccc,cccc,cccc comments

where:

col 1 is a 12-2-9 punch (hexadecimal 02)

col 2-4 are the characters 'REP'

col 7-12 is a 6 digit hexadecimal address relative to module and obtained from the far left column of
 an assembled listing. The address must be a multiple of 2.

col 14-16 is the control section id, normally 001. This number is hexadecimal. This can be verified by
 the SD number given in the External Symbol Dictionary on the first page of an assembled
 listing

cols 17-70 contain a maximum of 11 4-digit hexadecimal fields separated by commas.

Example:

 12
 2
 9REP 000452 014700,0000 MAKE IT A NO-OP

REP cards can also be included in the NUCGEN jobstream after the DEVEND statement. A special)REP
statement is used to indicate which module the REPs apply to.

)REP TCS
 .REP 000100 010700 PUT NOPS IN TCS
 .REP 000120 014700
)REP URMON
 .REP 00024C 0147F0 FORCE BRANCH

")NOREP xxx" removes all reps previously made in module xxx.

SYSREP Utility

The SYSREP utility can be used to apply REPs to load library members. The format of the REP statement
used by SYSREP is different from the one described above.

———————————————
System Control Blocks and DSECTs

In understanding any system, knowledge of the layout of the system control blocks is very helpful. You can
get an assembled listing of MUSIC's control blocks by assembling the module @MUSBK. This module is
on the source tape under the userid $SYS. @MUSBK contains dsects of many of the system control blocks.
It is provided to assist in interpreting core dumps and system code. Some bits and bytes may not be currently
maintained. Avoid writing user code that refers to any bits or bytes directly as this may make it system level
dependent. Most of the control blocks and DSECTs and mapped by macros. These system macros are
stored on the user id $MCM.

442 MUSIC/SP Administrator's Reference - Part V

———————————————
Program Chaining and Multi-Tasking

MUSIC provides subroutines to control program chaining and multi-tasking. In program chaining a series of
programs are run one after another. The parent program must finish before the child program starts. Multi-
tasking allows the parent program to run in parallel with the child program it created. The parent may wait
for the child to finish before continuing.

Program Chaining

The subroutines NXTCMD and NXTPGM can be used to schedule another program or a command when the
current program finishes running. These are documented in the User's Guide. It is also possible to designate
a particular program as a user's ALWAYS program either in the user profile, or dynamically using an option
of the NXTPGM subroutine. When there are no other programs scheduled, rather than return the terminal to
*Go mode, the system runs the ALWAYS program. This mechanism allows programs such as REXX and
TODO to schedule the execution of other commands and programs but automatically regain control when the
scheduled jobs are finished. ALWAYS programs are started from the beginning each time and must be
responsible for saving information that must be preserved while scheduled commands and programs are
running. Also, scheduling a new ALWAYS program replaces the previous one. When executing a chain of
programs under the control of an ALWAYS program the /CANCEL command can be used to cancel the indi-
vidual programs. The /CANCEL ALL command will remove the ALWAYS, program if it is flagged as
cancellable. Obvious applications are in the area of providing restricted or subset views of the system.

Multi-Tasking

The NXTCMD subroutine can be called to create a new task. The underlying mechanism uses MUSIC's
multi-session support to add a new session and start the new program running in that session. The parent
task controls how the user views this new session. The calling sequence for NXTCMD is as follows.

 CALL NXTCMD(command,len,opts)

 command - command or program to execute
 len - length of the command
 opts - options

The bits in the low order byte of the options parameter are defined as follows.

X'80' Set to 1 for multi-tasking request

X'40' Parent task will wait for child to terminate.

X'20' Delete the child task when the scheduled program finishes.

X'10' Display job startup messages.

X'08' Leave the parent task active on the terminal. The child task will run in the background until the user
 activates it with multi-session function keys or commands.

X'04' Don't let the user see the parent task while the child task is running. This is normally used in
 conjunction with X'40' to prevent the user returning to the parent task prematurely using multi-ses-
 sion function keys or commands.

X'02' Create the new task as a BTRM and disconnect it from the parent. The BTRM is deleted when the

 Internals - Chapter 22. System Programming 443

 new task finishes.

X'01' Make child task non-cancellable.

———————————————
Defining BTRMs and Auto-Sign-on

In implementing various features of the MUSIC system there was a requirement to be able to run programs
in the background without a terminal attached (BTRM), and to be able to run programs on terminals without
keyboards (Auto-Sign-on). Since both these areas involve starting a program without user intervention, they
have been addressed in the same way.

The problem of running background jobs was solved by introducing the dummy terminal class BTRM. A
BTRM is specified as a device in the NUCGEN. This causes MUSIC to construct the appropriate control
blocks during system initialization as if a terminal was defined at that address. The device address specified
for the BTRM is NOT related to any physical device, but is only used as a mechanism to determine which
code to sign on. By default the system should be set up to have BTRMs defined on 005 and 010-019. These
are used to run system utilities that communicate with VM. The fact that there is also virtual punches
defined on these addresses is not a problem.

The lowest (first) BTRM address (for example, 005 in the standard system) should be used for the System
Log Message Server BTRM ($PGM:SYSLG). Any BTRMs (such as RDMAILER) that may send log
records to the Log Server BTRM should come after it. This is so that at MUSIC startup time, the Log Server
BTRM will start before any of the other BTRMs.

In the NUCGEN, Auto-Sign-on terminals are defined in the same manner as regular terminals. They also
have the SIGNON option specified. As with BTRMs the device address plays a role in determining which
code to sign on.

By default BTRM or Auto-Sign-on terminal is automatically signed on to the code $MONsss, where the
subcode sss is the device address of the BTRM or terminal as specified in the MUSIC NUCGEN. If the code
does not exist in the system code table the sign-on will fail and the BTRM or Auto-Sign-on terminal will not
work. Alternately the userid can be defined in the file $PGM:AUTO.CONTROL. Each entry in the file
contains a device address range and a userid. For example:

 100-13F CWIS000
 200-23F INFO000
 250-250 PRT1000

Anything in the virtual address range 100-13F is signed on with the userid CWIS000, 200-23F uses
INFO000, and 250 uses PRT1000.

During the sign-on process time limits, file space limits, privileges, terminal type, and operation default are
all set from the user profile. Finally if an AUTOPROG is specified in the profile, and one should be, it is
run. This allows the BTRM and Auto-Sign-on terminals to be signed on and start running the appropriate
program.

The following steps should be taken when adding a new BTRM or Auto-Sign-on terminals to the system.

1. Decide on the device address and add the appropriate device specification statement to the NUCGEN
 job stream and create a new nucleus.

2. Allocate the code $MONsss, where sss the device address in question. When allocating the code set the
 appropriate password, time limits, terminal type, and privileges. The AUTOPROG parameter must also

444 MUSIC/SP Administrator's Reference - Part V

 be specified indicating which program is to be run. Use the CODUPD command "ADD $MON
 SC(sss)..." so that sss will be a subcode.

3. Set up the file to contain the auto-program defined in step 2.

4. Test the program by signing on to the code from a real terminal and verifying that there are no prob-
 lems. This is very important since BTRMs have no terminals attached so you do not see any error
 messages when they are run in production. Auto sign-on terminals may be remotely located and again
 error messages may be difficult to access. Therefore testing the program before using it with the
 production BTRM or Auto sign-on terminal prevent problems later on.

5. Apply the new nucleus and verify the new BTRM of Auto sign-on terminal is functioning correctly.

BTRMs and Auto sign-on terminals respond to operator commands in the same way as do regular terminals.
Normally the operator need not intervene, but under certain circumstances it may be necessary to cancel or
restart one of the programs running on a BTRM or Auto sign-on terminal. Typically this situation occurs
when the program or its parameters have to be changed, or the program is not functioning correctly. The
following commands are recommended for these functions.

 /CANCEL nnn - the program is cancelled.
 /RESET nnn - the program is cancelled and restarted.

 (nnn is the TCB number)

———————————————
System Log Message Server BTRM (SYSLG)

Several MUSIC applications (for example MAIL and RDMAILER) need to be able to write many log and
information records to a log file. Activity in such log files can be high - tens of thousands of records per day.
In order to do this efficiently, these applications can send the log records as messages to a single log server
task, via the Intertask Communications Queue (BPOOL buffers in memory).

The log server, running the program $PGM:SYSLG as a BTRM session, does all the work of managing the
log files and writing the log records to the files. This is much more efficient, since each log file is only
opened once, and many log records are batched together and written to disk with a single i/o operation. In
addition, the log server can optionally redirect log messages to the operator console, to multiple files, to an id
as e-mail, and to other programs. This is controlled by a definition file, $PGM:SYSLG.DEFINE. Log files
can be defined so as to create a new file each day or month, with the date in the file name.

An application calls the SYSLOG system subroutine in order to send a log record to the log server. The
application specifies an 8-character application name (e.g. MAIL and RDMAILER use the application name
"MAIL"), a priority or class number (normally 0), and the text of the message (1 to 1024 bytes). Refer to the
source file $SUB:SYSLOG.S for details. The calling program or user must have at least the SYSCOM privi-
lege. The log server receives the message (at some later time up to 3 minutes after the SYSLOG subroutine
was called) and uses the application name and priority/class number to route the message, according to the
definitions in $PGM:SYSLG.DEFINE.

The format of the definition file $PGM:SYSLG.DEFINE is described in file $PGM:SYSLG.DEFINE.DOC.
The define file is read once when the log server BTRM starts. If you change the define file and you want the
change to take effect now, rather than at the next MUSIC IPL, you must stop the BTRM (by operator
command "REPLY n STOP" where n is the TCB number - see below) and restart it (by "RESET n"). If the
define file is missing or contains an error, the log server automatically appends all log records to file
$000:@SYSLOG.MISC.

 Internals - Chapter 22. System Programming 445

When setting up the log server, the lowest (first) BTRM address (for example, 005 in the standard system)
should be used for it. Any BTRMs (such as RDMAILER) that may send log records to the Log Server
BTRM should come after it. This is so that at MUSIC startup time, the Log Server BTRM will start before
any of the other BTRMs, and no log records will be lost. Also, when shutting down MUSIC, in order not to
lose any log records, stop BTRMs (such as RDMAILER) that generate log records, then stop the log server
(see below), and finally shut down MUSIC.

The userid for the log server BTRM should be created by a command similar to the following, entered in the
CODUPD utility. "xxx" is the 3-digit hex BTRM address, as specified in the MUSIC nucleus configuration.
For example, in the standard MUSIC it is 005.

 ADD $MON SC(xxx) PW(*NOLOGON) PROG($PGM:SYSLG) -
 PRIME(NL) NONPRIME(NL) BAT(0) DEF(NL) XSES(10) -
 FILES MAINT LSCAN SYSCOM -
 NAME(BTRM FOR SYST LOG SERVER)

The following MUSIC operator commands are used to communicate with the log server. "n" is the TCB
number of the log server, which can be obtained by the command "enqtab syslog" entered in a MUSIC termi-
nal session.

REPLY n HELLO To verify that the log server is running, and to cause it to process any accumulated
 log messages.

REPLY n STOP To cause the log server to process any accumulated log messages, then shut down
 the log server program.
 WARNING: After the log server is shut down, any log records generated by applica-
 tion programs will be discarded.

RESET n To restart the log server, after stopping it. This command should only be used after
 "REPLY n STOP" has been used to shut down the log server.

———————————————
MFIO Subroutine Interface

Two subroutines, MFIO and MFACT, are provided to give high level languages access to MUSIC's I/O
interface. Before attempting to use these routines you should review the information on the assembler and
macro interface in chapter 19.

MFACT - Open/Close a file

 CALL MFACT(rc,'type options.','shortfilename ')
 CALL MFACT(rc,'type options.',-1,'longfilename ')

rc File system return code.
type Operation type (OPEN, CLOSE, EXTRACT).
options Options dependent on the type of operation (e.g. OKNEW OKOLD WROK RDOK APPOK
 REPL RENAME etc..) The option string is terminated by a period.
shortfilename The file name (22 characters) terminated by a blank unless the file name is the maximum
 length, 22 characters long.
longfilename The file name (64 characters) terminated by a blank unless the file name is the maximum
 length, 64 characters long.

Examples:

446 MUSIC/SP Administrator's Reference - Part V

 CHARACTER*22 FNAME1
 CHARACTER*64 FNAME2
 FNAME1(1:)=' '
 FNAME2(1:)=' '
 FNAME1(1:9)='ABCD:TEMP'
 FNAME2(1:15)='ABCD:\WORK\TEMP'
 CALL MFACT(IRC,'OPEN RDOK OKOLD.',FNAME1)
 CALL MFACT(IRC,'OPEN RDOK OKOLD.',-1,FNAME2)

MFIO - Read/Write a file

 CALL MFIO(rc,'type options.',pos,len,buf)

rc File system return code.
type Operation type (IO, UIO, FSIO).
options Options dependent on the type of operation (e.g. RD WR WEOF REW FILL TRUNC RBA
 etc..) The option string is terminated by a period.
pos RBA value used if RBA option is specified. Block number for UIO requests.
len Length of buffer.
buf I/O buffer.

The string '*.' can be used in the second parameter as shorthand for 'IO RD FILL.'. The string '$.' can be used
for 'IO WR TRUNC.'.

MFGETU/MFSETU Subroutines

 CALL MFGETU(unit)
 CALL MFSETU(unit)

unit is the integer internal unit number.

When MFACT is called to open a file the internal unit number assigned to that file is stored in the basic
request block used by MFIO and MFACT. Once the file is opened, all that is required during I/O operations
is this unit number, the buffer address and the length. However, if MFACT is called again to open a second
file, the control blocks are reused and the old unit number is lost. The subroutines MFGETU and MFSETU
allow the programmer to have a number of files open at the same time by saving the unit number after open-
ing a file (MFGETU) and resetting it whenever an I/O operation is to be done on that file (MFSETU).

MFIO Common Blocks

The following common blocks names are assigned to the MFIO control blocks used by these routines.
Detailed information on the contents of these control blocks can be found in Chapter 20.

 MFARGX Copy of MFIO basic request block
 MFTAG Tag information
 MFINFO Infin/infout block
 MFHINF User information block for 16 character userids
 MFUINF User information block
 MFEOFP End of file pointers
 MFBUPN File backup number
 MFLIBR Argument for library request
 MFUCTL User control record
 MFEXTN File extent information

 Internals - Chapter 22. System Programming 447

 MFFSAR FSIO argument
 MFXINF Usage information block
 MFPHYS Actual length read, RBA information
 MFRNAM Returned file name from MFACT

MFIO tracing

You can get full tracing of MFIO and MFACT subroutine activity. To activate this feature a /FILE statement
with a ddname of MFTRACE is required. For example:

 /FILE MFTRACE N(GORK) NEW(REPL) RECFM(VC)
 or /FILE MFTRACE PRT

The tracing information looks as follows:

 MFACT AT AAAAAA RC=RR U=UU REQ= PARM TEXT/XXXXXXXXXX

Where aaaaaa is the address from where MFACT or MFIO is being called from. rr is the return code. uu is
the internal unit number. "parm text" is the keyword literal text passed in the call. xxxxxxxxx is the resulting
basic user request block.

Each type request provides additional useful information.

 OPEN and EXTRACT - file name and block INFIN
 CLOSE - blocks EOFPT and TAG
 IO and UIO - block PHYS and 40 bytes of the I/O buffer

———————————————
Enqueue/Dequeue Facility

The MUSIC subroutines ENQ and DEQ allow the user to gain shared or exclusive control of a resource (by
calling ENQ) and subsequently to release control of the resource (by calling DEQ). The QUERY subroutine
allows you to check if the resource has been enqueued. This facility is used to coordinate the concurrent use
of resource by several users.

The resource is identified by an arbitrary 8, 10 or 24 character name, of which the first character must be a
letter A to Z. Any number of users can have simultaneous shared control of the resource, but only one user
at a time can have exclusive control of the resource. A user's control of any resource is automatically
released when the user's job terminates. Each user may have control of no more than 2 resources at any one
time. Improper use of the enqueue/dequeue facility may cause the user's job to be aborted.

A privileged system programmer may display the contents of the system's enqueue table by executing the
ENQTAB utility, described in Chapter 17 in this manual.

The calling sequences are as follows:

 CALL ENQ(TYPE,NAME,RETCD1)

 CALL DEQ(TYPE,NAME,RETCD2)

 CALL QUERY(TYPE2,NAME,RETCD3)

TYPE Integer specifying type of control and length of resource name:

448 MUSIC/SP Administrator's Reference - Part V

 1 request for shared control, 8-byte name
 2 request for exclusive control, 8-byte name
 3 request for shared control, 10-byte name
 4 request for exclusive control, 10-byte name
 5 request for shared control, 24-byte name
 6 request for exclusive control, 24-byte name

 In the call to DEQ, TYPE should be the same as in the corresponding call to ENQ.

TYPE2 Integer specifying the length of resource name:

 0 request for 8-byte name
 1 request for 10-byte name
 2 request for 24-byte name

NAME Maximum length of resource name (8, 10, or 24 bytes long). The first character must be A
 to Z for a non-privileged user.

RETCD1 Integer return code from ENQ:

 0 successful enqueue (the user has been given control as requested)
 1 resource is not available (shared control was requested and a user already had exclusive
 control, or exclusive control was requested and a user already had shared or exclusive
 control)
 2 error

RETCD2 Integer return code from DEQ:

 0 successful dequeue (control has been released)
 1 the user did not have control
 2 error

RETCD3 Integer return code from QUERY:

 0 resource is not enqueued
 1 resource is enqueued (shared)
 2 resource is enqueued (exclusive)
 3 error

———————————————
Unbuffered Tape I/O

Normally MUSIC will automatically buffer I/O to tape. This can be overridden by using RECFM(U) on the
/FILE statement. When this is done, each read or write will be unbuffered. An automatic end-of-file will not
be done for I/O done this way. The TAPUTIL utility uses this facility to handle variable length unspecified
blocks. The subroutine TPIO can be used to issue the file system calls to do I/O in this manner. (The object
deck for TPIO is in the file $PGM:TPIO.OBJ, not in the subroutine library). The calling sequence is as
follows.

 Internals - Chapter 22. System Programming 449

 CALL TPIO(U,O,R,BUF,LEN)

 U Unit number of the tape.

 O Operation code.
 0 - Read (max Length = 32760)
 1 - Write
 2 - Write EOF
 3 - Read (max length = "LEN")

 R Return code.
 -1 - End of file
 0 - Normal
 >1 - MFIO return code

 BUF Buffer address.

 LEN Length. On a read this value is set.

———————————————
Logical Device Interface

This interface can create a VM terminal session using logical device support and thus allow a user to connect
to other virtual machines directly from a MUSIC session. This gives the MUSIC user access to applications
that are not running on his MUSIC machine. These are referred to as remote applications. The interface can
control what goes on in the session it creates or turn control over to the MUSIC user's keyboard. In the typi-
cal situation a MUSIC application would create a session, issue the appropriate command sequences to
connect the user to a remote application and then turn control over to the user. When the remote application
terminates, the MUSIC application regains control and issues the commands to log the user off the remote
system.

The interface consists of a suite of subroutines that are used by the application to create, manage, and termi-
nate the remote session. In addition to providing a terminal session connection the interface can also do file
transfer using the 3270 file transfer protocol.

CALL LDLOG(n)

 Log operations within logical device support to the user file LDEV.LOG. Logging is off by
 default.

 0 turn logging off
 1 turn logging on

CALL LDINIT

 Create a logical device.

CALL LDECHO(n)

 Echo session on users terminal. The user can see what's happening but can't use the
 keyboard.

 0 turn echo off
 1 turn echo on

450 MUSIC/SP Administrator's Reference - Part V

CALL LDTERM(kseq,lk,row,col,hseq,lh)

 Pass control to the user's terminal.

 kseq Keyboard escape sequence. Any commands prefixed by this are passed to the local
 MUSIC system for processing. The following exceptions are handled directly by the
 LDEV routine.

 RECeive - receive a file from the remote host
 SEND - send a file to the remote host
 LOG - log interrupts to LDEV.LOG
 NOLOG - stop logging interrupts
 END - return to controlling program
 (also QUIT and QQ)
 lk Length of kseq
 row row to scan for hseq
 col column to scan for hseq
 hseq Host escape sequence. When this character sequence is located in the specified loca-
 tion on the screen control is returned to the calling program. This is useful in regain-
 ing control to perform automatic logoffs. The scan follows the same rules as
 LDWAIT.
 hl Length of hseq

CALL LDPUT(row,col,data,len)

 Put data into a modifiable field. No checking is done on the validity of the data or the field.

 row row number
 col column number
 data data
 len length of the data

CALL LDCUR(row,col)

 Set the cursor address prior to pressing a function key.

 row row number
 col column number

CALL LDKEY(key)

 Press a function key.

 key integer value representing the key
 0 : enter
 1-24 : PF key
 -1 : PA1
 -2 : PA2
 -3 : PA3
 -4 : CLEAR

CALL LDENT(data,len)

 Put data in the input area and press enter. This is useful for applications that are not field
 dependant,

 Internals - Chapter 22. System Programming 451

 data data
 len length of the data

CALL LDGET(row,col,buf,len)

 Get data from the in core screen buffer. This need not be used on a field basis. The routine
 will pick out whatever part of the buffer you want. Note that currently keyboard input is not
 maintained in the buffer, only host transmitted data can be retrieved.

 row row number
 col column number
 buf local buffer to receive the data
 len length of the data

CALL LDWAIT(row,col,data,len,secs,rc)

 Wait for a certain string of text to appear on the screen. This is useful in synchronizing
 events and preventing sending data before the host session is ready for it.

 row row number
 col column number
 data data
 len length of the data
 secs The number of seconds to wait before returning to program empty handed.
 rc This is non zero if the text was not found within the specified limit.

 Note: If col=0 the screen is scanned starting from the specified row. If row and col are
 zero the entire screen is scanned.

CALL LDWINT(secs)

 This causes the support routine to wait for an external interrupt or so many seconds, what-
 ever comes first. It can also be used to force the interface to process any interrupts that are
 currently in the stack if the time limit is set to zero.

 secs number of seconds to wait

CALL LDCLR

 Clear the screen buffer.

CALL LDSEND('lname rname opt',len,flag,rc)

 Send a file to the remote system.

 lname local file name
 rname remote file name
 opt file transfer options
 len length of first parameter
 flag 1: display file transfer monitor.
 rc return code

CALL LDRECV('lname rname opt',len,flag,rc)

 Receive a file from the remote system.

452 MUSIC/SP Administrator's Reference - Part V

 lname local file name
 rname remote file name
 opt file transfer options
 len length of first parameter
 flag 1: display file transfer monitor.
 rc return code

Options If the remote system is a CMS system the the options must be separated from the file names
 by an open bracket "(". The options are the same as the 3270 file transfer program.

Note: The user can invoke the file transfer facility from the keyboard using the %RECEIVE and %SEND
 commands. ("%" is the escape character) The parameters on these commands are in the same
 format as the first parameter of the subroutines. For example:

 %rec music.file cms file (crlf
 %send music.file tso.file crlf

This sample FORTRAN program listed below is the source for the VM program that is documented in the
MUSIC/SP User's Reference Guide.

 CALL LDECHO(1)
 CALL LDINIT
 CALL LDWAIT(1,2,'VIRTUAL',7,3)
 CALL LDTERM('%',1,0,0,0,0)
 CALL EXIT
 END

Logical device routines can be called from REXX, however, the format of the CALL statement in REXX is
different from FORTRAN. The following is the REXX version of the sample program above.

 /INC REXX
 CALL LDECHO 1
 CALL LDINIT
 CALL LDWAIT 1,2,'VIRTUAL',7,3,'RC'
 CALL LDTERM '%',1,0,0,0,0

Note that the 'RC' parameter must be present on the call to LDWAIT. Unlike FORTRAN, in REXX all
parameters must be specified.

For a more elaborate REXX example see the file $PGM:LDEV.REX.

SIGNON Subroutine (REXX)

The following is a sample REXX application that can be used to access other systems in an automated way.
The target could be on the same system, or accessed via VM-Passthru. A specific ID/Password can be used,
or a 'shared' id, selected from the shared table can be utilized.

Calling Sequence: CALL SIGNON 'id' 'type' 'system' 'ipl' 'MSG(x)' 'TDISK(xxxx,yyy,z)' 'application'

Parameters:
 The parameters are positional.

id SHARED, select ID/Password from table. UNIQUE(id/password) use the supplied ID/pass-
 word.

 Internals - Chapter 22. System Programming 453

type LOCAL, local VM system is target system. PVM(node), target system accessed via
 VM-Passthru.

system VM, target is a VM system. MUSIC(VMID), target is a MUSIC system running in the
 virtual machine VMID. the ID/Password used MUST be specified via the unique parameter.

IPL
NOIPL If 'NOIPL' is used, then logon to VM id will be done with the 'NOIPL' option. When the
 first CP read is issued, the an IPL CMS will be done, and for the next read an 'acc 191 a
 (noprof' will be used, so CMS goes to command mode. If 'IPL' is specified (or is not speci-
 fied), then an IPL of CMS is done and the profile exec (if it exists is executed).

msg specifies the message levels that will be produced from the SIGNON call.
 0 default if not specified. Issue the message about starting the automated sign on process.
 1 no messages (except errors are displayed)
 2 display a message at each major step of the sign on process
 3 turn on echoing, let caller see all screens.

TDISK allocate a TDISK, using:
 xxxxx - the number of blocks
 yyy - the virtual disk address
 z - the file mode
 (TDISK is only allowed if the SYSTEM is VM.)

application specifies the name of application that is running. This parameter is not type-checked but is
 used to match the application name in the Shared ID file. If application is not specified, a
 Shared ID without an application name will be used. If application has a value, application
 must match a SHARED ID's application name for the SHARED ID to be used.

After processing, return will be made to the caller with echoing OFF and control has NOT been passed to the
users terminal. If MSG(3) was specified, then echoing has been turned on. It is up to the caller to issue a
LDTERM call. When going through Passthru, the LDTERM would normally be of the form:

 CALL LDTERM '%',1,6,12,'APPLICATION TERMINATED',22

On return, if 'shared id' processing has been requested, the ID used will be returned in the RESULT. When
the logical session returns to REXX, you MUST issue the following call, to free up the 'shared id'.

 CALL DEQ 6, userid ,'RC' /* remove name from enqtable */

where userid is the ID provided in the RESULT variable.

———————————————
3270 Full-Screen I/O Interface.

Using PANEL is the best way to implement 3270 applications. This section describes the FSIO interface
that PANEL uses to communicate with 3270 terminals and PCs.

To use the FSIO interface, the application program places output data and orders in a buffer, then issues an
FSIO request. This sends the output data to the screen. The program is then delayed until the user presses an
action key, at which time the input data (from a READ-MODIFIED operation) is transferred to the program's
input buffer. The program then resumes execution and processes the data from the modified fields. This
write-read sequence can be repeated many times. The format of the input and output data streams is docu-
mented in the publication IBM 3270 Information, Display System Data Stream Programmer's Reference.

454 MUSIC/SP Administrator's Reference - Part V

The application program can address the screen by using a 1-byte row number followed by a 1-byte column
number, instead of the 2-byte screen address used by the hardware. The FSIO interface automatically does
the required conversion.

FSIO Assembler Language Interface

This interface allows full screen I/O to 3270 terminals. It does this through the MFIO SVC (MFREQ). Each
request can result in a WRITE, READ, WRITE/READ or control operation. After setting up the arguments
and buffers the MFREQ SVC is issued to perform the I/O. The system then takes the data from the WRITE
buffer and places it into the system full screen buffer pool and stops the user's time slice. The user may be
swapped out at this time. The data is then written to the terminal using the system buffers. When any action
key is struck at the terminal, a read modified is done, the data placed in a system buffer and the user made
eligible for user region service. When the user program next gains control, the system will transfer the data
to the user's READ buffer.

Arguments

Three MFIO arguments are used.

 Basic req block - a1 MFARG FSIO,U=9,FSARG=a2,PHYS=a3
 MFGEN

 FSARG block - a2 MFVAR FSARG,PICT=Y

 PHYS block - a3 MFVAR PHYS,PICT=Y

The basic request block contains control information for MFIO, pointers to the other args and return codes.

The FSARG block contains control information, data lengths and buffer addresses. It expands as follows.

 4 4 4 4 4
 | control | wrt len | wrt adr | read len |read adr |

 control byte 0 - x'80' - write erase
 x'40' - erase all unprotected (after read)
 x'20' - write structured field
 x'10' - asynchronous read
 x'08' - skip write operation
 x'04' - skip read operation
 x'02' - user supplies own WCC.
 x'01' - convert data (x,y -> 3270 form)
 x'00' - normal WRITE/READ operation.
 x'0C' - immediate read modified
 x'0D' - immediate read buffer

 control byte 1 - x'80' - no data compression on this request
 x'40' - no data compression on this request
 and all following requests in this job
 x'20' - no APL conversion on this request and
 all following requests in this job
 x'10' - remember x'40' and x'20' option bits
 from this control byte, but do not do
 any I/O operation

 Internals - Chapter 22. System Programming 455

 x'08' - no translation for 3270 model 5 terminal
 (27 by 132 size screen)
 x'04' - ignore screen not initialized error
 x'02' - reserved
 x'01' - reserved

 control byte 2 - x'nn' - Overriding Channel Command

 control byte 3 - reserved.

The actual length of the data moved to the users read buffer is saved in the first word of the two word PHYS
block.

Return codes

The return code is stored in byte 8 of the basic req block. A return code of 0 is normal. If any error has been
detected this code is set to 2 or 11 and in this case bytes 9 and 10 should be checked to find out what caused
the error. Values are as follows.

 Byte 9.

 x'80' - not a 3270.
 x'40' - bad screen. Screen is not setup for full screen I/O.
 Probably caused because no full screen initialization
 was done or some non-full screen I/O was since then.
 x'20' - bad length on write (0 or too big)
 x'10' - bad length on read (0)
 x'08' - bad screen addr (conv x,y -> 3270 addr)
 x'04' - buffers not available for write (retry later)
 x'02' - reserved
 x'01' - no data from read. Test request was hit.

 Byte 10.

 x'80' - input truncated (user buffer too small)
 x'40' - bad data stream from terminal (I/O error on read)
 x'20' - I/O error on write

Data Conversion

The interface can optionally perform some data conversion for you. This is requested by setting the X'01' bit
in control byte 1. If this is not set raw 3270 data is expected from, and passed back to the program. Data
conversion is done as follows.

Write buffer The buffer is scanned for any occurrences of SBA, RA or EUA. In each case the next two
 bytes are converted from X,Y to 3270 addresses. An error condition is set if these are not on
 the screen.

Read buffer Data returned to the user buffer will be in the format...

 aid,x,y x,y,len,data x,y,len,data...etc

 cursor field 1 field 2

456 MUSIC/SP Administrator's Reference - Part V

 The length in front of each field is a halfword.

Note: Data conversion is not performed on data associated with a WRITE STRUCTURED FIELD
 command.

Notes on Usage

In addition to the standard write/read request a number of options can be selected using the control bytes.
Either the write or the read part of the operation can be skipped. This allows programs to handle output and
input as logically distinct. The system will automatically clear the input fields after a read if the erase all
unprotected option is selected. This may be useful in data entry applications.

During a normal read operation the application program is stopped, and the system waits for an attention
interrupt before doing the read and rescheduling the application. The asynchronous read option allows the
application to continue running while the system is waiting for the attention interrupt. When the interrupt
occurs, the system does the read and sets the post code to ATTN. The application can test the post code
using the PSTCOD subroutine. If the application now issues a read request is given the data from the
asynchronous read. If it issues a write, the read data is purged. The application could also choose to issue an
immediate read buffer or read modified request at this time.

On completion of a full screen read any action key and associated modified fields are returned to the program
with the exception of the TEST REQ key which is reserved as an escape mechanism and puts the terminal in
ATTN mode so that BREAK time commands can be entered. In this case no data is returned and the error
flag (byte 9 in MFARG) is set to x'01'.

Full screen I/O and regular I/O may be inter-mixed if certain rules are followed. Full screen I/O must begin
with either a WRITE ERASE or a WRITE STRUCTURED FIELD. (If this is not the case a BAD SCREEN
condition will be returned to the program.) From then on any full screen operations can be used. Any regular
I/O from either the program or the system will automatically reset the screen to MUSIC mode and full screen
I/O must be re-initiated.

The return flag should always be checked for error conditions.

Buffer Pool

The interface utilizes the terminal buffer pool which is allocated during system initialization. The BPOOL
parameter in the NUCGEN program is used to inform the system of how many buffers should be allocated.
Each buffer is 516 bytes long, 512 bytes for data and 4 for a chain pointer. These buffers are allocated to a
particular terminal only when necessary. For example suppose a program wanted to write 1.2K of data to a
terminal and read the response. FSIO would request a chain of three buffers from the pool, move the data
there and schedule the write. When TM3270 completes the write it frees the buffer chain and waits for an
attention interrupt. When that occurs, since the terminal could possibly transmit up to 2K of data during the
read, TM3270 gets a chain of 4 buffers from the pool to do the read, unused buffers are freed immediately.
The buffers that actually contain data cannot be freed until the application program is again swapped into the
user region.

If a program issues a write request that cannot be accomplished due to lack of buffers, it is informed by a
return code, and should re-try the operation after waiting some time. If this condition occurs often, systems
personnel should allocate more buffer space by increasing the BPOOL parameter and doing a NUCGEN.

If a read operation cannot be done due to lack of buffers the system will automatically re-try it later.

 Internals - Chapter 22. System Programming 457

FSIO Subroutines

The following subroutines can be used instead of the assemble macro interface.

WBUF1 This routine places 3270 orders and data strings into the output buffer. The buffer is
 contained in the common block /BUFCOM/.

FSIO After the output buffer is complete, this routine is called to issue the write-read request.

GETAID After the read is complete, this routine examines the input buffer to find which action key
 was pressed and the row and column position of the cursor. The input buffer is in common
 /BUFCOM/ (occupying the same storage as the output buffer). GETAID also does initiali-
 zation required for calls to GETFLD.

GETFLD After the read, each call to this routine returns the next screen field in the input buffer, i.e.
 the next modified field. An alternate return is taken when there are no more fields.
 GETAID must be called before the series of calls to GETFLD.

TRANSL This routine translates (using the TR machine instruction) a string of characters according to
 a specified translate table. It should be used to remove screen control characters from output
 data strings, and to translate input to upper case when necessary. This routine is described in
 the MUSIC/SP User's Reference Guide. It is recommended that characters X'00' through
 X'3F' and X'FF' be translated to blanks in output data strings.

Calling Sequences

 CALL WBUF1(N1,N2,...,LEN,DATA,&n)

N1,N2,... From 0 to 10 integer values, used for specifying order bytes (SBA, SF, etc.), attribute bytes,
 and row and column numbers. The 4th byte of each argument is placed into the buffer.

LEN The length of an additional character string (in DATA) to be placed into the buffer. LEN=0
 indicates a null string. If LEN is -1, the string in DATA is ended by $$.

DATA Additional characters to be placed into the buffer, after any bytes specified by N1,N2,...

&n Alternate return taken if there is no more room in the output buffer.

Note: BUFPTR in common /BUFCOM/ must be set to 0 before a series of calls to WBUF1.

 CALL FSIO(TYPE,WRBUF,WRLEN,RDBUF,MAXRD,RDLEN,RETCOD)

TYPE This 4-byte integer value contains the FSIO control bytes that specify the type of operation
 that is to be performed. The bit settings correspond to those defined in the control byte
 fields for the assemble macro interface. The bytes are reversed however. So the low order
 byte of TYPE corresponds control byte 0 and the next one to control byte 1.

WRBUF The write buffer.

458 MUSIC/SP Administrator's Reference - Part V

WRLEN The number of bytes of data to be written.

RDBUF The buffer to be used for the input operation. If WBUF1 and GETAID/GETFLD routines
 are used, the read buffer is in common /BUFCOM/ (see below) and coincides with the write
 buffer.

MAXRD The size of the read buffer, i.e. maximum read length.

RDLEN This is set by FSIO to the length of data actually read.

RETCOD This 4-byte integer value contains the return code from the FSIO request. 0 indicates a
 successful operation. If an error condition occurs, RETCOD is in the format X'0Bxxyy00'
 where xx and yy correspond to bytes 9 and 10 of the basic I/O request block. The meanings
 of the individual bits are described in the assembler macro interface section.

 CALL GETAID(KEYHIT,CROW,CCOL)

KEYHIT Set to an integer value indicating which action key was pressed:

 0 ENTER key
 1 to 24 Program function key
 -1 PA1 key
 -2 PA2 key
 -3 PA3 key
 -10 CLEAR key
 -99 Some other key, or an error condition.

CROW Set to the row number of the cursor at the time of the read.

CCOL Set to the column number of the cursor at the time of the read.

Note: The variable RDLEN in common /BUFCOM/ must be set before calling GETAID. Also,
 GETAID must be called before a series of calls to GETFLD.

 CALL GETFLD(FROW,FCOL,POS,FLEN,&n)

FROW Set to the row number of the first character of the modified field, i.e. the character following
 the attribute byte.

FCOL Set to the column number of the first character of the modified field.

POS Set to the position of the start of the data for the modified field in the read buffer. The first
 character of the buffer is considered to be position 1. POS may be set to 0 if FLEN is 0.

FLEN Length, 0 or more, of the data for this field.

&n Alternate return taken when there are no more modified fields.

 Internals - Chapter 22. System Programming 459

Common Block Used

 COMMON /BUFCOM/ BUFSIZ,BUFPTR,RDLEN,BUF

———————————————
Routines for Scanning the Code Table

Code $COD contains some subroutines which can be called by privileged users to scan the code table, i.e.
process all the records, one by one, in index order. For example, they could be used to change a particular
code record field or option bit for all codes, or for all codes satisfying some condition. They could be used to
print a code table listing in some desired format.

Refer to the comments in files $COD:NXTCOD.S and $COD:CDGETU.S for detailed descriptions.

NXTCOD Returns the next code record from the table. This routine should be used when none of the
 records will be changed.

NXTCDA Similar to NXTCOD, but only the next userid (7-byte code/subcode) and a pointer to the
 code record are returned. This routine should be used, with CDGETU and CDUPDT or
 CDFREE, when some of the records will be changed.

CDGETU Gets a code record for updating. Enqueues for exclusive control of the code record. Either
 routine NXTCDA or the code search SVC (or CDSVC routine) must have been used previ-
 ously to get the (pseudo) disk address of the code record.

CDUPDT Writes an updated code record to disk and dequeues. The record must have been gotten by
 CDGETU.

CDFREE Releases control of a code record (dequeue). This routine must be called instead of
 CDUPDT if a record obtained by CDGETU is not to be changed.

———————————————
Defining a First-Time Program

The parameter FIRST(n) on a CODUPD ADD or CHANGE command can be used to define the ID number
n (1 to 255) of a special program that is to be run when the user signs on for the first time. For example, the
first-time program could prompt for information about the new user and store it in a log file.

The file names for the ID numbers must be defined by modifying a table in system module SIGNON
(member $SIGNON in the Load Library, source in code $SYS). The file name must also be added to the
table in module LOOKUP (source in $SYS), since the program must be privileged, with at least the CODES
privilege.

Once the first-time program has done its processing, it must zero the ID number in the user's code record, to
prevent the program from being invoked the next time the user signs on. Also, it must schedule the user's
normal auto-program, if any. This can be done by calling subroutine NOPGM1. See the comments in file
$COD:NOPGM1.S for details.

The system is distributed with one first-time program. It has an ID number of 1. Its source is stored under
the name $PGM:FIRSTTIME.PGM.S.

460 MUSIC/SP Administrator's Reference - Part V

———————————————
Defining an Alternate System Catalog

Normally MUSIC will read the system catalog from the data set called SYS1.MUSIC.CATALOG. This can
be changed by the use of the =CATxxxx special option at IPL time. The alternate name will be
SYS1.MUSIC.CATxxxx in this case.

The alternate catalog data set must first be allocated on MUSIC's IPL volume, and formatted. Then the data
is written to it by using the EDTCAT utility program.

———————————————
Submitting Jobs Automatically

The AUTOSUB utility can be used to automatically submit batch jobs through VM at certain times of the
day and even on certain days of the week. Examples of use include submitting the system usage information
statistics programs IOTIME and COUNTS. Refer to the writeup of AUTOSUB in Part IV - Utilities.

———————————————
Miscellaneous System Subroutines

CORZAP

This routine modifies (zaps) a string of bytes anywhere in main storage. The VIP privilege is required.

Calling Sequence: CALL CORZAP(frmbuf,len,loc)

Arguments:

frmbuf Replacement bytes.

len Number of bytes to be replaced (any value .ge. 0).

loc Starting addr of main storage to be replaced.

FETCH

This routine fetches a string of bytes from main storage. Non-privileged users can fetch information from
the user region, page zero and their own TCB. The CREAD or VIP privilege allows you to inspect any part
of the job's virtual memory.

Calling Sequence: CALL FETCH(loc,len,tobuff)

 or

 CALL FETCHB(loc,len,tobuff,bufpos)

Arguments:

loc Starting addr of core to be fetched

 Internals - Chapter 22. System Programming 461

len Number of bytes to be fetched (any value .ge. 0)

tobuff Receiving field

bufpos Starting position in tobuff (.ge.1) (fetch uses bufpos=1)

FSCHEK

This routine checks the status of 3270 screen. It is usually used by full screen multi-session applications to
determine if the screen can be re-written without erasing something that the user has not yet read.

Calling Sequence: CALL FSCHEK(retcd)

retcd 4-byte return code field.
 0 Terminal is in full screen mode
 1 MUSIC mode but no data on screen
 2 MUSIC mode and screen contains data

PMSG

This routine sets the message flag in the TCB to allow a program to handle the messages or to suppress the
automatic display of messages until the flag is reset.

Calling Sequence: CALL PMSG('op')

op ON : program will handle messages
 OFF: normal message processing

PSTCOD

A call to this routine retrieves and resets the post code. If you want to look at the post code without resetting
it, you can find a copy of it in location x'C64' in low core. The post code is set by the /POST command, the
WAKEUP subroutine, and a variety of asynchronous system events.

Calling Sequence: CALL PSTCOD(value)

value is a 8-byte value of the post code.

QRD

Read data from a spool buffer chain managed by DSPOOL. This can be used to read the message queue, the
intertask communications queue, or the terminal input and output queues.

Calling Sequence: CALL QRD(qid,tcb,buf,len)

Arguments:

qid 1: output
 2: input
 3: message
 4: task

462 MUSIC/SP Administrator's Reference - Part V

tcb TCB number

buf buffer address

len data length

The SYSCOM privilege is required to access queues owned by another TCB.

QRDX

Read data from a spool buffer chain managed by DSPOOL. This can be used to read the message queue, the
intertask communications queue, or the terminal input and output queues.

Calling Sequence: retcod=QRDX(qid,tcb,buf,len)

Arguments:

retcod A return code, set as follows:
 0 operation complete
 1 failed (not enough buffer space)
 2 no record found (end of file)
 3 routine already processing chain

qid 1: output
 2: input
 3: message
 4: task

tcb TCB number

buf buffer address

len data length

The SYSCOM privilege is required to access queues owned by another TCB.

QWR

Write data to a spool buffer chain managed by DSPOOL. This can be used to write to message queue, the
intertask communications queue, or the terminal input and output queues.

Calling Sequence: CALL QWR(qid,tcb,buf,len)

Arguments:

qid 1: output
 2: input
 3: message
 4: task

tcb TCB number

buf buffer address

 Internals - Chapter 22. System Programming 463

len data length

The SYSCOM privilege is required to access queues owned by another TCB.

QWRX

Write data to a spool buffer chain managed by DSPOOL. This can be used to write to message queue, the
intertask communications queue, or the terminal input and output queues.

Calling Sequence: retcod=QWRX(qid,tcb,buf,len)

Arguments:

retcod A return code, set as follows:
 0 operation complete
 1 failed (not enough buffer space)
 2 no record found (end of file)
 3 routine already processing chain

qid 1: output
 2: input
 3: message
 4: task

tcb TCB number

buf buffer address

len data length

The SYSCOM privilege is required to access queues owned by another TCB.

ROUTE

This routine returns information from the system routing table. See $PGM:$ROUTING.S for the format of
the routing table.

Calling Sequences:

CALL ROUTE(1,rtname,retcod)
or

CALL ROUTE(rtname)
 This returns the default printer name for the user running the program. The routine first
 checks if one is specified in the user profile. It then looks for a device address match in the
 routing table. If these fail retcod is set to 1 and rtname is set to the default route name from
 the beginning of the table. In the call with only 1 argument, no return code is set, but rtname
 is set the same way.

CALL ROUTE(2,rtname,retcod)
 A request to check whether the specified rtname is in the table.

CALL ROUTE(3,rtname,userid)
 userid returns the 4-char id of the user authorized to run the printer rtname. If the id is

464 MUSIC/SP Administrator's Reference - Part V

 longer than 4 chars, only the first 4 are returned. userid is returned as 1 or 2 (like retcod) if
 the route name cannot be found.

CALL ROUTE(4,rtname,retcod,info,buflen)
 A request to search the table for route name rtname, and return information from the table
 entry in info. This info is the table entry except for the 1st 12 bytes. The caller sets buflen to
 the length of the info argument (0 or more). The bytes of the table entry after the route name
 are returned in info, as much as will fit in the buffer provided, and the remainder (if any) of
 the buffer is set to blanks.

CALL ROUTE(5,rtname,retcod,info,buflen)
 Similar to call type 4, except that the sequential number (1,2,...) of the table entry to be
 returned is put into retcod by the caller. The route name from the entry is returned in
 rtname, and the entire table entry is returned in info (12 more bytes than for call type 4, since
 the entire entry is returned). Table entry 1 is the default route name; table entry 2 is the first
 "normal" route name entry; etc. This type of call can be used to scan the table, or to get all
 the entries one by one.

Arguments:

rtname 8-character route name (e.g. a destination name for job output, or the name of an rscs remote
 printer). It is output (set by this routine) for call type 1 and input for the other types.

retcod A return code, set as follows:
 0 OK (device addr or name found in table).
 1 Device addr or name not found in table; for call type 1 (or if only 1 arg), rtname is set
 to the default route name from the beginning of the table. For call type 5, retcod=1
 means the input entry number is out of range.

2 The table could not be loaded. For call type 1, the name is set to all blanks if retcod=2. For
 call type 5, retcod is also an input argument, specifying the number (1,2,...) of the desired
 entry.

userid For call type 3, set to the first 4 chars of the user id from the table entry.

info User's buffer where the remainder of the table entry is returned (or, for call type 5, the entire
 table entry).

buflen The length of the area provided by the caller in the info argument.

Notes:

1. If the calling sequence is incorrect or call type (1st arg) is wrong, the program stops with an invalid
 op-code (program interrupt 1) and r8=x'EEEEEEEE'.

2. The info returned from the type 4 call is in the following format:

 displ. len. contents
 0 8 MUSIC userid authorized to run this printer,
 or blanks.
 8 1 type of table entry:
 1 = local VM system printer
 2 = rscs printer or another virtual machine
 3 = ignore (throw away) all output
 4 = output to MUSIC's print queue
 5 = mvs printer (mcgill only)

 Internals - Chapter 22. System Programming 465

 9 1 VM class.
 10 2 (reserved)
 12 8 target VM userid.
 20 8 VM forms name (or blanks).
 28 24 VM tag text (or blanks).

 total length of info 52

 (For call type 5, the above info is preceded by the first 12 bytes of the table entry, which contain the low
 and high address and the route name. For entry #1 i.e. the default route name, entry length and number
 of entries are returned instead of low and high address.)

3. If entry point "ROUTE1" is called instead of "ROUTE", then this routine finds the address of the rout-
 ing table itself (by searching the LPA directory), instead of issuing the $LODSVC SVC. For example,
 nucleus module SPAM calls ROUTE1, since $LODSVC is not supported in supervisor state. ROUTE1
 does not work outside of supervisor state because the pointer (in module LODSVC) to the LPA direc-
 tory is in fetch-protected main storage. For ROUTE1, the routing table must be in the FLPA (not
 PLPA).

4. The subroutine is re-entrant (it does not modify itself).

SETSVC

This routine lets programs in high level languages issue the $SETOPT SVC. This SVC is used to move
parameters or set options in areas of protected storage. The actual function performed depends on the argu-
ment passed to the routine.

Calling Sequence: CALL SETSVC(arg)

A number of different functions can be performed depending on the contents of the argument string. These
are listed below.

A0 Set a user option bit on or off in the TCB.

 ARG DC X'A0',AL1(x,y,z)

 Where x is 0 to set bit off, 1 to set bit on. y is option byte number (1 to 4). z is bit number (0 to 7).

A1 Wake up MUSIC batch (SPAM) to process a job which has just been put into the submit data set. The
 SYSCOM privilege is required.

 ARG DC X'A1',AL1(N)

 Where n is the submit q number (must be 1 to 32). The q bit in SBMCOM is turned on, and, if n is the
 current reader class, a $CSTART SVC (reader start) is done.

A2 Force the specified terminal to be signed off. This requires the MAINT privilege.

 ARG DC X'A2',AL3(TCBADR)

A3 Scan the ENQ table for any TCBs enqueued on a specific name and issue the equivalent of a /POST
 command to those programs (see WAKEUP). The calling program must have SYSCOM privilege.

 ARG DC X'A3',CL8'ENQENT',CL8'POSTCMD'

466 MUSIC/SP Administrator's Reference - Part V

A4 Set a user defined CVT pointer in location X'10' and a TCBOLD pointer at X'21C'.

 ARG DC X'A4',AL3(USERCVT),A(USRTCB)

A5 Set the VIP bit on/off in the XTCB for this user this will only be done for user who are authorized for
 for VIP.

 ARG DC X'A5','AL3(TCBADDR),X'N'

 n - 0 set vip off
 n - 1 set vip on

A6 Set the debug control block pointer.

 ARG DC X'A6',AL3(BDGPTR)

A8 get/put from spool buffer chains. The caller must have SYSCOM to access another tasks buffer chains.
 (see QRD/QWR).

 ARG DC X'A8',AL1(OPT),H'TCBNUM',A(BUF),A(LEN),A(PTR)

A9 Wakeup a task that has called delay.

 ARG DC X'A9',H'TCBNUM'

AA Set message flag bits on or off (see PMSG).

 ARG DC X'AA',H'TCBNUM',X'YY',X'ZZ'

 yy - 80 or, 00 and
 zz - data byte (only 80, 40, and 20 bits can be changed)

UTEST

Tests a userid, a userid pattern or a user type (TSUSER option 15) against a range.

Calling Sequence: CALL UTEST(string,strlen,userid,utype,rc)

Arguments:

string a 1 to 32 character string in the form of t=n1-n2 where n1 and n2 are an integer range and/or
 a userid/userid pattern.

strlen length of string.

userid 16 character userid.

utype integer*4 value obtained from TSUSER option 15.

rc is the return code.
 =1 hit (utype is in the range n1-n2)
 =0 no hit (utype is NOT in the range n1-n2)
 =-1 invalid integer for either n1 or n2

 Internals - Chapter 22. System Programming 467

VMCMD

Issue a VM CP command via diagnose 8.

Calling Sequence: CALL VMCMD(cmd,lcmd,resp,lresp,retcod,outlen)

Arguments:

cmd Command string. May contain multiple CP commands separated by x'15'.

lcmd Length of command string, 1 to 240.

resp Response buffer.

lresp Length of response buffer, 1 to 8192, or 0 if response buffer should not be used. If lresp=0,
 VM sends the response lines to the MUSIC VM console.

retcod Return code:
 0 Command was issued, and executed successfully.
 >0 Command was issued but was not successful. retcod is a VM error number.
 <0 MUSIC error code. Command was not issued.
 -1 Interface is busy; calling program should delay for a short time and retry.
 -2 Invalid request.
 -3 Not under vm.

outlen Set to indicate length of the response:
 >0 If the response fit in the buffer: outlen is the length of the response text. Response
 lines are separated by x'15' character.
 =0 If lresp=0 or if retcod<0.
 <0 If the response did not all fit in the buffer: outlen=-(number of bytes that would not fit).
 Note that this does not affect retcod.

Notes:

1. The user or the program must have the "maint" privilege.

2. High-order bit x'80' must be on in the last argument word, to indicate exactly 6 arguments.

3. The calling sequence is similar, but not identical, to that for the mug-mods-tape version of this routine,
 which is called "cpcmd". Return codes are a bit different, the 6th argument is added, and lresp is not
 modified.

4. If the SVC is busy, this routine automatically retries up to 5 times before setting retcod=-1. Therefore,
 the caller should not normally have to worry about testing for busy condition.

5. This routine is re-entrant.

WAKEUP

Issue $SETOPT SVC request to wake up other jobs. The other jobs are identified by an entry in the enqueue
table. The SYSCOM privilege is required.

Calling Sequence: CALL wakeup(name,post)

Arguments:

468 MUSIC/SP Administrator's Reference - Part V

name 8-byte name. This is matched with the last 8 bytes of the 10-byte names in the enqueue
 table.

post 8-byte post code to be put into the XTCB of the jobs that are woken up.

———————————————
REXX Function Packages

These allow MUSIC subroutines to be called directly from REXX programs. Three function packages are
supported by REXX.

 RXSYSFN - Provided with MUSIC/SP.
 RXLOCFN - Local function package.
 RXUSERFN - User function package.

Only RXSYSFN is actually distributed with the system. If you want to make additional functions or subrou-
tines available to your users, you can do so by creating RXLOCFN or RXUSERFN.

There are three major components to the function packages.

The Function Interface

The program in the file $REX:REXX.RXSYSFN.S is the interface between the standard linkage used in
MUSIC routines and the parameter lists used by REXX. When a function is called this routine converts the
REXX parameter list to standard linkage form, calls the subroutine or function, and moves any results back
to the appropriate REXX variables.

The Function Table

The parameter conversion is done based on a table that describes the functions and subroutines that are part
of the package. This table is defined by a group of PARMS macros. The file $REX:REXX.FUNCTABL.S
contains the function table used for the distributed function package. Each subroutine or function and its
calling sequence is defined. If a routine has variable calling sequences, each one must be defined.
Comments in the macro ($REX:REXX.PARMS.M) describe how the macro is used.

The Functions

The object code for standard MUSIC functions and subroutines is linked in with the interface module and the
function table to form the function package. Not all routines are eligible. For example, routines that use OS
I/O access methods, have multiple return addresses, pass floating point parameters or use non-standard link-
age, will not work.

Creating a Function Package

1) Create a new function table. Use $REX:REXX.FUNCTABL.S as a model. Assemble it and save the
 object module.

2) Link the new table with the interface module and the subroutines. The file
 $REX:REXX:RXSYSFN.LKED provides an example of control statements to do this. Although the
 interface object code ($REX:REXX.RXSYSFN.OBJ) should be used you should change the name of

 Internals - Chapter 22. System Programming 469

 the load module file and load module name to RXLOCFN or RXUSERFN, depending on which
 function package you are creating.

3) Put the new function package into the system load library. The file $REX:REXX.RXSYSFN.LD
 shows how this is done.

Segmented Function Packages

When a function is called from a REXX program the entire function package is loaded into memory. This
causes overhead proportional to the size of the function package. To reduce the overhead it is possible to
break a function package into segments containing related functions. Only the segment containing the
required function is loaded.

The distributed function package (RXSYSFN) contains five segments.

 RXSYSFN - Standard functions (root segment)
 REXITCM - Intertask communications routines
 REXLDEV - Logical device routines
 REXMFIO - MFIO subroutines and control areas
 REXSOCK - TCP/IP Socket routines

Creating a segmented function package is slightly more complicated than an unsegmented one since each
segment has to be created as a separate module.

The function table ($REX:REXX.FUNCTABL.S) contains the definitions of all functions in the package.
Those that are not contained in the root segment are identified by the EXTTYP=ENTRY parameter on the
PARMS macro. In addition an entry is added for each extra segment specifying EXTTYP=MEMBER and
defining the name of the segment module. This function table is linked in with the RXSYSFN code to form
the root segment. See the file $REX:REXX.RXSYSFN.LKED for an example.

Each extra segment consists of a stub module, created using the FHEADER macro, that defines all the
routines in the segment. This is linked in with the routines that form that segment of the package. See the
files $REX:REXX.REXLDEV.* for examples. The segment modules must be in the load library.

Calling Functions From REXX

To avoid problems in parameter substitution, each individual parameter must be quoted and in upper case.
The parameters should be separated by commas. For example:

 call TSUSER '4','TCBNUM'

Care must also be taken in how some of the routines are used. For example, when REXX schedules a
MUSIC command, the system automatically closes all files and terminates any logical devices. This means
that the MFIO and Logical Device routines lose control whenever the REXX program issues a MUSIC
command. This problem can be avoided by using multi-tasking (NXTCMD routine), to execute MUSIC
commands rather than the standard chaining technique that is used by REXX.

As well the following GT and ST take a single parameter, which should be the name of the variable that
contains the BINARY version of an MFIO control block. REXX thinks that they are characters, so you must
be very careful about inserting and extracting information. Typical calling sequences are:

 call GTMFARGX 'MFARGX' (or call GTMFARGX 'GORK' - the name is
 arbitrary)
 call STMFARGX 'MFARGX'

470 MUSIC/SP Administrator's Reference - Part V

The following subroutines and available in the distributed system function package. Some routines are docu-
mented in the MUSIC/SP User's Reference Guide, others are documented elsewhere in this manual.

 CLRIN Clear the INPUT area on the screen.
 COPY Copy one file to another.
 COUNT Issue count SVC.
 DEBUG Call interactive debug routine.
 DELAY Stop program for a length of time.
 ECHOIN Echo input to screen.
 ENQ Call enqueue facility
 EOJ Set return code and terminate a job.
 FETCH Fetch data from storage.
 FILMSG Return file system message.
 FSCHEK Check screen status.
 FSIO Do full screen I/O.
 GETRET Get return code.
 GTMFxxxx retrieves control block information
 xxxx can be one of the following:
 ARGX, TAG, INFO, HINF, UINF, EOFP, BUPN
 PHYS, LIBR, UCTL, EXTN, FSAR, XINF
 ITxxxx Intertask communication subroutines
 (ITCOM) are described below, they
 include: ITSERV, ITRECV, ITSEND, ITFIND.
 KEEPIN Preserve terminal input.
 LDCUR Logical Device Interface
 LDECHO " " "
 LDENT " " "
 LDGET " " "
 LDINIT " " "
 LDKEY " " "
 LDLOG " " "
 LDPUT " " "
 LDRECV " " "
 LDSEND " " "
 LDTERM " " "
 LDWAIT " " "
 LDWINT " " "
 MATCH Pattern matching with wild card characters.
 MFACT Open/Close file dynamically.
 MFGETU Get file internal unit number.
 MFIO Do I/O to file.
 MFSETU Set file internal unit number.
 NOECHO Don't echo data to screen.
 NOSHOW Don't display input data.
 NOTRIN Don't translate terminal input.
 NXTCMD Execute multi-tasked or chained command.
 PARM Fetch parameter string.
 PSTCOD Fetch post code.
 PURGE Purge files.
 QRD Read data from a buffer chain.
 QRDX Read data from a buffer chain.
 QUERY Call query routine.
 QWR Write data to a buffer chain.
 QWRX Write data to a buffer chain.
 RENAME Rename a file.
 ROUTE Get information from routing table.

 Internals - Chapter 22. System Programming 471

 RXQFOP Quick reading and searching of large files.
 SHOWIN Cancel call to NOSHOW
 SOCKET Socket routines are described in the
 section "MUSIC Socket Interface to TCP/IP"
 later in this chapter.
 STMFxxxx stores control block information
 xxxx can be one of the following:
 ARGX, TAG, INFO, HINF, UINF, EOFP, BUPN
 PHYS, LIBR, UCTL, EXTN, FSAR, XINF
 SYSENV Return information about system environment.
 TRIN Cancel call to NOTRIN
 TSDATE Get current date information.
 TSTIME Get time of day information.
 TSUSER Get user/terminal information.
 VMCMD Issue a VM command.
 WAKEUP Wakeup a task and set the post code.

———————————————
ITCOM: Intertask Communication

This set of subroutines provides a simple intertask communications protocol designed for client/server appli-
cations within a MUSIC system. The SYSCOM privilege is required to use these routines.

In a typical application the server defines itself to the system using the ITSERV routine. The server name
must be unique. The system reserves names beginning with "$S" for applications with the SYSCOM privi-
lege. The server then enters its main processing loop where it calls ITRECV to wait for incoming requests
from clients.

The client program locates the server application by calling ITFIND. This returns the TCB number of the
server whose name is specified in the call. Once the TCB number of the server is known the client can use
ITSEND and ITRECV to exchange data with the server application.

ITSEND and ITRECV are used to exchange data between tasks. Although intended to be used in conjunc-
tion with ITSERV and ITFIND in a client/server model, they can be used quite independently since they use
only the TCB number to identify the other task.

ITSEND allows a program to send packets of up to 8K to another task. The data is chained in buffers off the
receiving tasks TCB. An eight byte header is added to the buffer to identify the sending task. This is used
internally by the subroutines and need be of no concern to the application program since it is stripped off by
the ITRECV routine.

ITRECV received data from the "intertask-communications buffer chain". Application designers should note
that this buffer chain is used for a number of different functions (IUCV, TCP/IP) and is reset at sign-off but
not at end-of-job. ITRECV completes when data is available or the specified time out expires. If the data is
from ITSEND, the TCB number of the sender is filled in, otherwise the return code is set to indicate that the
TCB number is unknown. If the receiving buffer is too small as much data as possible is returned and the
rest is lost.

Calling Sequences:

 call itserv(name,rc)

defines a server name to the system

472 MUSIC/SP Administrator's Reference - Part V

name server name for enq (1-24 characters)
rc 0:name defined
 -1:name in use

 call itfind(name,tcb,rc)

finds the TCB number of a server

name server name for enq (1-24 characters)
tcb tcb number of server
rc 0:server found
 -1:server not defined

 call itsend(data,len,tcb,rc)

sends send data to a specific tcb

data data buffer
len length of data (1-8k)
tcb tcb number
rc 0:data sent
 -1:invalid length
 -2:no buffers available

 call itrecv(data,blen,rlen,tcb,time,rc)

sends data to a specific tcb

data data buffer
blen buffer length (1-8k)
rlen length of data received
tcb tcb number of sender
time time to wait for data
rc 0:data received, sender's TCB number set
 -1:data received but sender's TCB number unknown
 -2:time out

———————————————
MUSIC Socket Interface to TCP/IP

A number of structures and constants are used in the TCP/IP socket interface. A few of the common ones are
explained below. Others are detailed in the applicable socket calls. Note that the information applies to the
AF_INET domain (internet).

Network socket address or name

This is used in the calls that establish connections or send data to specific places.

 2 2 4 8
 +------+------+----------+------------------+
 | 0002 | pppp | aaaaaaaa | 0000000000000000 |
 +------+------+----------+------------------+

 Internals - Chapter 22. System Programming 473

0002 indicates the AF_INET (internet) domain
pppp 16 bit port number
a..a 32 bit internet address of host
0..0 binary zeros

Clientid

This is used in exchanging sockets between applications.

 4 8 8 20
 +----------+------------------+-----------------+-----/-----+
 | 00000002 | vvvvvvvvvvvvvvvv | ttttttttttttttt | 0.......0 |
 +----------+------------------+-----------------+-----/-----+

0..2 indicates the AF_INET (internet) domain
v..v virtual machine name
t..t task name specified when connecting to TCP/IP
0..0 binary zeros

In the descriptions below each subroutine is known by two names. The first one in mixed case is the official
name. The second name is the six character name that can be used to call the routines from languages that
don't support long subroutine names like FORTRAN, ASSEMBLER, and REXX.

Accept/ACCEPT

Accept() is used by a server to complete a connection with a client. It assigns a new socket number (ns) to
the connection and fills in the client's network address in the fields provided. If there are no pending connec-
tions accept() will block until one occurs unless non-blocking mode is in effect. The select() routine can be
used to test for pending connections prior to issuing a blocking accept(). Once the accept() is complete the
server can accept subsequent connections on the same socket (s).

 ns = accept(s, name, namelen)

ns New socket number assigned to the connection
s Original socket number created by the server
name The port number and network address of the connecting client
namelen The length of the name.

If an error occurs ns is set to a negative value. Common errors are:

 EBADF -9 : s is not a valid socket descriptor
 EINVAL -22 : listen() was not called
 EOPNOTSUPP -45 : s is not a stream socket
 EWOULDBLOCK -35 : non-blocking mode with no connections
 pending

Bind/BIND

Bind() defines the local network address and port number that is to be associated with a specific socket.

 rc = bind(s, name, namelen)

rc Return code

474 MUSIC/SP Administrator's Reference - Part V

s Original socket number created by the server
name The port number and network address to bind to
namelen The length of the name

Common errors:

 EBADF -9 : s is not a valid socket descriptor
 EADDRNOTAVAIL -49 : address is not available or invalid
 EAFNOSUPPORT -43 : address family is not supported
 EADDRINUSE -48 : address is currently in use
 EINVAL -22 : socket is already bound to an address

Close/CLOSE

This shuts down the socket, frees all resources associated with it and closes the TCP connection.

 rc = close(s)

Connect/CONECT

With stream sockets connect() is used by client applications to connect to servers. The server must have set
up a passive open at the other end by issuing bind() and a listen() before the connect() is issued. The server
should respond with an accept() to complete the connection.

In blocking mode the connect() blocks until the connection is established or an error occurs. In non-blocking
mode EINPROGRESS (-36) is returned and select() must be used to determine when the connection is actu-
ally complete.

Connect() can also be used with UDP sockets to establish peer. This basically allows the caller to send data-
grams using calls like read() and write() that have no room to specify a remote address. In other words
connect() simply defines a default remote address.

 rc = connect(s, name, namelen)

rc Return code
s Socket number
name The port number and network address of the server to connect to.
namelen The length of the name

Common errors:

 EBADF -9 : s is not a valid socket descriptor
 EADDRNOTAVAIL -49 : cannot reach the remote host
 EAFNOSUPPORT -43 : address family is not supported
 EALREADY -37 : previous connection has not completed
 ECONNREFUSED -61 : remote host rejected the connection
 EINPROGRESS -36 : connection is in progress
 EISCON -56 : socket is already connected
 ENETUNREACH -51 : remote host cannot be reached
 ETIMEDOUT -60 : connection timed out
 EINVAL -22 : addrlen is incorrect

 Internals - Chapter 22. System Programming 475

Fcntl/FCNTL

Fcntl() is used to control whether a socket operates in blocking or non-blocking mode. In blocking mode
(the default) the application does not receive control back from the subroutine until the operation is complete.
For example if a program issues a read() it is stopped (blocked) until some data actually arrives on the
socket. In non- blocking mode an error (EWOULDBLOCK) is given in response to the read() if no data is
present.

 rc = fcntl(s, cmd, data)

rc Return code
s Socket number
cmd Indicates what to do
data Data depending on cmd

The are currently three possible calls:

 rc = fcntl(s, 4, 4) : put socket into non-blocking mode.
 rc = fcntl(s, 4, 0) : put socket into blocking mode.
 rc = fcntl(s, 3, 0) : rc is set to 4 if socket is in non-blocking
 mode, and is set to 0 if the socket is in
 blocking mode.

Common errors:

 EBADF -9 : s is not a valid socket descriptor
 EINVAL -22 : data is not a valid flag

GetClientId/GCLNID

This routine is used to find out the client ID by which an application is known to TCPIP. It is used in pass-
ing sockets from one application to another through the givesocket() and takesocket() routines.

 rc = getclientid(domain, clientid)

rc Return code
domain set to 2 for AF_INET
clientid format is defined previously

Common errors:

 EPFNOSUPPORT -46 : domain in not AF_INET (2)

GetHostId/GHSTID

This returns the default internet address for the host running the application that calls the routine.

 id = gethostid()

id 32 bit internet address

476 MUSIC/SP Administrator's Reference - Part V

GetHostName/GHSTNM

This returns the name of the host running the calling application. Note, this is the actual character name, not
the port number/ internet address combination that are referred to in other calls as the name.

 rc = gethostname(name, namelen)

rc Return code.
name The returned name of the host
namelen On input this specified the maximum size of the name buffer. On output it contains the
 length of the name.

GetPeerName/GPRNM

This routine retrieves the name of the remote host. The name contains the port number and internet address.

 rc = getpeername(s, name, namelen)

name The port number and network address of the application that the caller is connected to.
namelen The length of the name.

Common errors:

 EBADF -9 : s is not a valid socket
 ENOTCONN -57 : the socket is not connected

GetSocketName/GSCKNM

This routine retrieves the name associated with the local socket. This contains the port number and internet
address.

 rc = getsocketname(s, name, namelen)

name The port number and network address of the application that the caller is connected to.
namelen The length of the name.

Common errors:

 EBADF -9 : s is not a valid socket

GetSockOpt/GSCKOP

This is used to get the options associated with a particular socket.

 rc = getsockopt(s, level, optname, optval, optlen)

s Socket number.
level Set to -1 for sockets.
optname Integer indicating which option to get. See setsockopt() for a list of valid values.
optval The value returned for that option.
optlen The length of the option value.

If an error occurs rc is set to a negative value. Common errors are:

 Internals - Chapter 22. System Programming 477

 EBADF -9 : s is not a valid socket descriptor
 ENOPROTOOPT -42 : optname is invalid

GiveSocket/GIVESK

This is used to pass a socket to another application. For a complete discussion of the givesocket() and take-
socket() routines see the comments in the file $TCP:INETD.S. This shows the steps that must be taken to
start up a new task and pass a socket on to it. The socket should not be closed until the other task has
successfully acquired it using the takesocket() routine.

 rc = givesocket(s, clientid)

s The socket number to be given the the other task.
clientid The client ID of the task that you wish to give the socket to.

Common errors:

 EBADF -9 : s is not a valid socket descriptor
 EBUSY -16 : listen() has been called for the socket
 EINVAL -22 : clientid does not specify a valid client ID
 ENOTCONN -57 : the socket is not connected
 EOPNOTSUPP -45 : s is not a stream socket

IoCtl/IOCTL

Ioctl() provides access to the operating characteristics of the socket.

 rc = ioctl(s, cmd, data)

s Socket number.
cmd The command to perform.
data Information passed or returned.

The following table lists the supported requests:

Name Value (HEX) Function

FIONBIO 8004A77E Clear or set non-blocking mode.
 Data=0 to clear, 1 to set.

FIONREAD 4004A77F Returns number of byte available for
 reading in data.

SIOCATMARK 4004A707 Queries if current data is out of band.
 Data=1 if yes, 0 if no

SIOCGIFADDR C020A70B Gets network interface address.
 Data=IFREQ

SIOCGIBRDFADDR C020A712 Gets network interface broadcast address.
 Data=IFREQ

SIOCGIFCONF C008A714 Gets network interface configuration.
 On input data should be set to the length

478 MUSIC/SP Administrator's Reference - Part V

 of the output area. On output it will have
 an IFREQ structure for each interface.

SIOCGIFDSTADDR C020A70F Gets network interface destination address.
 Data=IFREQ

SIOCGIFFLAGS C020A711 Gets network interface flags.
 Data=IFREQ

SIOCGIFNETMASK C020A715 Gets network interface mask.
 Data=IFREQ

The IFREQ structure that is returned has a 16 byte request name followed by the requested information.

Listen/LISTEN

Listen() is used by a server to indicate it is ready to accept calls from clients.

 rc = listen(s, backlog)

s Socket number.
backlog Length of pending connection queue.

Common errors:

 EBADF -9 : s is not a valid socket descriptor
 EOPNOTSUP -45 : s is not a stream socket

Read/READ

This call reads data from a connected socket. The number of bytes read is returned in the return code (rc). In
blocking mode this call will block until some data becomes available.

 rc = read(s, buf, len)

s Socket number.
buf Buffer to receive the data.
len Buffer length.

Common errors:

 EBADF -9 : s is not a valid socket descriptor
 EWOULDBLOCK -35 : set in non-blocking mode if no data to read

Readv/READV

This call is similar to the read() except that the data is read into a group of buffers pointed to by an I/O vector
structure. Each entry in the I/O vector contains a buffer address and a length. The buffers are filled in order.

 rc = readv(s, iov, iovcnt)

s Socket number.
iov I/O vector containing buffer address / length pairs

 Internals - Chapter 22. System Programming 479

iovcnt Number of entries in the iov.

Common errors:

 EBADF -9 : s is not a valid socket descriptor
 EWOULDBLOCK -35 : set in non-blocking mode if no data to read

Recv/RECV

This receives data from a connected socket. The return code (rc) is set to the number of bytes received. It is
very similar to read() except for allowing certain flags to be set.

 rc = recv(s, buf, len, flags)

s Socket number.
buf Buffer to receive the data.
len Buffer length.
flags Flag value of MSG_OOB (1) or MSG_PEEK (2)

Common errors:

 EBADF -9 : s is not a valid socket descriptor
 EWOULDBLOCK -35 : set in non-blocking mode if no data to read

RecvFrom/RECVFM

This receives data from a datagram socket. The return code (rc) is set to the number of bytes received.

 rc = recvfrom(s, buf, len, flags, name, namelen)

s Socket number.
buf Buffer to receive the data.
len Buffer length.
flags Flag value of MSG_OOB (1) or MSG_PEEK (2)
name Port number and network address of the sending application
namelen Length of name.

Common errors:

 EBADF -9 : s is not a valid socket descriptor
 EWOULDBLOCK -35 : set in non-blocking mode if no data to read

Select/SELECT

The select() routine is used to wait for an interrupt from the socket interface and to determine which socket
caused the interrupt. It is used to wait for connections to come and for data to arrive. It is usually used by
applications that field interrupt from a variety of sources or handle a number of different sockets and can't
afford to get into a blocking situation. The select() is used to test in advance for an event before issuing the
socket call to handle that event.

Select() can test a group of sockets for reading, writing, and exceptional conditions. Reading implies that
data is available and a read() call will not block. Writing implies that the socket is available and is set for
example when a connection comes in for a socket with a pending listen(). Exceptional conditions are events

480 MUSIC/SP Administrator's Reference - Part V

like out of band data.

On input three bit masks are used to select which sockets should be tested. On output the return code (rc) is
set to the number of sockets that have pending conditions and the bits are set in the masks to indicate which
sockets they are. The bit masks are organized into 32 bit words that are counted from the low order end. It's
a bit weird.

 +-------------++--------------+
 | word 0 || word 1 |
 +-------------++--------------+
 | | | |
 31 0 63 32

 rc = select(nfds,readfds,writefds,excptfds,timeout)

nfds Number of sockets to test
readfds Bit mask for read
writefds Bit mask for write
excptfds Bit mask for exceptional conditions
timeout Timeout value (integer seconds, integer microseconds)

Common errors:

 EBADF -9 : one of the descriptor sets is invalid
 EINVAL -22 : the timeout value is invalid
 EMUSINT -2000 : a non-socket interrupt occurred

Send/SEND

This sends a data to a connected socket.

 rc = send(s, buf, len, flags)

s Socket number
buf Buffer containing the data
len Length of the data
flags Option flags. Valid values are MSG_OOB (1) and MSG_DONTROUTE (4)

Common errors:

 EBADF -9 : s is not a valid socket descriptor
 ENOBUF -55 : insufficient buffer space to send the data

SendTo/SENDTO

Used to send packets on a datagram socket.

 rc = SendTo(s, buf, len, flags, name, namelen)

s Socket number
buf buffer containing the packet
len length of the packet
flags Option flags. Valid option is MSG_DONTROUTE (4).
name The port number and internet address of the application that you are sending to.

 Internals - Chapter 22. System Programming 481

namelen The length of the name

Common errors:

 EBADF -9 : s is not a valid socket descriptor
 EINVAL -22 : namelen is invalid
 EMSGSIZE -40 : the message is too big to be sent as a
 single datagram.
 ENOBUFS -55 : No buffer space available to do send

SetSockOpt/STSKOP

This sets various options associated with a socket. It allows you to control broadcast messages, out of band
data, and tell the socket interface how to handle the close and bind operations.

 rc = setsockopt(s, level, optname, optval, optlen)

s Socket number.
level Protocol level (set to -1 for socket level)
optname Option name
optval Option value
optlen Option length

The following table of lists the supported options. This list also applies to the getsockopt() routine. For
those calls that toggle an option on or off, optval=1 sets it on and optval=0 sets it off. In both cases optlen
should be set to 4.

Name Description

SO_OOBINLINE X'00000100' Toggle reception of out of band data. If
 on, out of band data is placed in the normal
 input queue.

SO_REUSEADDR X'00000004' Toggle address reuse. Setting this on forces
 bind() to reuse an address

SO_LINGER X'00000080' Causes interface to linger on close() if
 data remains to be sent. optval consists
 of two fullwords. The first one is a toggle.
 The second is the number of seconds to wait.

ShutDown/SHUTDN

This shuts down all or part of a full duplex connection.

 rc = shutdown(s, how)

s Socket number
how 0:ends communication from socket
 1:ends communication to socket
 2:ends all communication with socket

482 MUSIC/SP Administrator's Reference - Part V

Socket/SOCKET

This routine creates a socket and assigns the socket number (s).

 s = socket(domain, type, protocol)

domain Set to 2 for the AF_INET domain (internet)
type Type of socket.(1-stream, 2-dgram, 3-raw)
protocol Protocol to use or 0. 0 is the default and is determined by domain and type. AF_INET and
 STREAM implies TCP. Valid values include:

 ICOMP 1
 TCP 6
 UDP 17
 Raw IP 255

Common errors:

 EIBMIUCVERR -1004 : error contacting TCP/IP through IUCV
 EPROTONOTSUPPORT -35 : protocol not supported

TakeSocket/TAKESK

This is used by a program receiving a socket from another program. The subroutine GETSOC performs the
handshaking required to get a socket from another program, including issuing the takesocket() call. For
further details see the comments in $TCP:GETSOC.S and $TCP:INETD.S.

 s = takesocket(clientid, hisdesc)

clientid The client ID of the application giving the socket.
hisdesc The socket number used in the application giving the so

Common errors:

 EACCESS -13 : the other application did not give this socket
 EBADF -9 : hisdec is not a socket owned by the other pgm
 EINVAL -22 : clientid does not specify a valid client
 EMFILE -24 : socket descriptor table is full
 ENOBUFS -55 : TCP/IP has run out of socket control blocks
 EPFNOSUPPORT -46 : domain field of the clientid is not AF_INET (2)

Write/WRITE

This writes data to a connected socket.

 rc = write(s, buf, len)

s Socket number
buf Buffer containing the data
len Length of the data

Common errors:

 EBADF -9 : s is not a valid socket descriptor

 Internals - Chapter 22. System Programming 483

 ENOBUFS -55 : no buffer space for write

writev/WRITEV

This call is similar to the write() except that the data is written from a group of buffers pointed to by an I/O
vector structure. Each entry in the I/O vector contains a buffer address and a length.

 rc = read(s, iov, iovcnt)

s Socket number.
iov I/O vector containing buffer address / length pairs
iovcnt Number of entries in the iov.

Common errors:

 EBADF -9 : s is not a valid socket descriptor
 ENOBUFS -55 : no buffer space for write

MUSIC Specific Routines

The following routines are specific to the implementation of the socket interface on MUSIC/SP.

a2e/A2E

Convert ASCII to EBCDIC. Note that the default representation for character data on the internet is ASCII
whereas IBM mainframes tend to use EBCDIC.

 call a2e(buf,len)

buf buffer containing ASCII data
len number of characters in the buffer

CARGCALL

Convert socket routines calling sequences to that defined in the Berkeley sockets header file
"MANIFEST.H".

 rc = CARGCALL()

cnvd2x/CNVD2X

Convert a dotted decimal character format internet address to a 32 bit binary number. For example
132.206.120.2 is converted to X'84CE7802'.

 call cnvd2x(daddr,xaddr)

daddr character format dotted decimal address terminated by a
xaddr 32 bit binary internet address

484 MUSIC/SP Administrator's Reference - Part V

cnvx2d/CNVX2D

Convert a 32 bit binary internet address to the dotted decimal character format. For example X'84CE7802' is
converted to 132.206.120.2.

 call cnvx2d(xaddr,daddr)

xaddr 32 bit binary internet address
daddr 16 character decimal address

e2a/E2A

Convert EBCDIC to ASCII. Note that the default representation for character data on the internet is ASCII
whereas IBM mainframes tend to use EBCDIC.

 call e2a(buf,len)

buf buffer containing EBCDIC data
len number of characters in the buffer

e2e/E2E

This removes control characters from an EBCDIC character string. Control characters are converted to
blanks. Printables are left as is.

 call e2e(buf,len)

buf buffer containing EBCDIC data
len number of characters in the buffer

Getcon/GETCON

This routine is used by a server application to wait for a connection on a specific port. It supports only one
connection on the port and is intended to be used in debugging servers that would normally be run in the
background by INETD. This allows the server to establish a connection without intervention of INETD and
thus be debugged as a foreground task. Usually once the server has been debugged this call would be
replaced by a call to getsoc() and the server would be set up to run under INETD.

 s = getcon(port)

s Socket number assigned to connection.
port Port number

Getsoc/GETSOC

This routine used by a server application that has been scheduled by INETD to get the socket passed from
INETD. It automatically handles the protocol to successfully transfer a socket from one application to
another.

 s = getsoc()

s Socket number of passed socket.

 Internals - Chapter 22. System Programming 485

Common errors:

 EMUSBADPARM -2001 : Parameter passed from INETD is invalid
 EMUSINUSE -2002 : TASKID is already in use

GtPort/GTPORT

This function gets a unique port number from the system that can be used to create unique port-number/inter-
net-address combination that is referred to as the socket name.

 num = gtport()

num unique port number between 1000-32768

Resolv/RESOLV

Call a domain name server to convert a host name into an IP address.

 call resolv(hostname,ipaddr)

hostname character host domain name terminated by a blank.
ipaddr 32 bit internet address.

TrSock

This routine turns on socket level tracing (basically detailing the interface between the socket calls and
IUCV). Two files are created: $TCP:@TCPIP.LOG, which contains trace records for each socket call, and
$TCP:TCPIP.BUFFERS, which contains the inbound and outbound buffers at the socket level.

 call trsock

Note that no parameters are needed.

Errors: none.

XPath/XPATH

This routine defines the TASKID field that is used when connecting the application to TCP/IP. This forms
part of the client ID that is used in the givesocket() and takesocket() routines.

 call xpath(taskid)

taskid An 8 character string that uniquely identified the task

Socket Errors

The error number is returned as a negative value as the return code of a socket call.

 EPERM 1 Not owner
 ENOENT 2 No such file or directory
 ESRCH 3 No such process

486 MUSIC/SP Administrator's Reference - Part V

 EINTR 4 Interrupted system call
 EIO 5 I/O error
 ENXIO 6 No such device or address
 E2BIG 7 Arg list too long
 ENOEXEC 8 Exec format error
 EBADF 9 Bad file number
 ECHILD 10 No children
 EAGAIN 11 No more processes
 ENOMEM 12 Not enough core
 EACCES 13 Permission denied
 EFAULT 14 Bad address
 ENOTBLK 15 Block device required
 EBUSY 16 Mount device busy
 EEXIST 17 File exists
 EXDEV 18 Cross-device link
 ENODEV 19 No such device
 ENOTDIR 20 Not a directory
 EISDIR 21 Is a directory
 EINVAL 22 Invalid argument
 ENFILE 23 File table overflow
 EMFILE 24 Too many open files
 ENOTTY 25 Not a typewriter
 ETXTBSY 26 Text file busy
 EFBIG 27 File too large
 ENOSPC 28 No space left on device
 ESPIPE 29 Illegal seek
 EROFS 30 Read-only file system
 EMLINK 31 Too many links
 EPIPE 32 Broken pipe
 EDOM 33 Domain error
 EWOULDBLOCK 35 Operation would block
 EINPROGRESS 36 Operation now in progress
 EALREADY 37 Operation already in
 ENOTSOCK 38 Socket operation on
 EDESTADDRREQ 39 Destination address required
 EMSGSIZE 40 Message too long
 EPROTOTYPE 41 Protocol wrong type for
 ENOPROTOOPT 42 Protocol not available
 EPROTONOSUPPORT 43 Protocol not supported
 ESOCKTNOSUPPORT 44 Socket type not supported
 EOPNOTSUPP 45 Operation not supported on
 EPFNOSUPPORT 46 Protocol family not
 EAFNOSUPPORT 47 Address family not supported
 EADDRINUSE 48 Address already in use
 EADDRNOTAVAIL 49 Can't assign requested
 ENETDOWN 50 Network is down
 ENETUNREACH 51 Network is unreachable
 ENETRESET 52 Network dropped connection on
 ECONNABORTED 53 Software caused connection
 ECONNRESET 54 Connection reset by peer
 ENOBUFS 55 No buffer space available
 EISCONN 56 Socket is already connected
 ENOTCONN 57 Socket is not connected
 ESHUTDOWN 58 Can't send after socket
 ETOOMANYREFS 59 Too many references
 ETIMEDOUT 60 Connection timed out

 Internals - Chapter 22. System Programming 487

 ECONNREFUSED 61 Connection refused
 ELOOP 62 Too many levels of symbolic
 ENAMETOOLONG 63 File name too long
 EHOSTDOWN 64 Host is down
 EHOSTUNREACH 65 No route to host
 ENOTEMPTY 66 Directory not empty
 EPROCLIM 67 Too many processes
 EUSERS 68 Too many users
 EDQUOT 69 Disc quota exceeded
 ESTALE 70 Stale NFS file handle
 EREMOTE 71 Too many levels of remote in
 ENOSTR 72 Device is not a stream
 ETIME 73 Timer expired
 ENOSR 74 Out of streams resources
 ENOMSG 75 No message of desired type
 EBADMSG 76 Trying to read unreadable
 EIDRM 77 Identifier removed
 EDEADLK 78 Deadlock condition.
 ENOLCK 79 No record locks available.
 ENONET 80 Machine is not on the
 ERREMOTE 81 Object is remote
 ENOLINK 82 the link has been severed
 EADV 83 advertise error
 ESRMNT 84 srmount error
 ECOMM 85 Communication error on send
 EPROTO 86 Protocol error
 EMULTIHOP 87 multihop attempted
 EDOTDOT 88 Cross mount point
 EREMCHG 89 Remote address changed
 EIBMBADCALL 1000
 EIBMBADPARM 1001
 EIBMSOCKOUTOFRANGE 1002
 EIBMSOCKINUSE 1003
 EIBMIUCVERR 1004
 EMUSINT 2000 Select interrupted by non-socket int
 EMUSBADPARM 2001 Bad parameter
 EMUSINUSE 2002 Resource is already in use

———————————————
MUSIC IUCV Interface

MUSIC supports VM's IUCV interface. This allows communications and data exchange between MUSIC
applications and other virtual machines and also between MUSIC and CP system services such as:

 *BLOCKIO - DASD Block I/O
 *IDENT - Identify
 *LOGREC - Error Recording
 *MSG - Message System
 *MSGALL - Message All System
 *RPI - Access Verification
 *SIGNAL - Signal Service
 *SPL - Spool Service

In addition IUCV can be used for communication between tasks on the same MUSIC system.

488 MUSIC/SP Administrator's Reference - Part V

Security

In order to use IUCV, the MUSIC virtual machine must have the appropriate authorization. This involves
specifying the required parameters on the IUCV control statement in the VM directory entry for MUSIC. In
addition you may also want to allow more than the default number of connections by specifying the
MAXCONN keyword on the OPTIONS statement. Remember that MAXCONN specifies the number of
connections that can be made by the entire MUSIC machine, not the individual users. As an additional level
of security, MUSIC applications must have the SYSCOM privilege to establish an IUCV connection.

Interface

The interface is essentially the same as that described in the publication VM/ESA CP Programming Services
for 370 (SC24-5435) or VM/SP System Facilities for Programming (SC24-5288). These manuals should be
consulted to find complete information on how to write IUCV applications.

The ASSEMBLER language interface provides two macros.

The IUCV macro is used to execute IUCV functions.

 IUCV function_name,options

Function_name The name of the specific IUCV function.

options Optional information that is function dependent.

The following functions are supported:

 ACCEPT
 CONNECT
 DECLARE BUFFER*
 DESCRIBE
 PURGE
 QUERY
 QUIESCE
 RECEIVE
 REJECT
 REPLY
 RESUME
 RETRIEVE BUFFER*
 SEND
 SET CONTROL MASK*
 SET MASK*
 SEVER
 TEST COMPLETION
 TEST MESSAGE

* These functions are supported as no-ops since MUSIC does not let applications redefine the IUCV inter-
 rupt buffer or control interrupts.

The IPARML macro used to map the IUCV parameter lists and interrupt buffers. This is copied into the
assembler program.

One difference between the MUSIC and VM implementation is in the processing of interrupts. The interface
module in the MUSIC nucleus gets control when an IUCV external interrupt occurs. The interrupt informa-
tion is then passed to the application through the inter-task queue. The application retrieves the information

 Internals - Chapter 22. System Programming 489

using the QRD routine. The format of this data is the same as the regular IUCV external interrupt buffer
preceded by the 8 byte identifier 'IUCV '.

 +----------------------------------+
 0 | I U C V | MUSIC Header
 +--------+---+---+-----------------+
 8 | Path | F | T | |
 +--------+---+---+ |
 10 | |
 + interrupt + IUCV external
 18 | dependent | interrupt buffer
 + information +
 20 | |
 + +
 28 | |
 +----------------------------------+

Path Pathid of the connection causing the interrupt

F Flags indicating the interrupt status

T Indicates the interrupt type

The IUCV external interrupt buffer is mapped by the IPARML macro.

The other difference between MUSIC and VM is how a MUSIC server application identifies itself to the
system. The server program is identified by a name that it advertises in MUSIC's ENQUEUE table. A client
wishing to connect to this application issues a CONNECT function specifying "MUSIC" in the IPVMID
field of the connect parameter and the name of the server in the IPUSER field.

Examples

The files IUCV.SERVER and IUCV.CLIENT provide ASSEMBLE language examples of IUCV applica-
tions. In addition to showing the use of the IUCV macros, they show how to user the DELAY and QRD
routines to handle the interrupts. The SYSCOM privilege is required to run these programs.

Internals

The interface handles the IUCV requests from MUSIC applications, keeps track of what application owns a
conversation and passes the external interrupts to the appropriate application.

During system initialization, a DECLARE_BUFFER is issued to define MUSIC's IUCV external interrupt
buffer. There is only one of these for the MUSIC virtual machine. When a task issues a
DECLARE_BUFFER to initiate IUCV, it is basically treated as a NOP operation. When an external interrupt
arrives that applies to that task, the interrupt handler passes the information to task via the inter-task commu-
nications queue. This information can be retrieved using the QRD routine. This handling of the external
interrupt buffer data makes the MUSIC implementation a bit different from CMS.

When a task issues a CONNECT function the assigned PATHID is saved with the TCB number the
PATHID_TABLE. When an external interrupt occurs, this table is used to find the TCB number of MUSIC
task that is to receive the interrupt information.

If an outside task is to initiate a connection with a MUSIC task it must know the resource name associated
with the MUSIC task. The MUSIC task sets the resource name in the ENQ table. So when an interrupt

490 MUSIC/SP Administrator's Reference - Part V

comes in requesting a connection, the TCB number of MUSIC task is retrieved from the ENQ_TABLE.

In addition to executing the IUCV instructions and passing on interrupts this module must also deal with
MUSIC's virtual storage. The request parameters are copied from the user region to system storage before the
request is made. The results are copied back afterwards. If a request involves data buffers, these are allocated
in the system area and the virtual addresses replaced by real addresses. Once the request is complete, the data
is copied to the user's virtual storage.

Message Control Blocks (MCB)

These are used to keep track of outbound messages. When a SEND or REPLY is issued an MCB is allocated.
Information about the message, such as the buffer pointers, length and message ID are saved in the MCB.
When IUCV finishes processing the message, it causes an IUCV external interrupt. The message ID field
from the interrupt is used to locate the MCB. The MCB and any allocated buffers are then freed.

They are mapped by the MCB Dsect and are laid out as follows..

 2 2 4
 +-----------------+------------------+
 | Flag | Mpath | Mid |
 +-----------------+--------+---------+
 | OAbuf | Mtcb | OFlg |
 +-----------------+--------+---------+
 | Mbuf | Mlen |
 +-----------------+------------------+
 | Abuf | Alen |
 +-----------------+------------------+

ABUF and MBUF point to buffer chains. The first buffer is used to contain a buffer list in the format used by
IUCV. Subsequent buffers contain data. This allows a 32K message to span up to 64 buffers.

When an IUCV external interrupt occurs, URMON passes control to the IUCV external interrupt routine in
the module IUCV. The function of this routine is to pass the external interrupt and any associated data to the
appropriate MUSIC task. Since the tasks address space may be inaccessible to us, the interrupt buffer data is
passed via the inter-task communications queue.

If the interrupt is for a connection pending, the ENQ table is scanned for a match on the resource_id from the
interrupt buffer. If a match is found the interrupt information is passed to the task that enqueued on the name
and an entry is made in the PATHID TABLE to permanently associate the PATHID with that task.

Otherwise the PATHID table is used to find out the TCB number of the task. Once the TCB number is
known the interrupt buffer is sent to it via the inter-task communications queue.

 Internals - Chapter 22. System Programming 491

 Chapter 23. Performance and Tuning
———————————————
 Overview

This section discusses how you can improve the performance of your MUSIC/SP system. The basic steps
involve observing the performance of your system and making changes and seeing the results. MUSIC
comes with a number of performance tools that can help you measure your system's performance. It is
strongly recommended that you regularly monitor your system's performance and not just at times of poor
performance. This will allow you to see the compare the times of poor performance to those of good
performance and see what has changed.

 Basic Resources

There are 3 basic resources that are available to MUSIC. They are:

 • Processor cycles. When MUSIC is not run under VM, then this is simply the speed of your proces-
 sor. Under VM, it also refers to the amount of time available that MUSIC will get from VM.
 There are several performance options under VM that relate to how much time MUSIC will get.
 • Main storage. This is the amount of main storage that MUSIC can use. Under VM, this is its
 "virtual machine size".
 • Disk. This includes the number of channel paths available to the disks as well as the number of
 disks.

 To tune the system it is important to see how MUSIC is using these resources and to deter-
 mine which one can be improved and at what cost.

 VM Performance Considerations

Refer to Chapter 2 - Running MUSIC/SP Under VM for very important information on how to best configure
MUSIC under VM. In particular note that you must always run a production system in either a V=R or V=V
locked environment. Just locking part of MUSIC's pages WILL NOT WORK correctly. The reason for this
is that VM will stop the entire MUSIC system on ANY page exception within MUSIC and not process ANY
work for MUSIC until the page exception has been resolved by VM reading in the page from disk. This can
take 50 milliseconds or longer on a busy machine and will cause very uneven performance. Remember
MUSIC is supporting many users in the one virtual machine and not just a single user as in the case of CMS.
It is therefore quite reasonable to give MUSIC much better performance options that you give to a single
CMS user.

Note that running MUSIC in a V=R or locked page environment will not give MUSIC preferential treatment
over your other virtual machines. What it will do is save cycles that VM would otherwise have to use to
resolve page exceptions on behalf of MUSIC. In the V=R case, VM will also save cycles by not having to
translate MUSIC's I/O channel programs. These cycles saved are a benefit to ALL your virtual machines.
This is because it gives effectively makes the processor faster. Running MUSIC V=R can sometimes buy
back 10 or 20% of your processor cycles.

492 MUSIC/SP Administrator's Reference - Part V

 Dynamic View Your System's Performance

The SSTAT utility is valuable for seeing what is happening to your system now. It can be run by typing
SSTAT as a command or from the ADMIN facility's "Information and Statistical" menu and selecting
"Display System Status". Its display is updated several times per minute. You should run at different times
in the day to view of the load before making any changes based on its output.

The following notes point out key items of interest in performance and tuning work.

• The storage size gives the amount of storage MUSIC has available to it.

• The MAXRRS shows how much storage each user region can get to run applications. The MAXMPL
 shows how many regions can be active at one time.

• The number of users show how many users are currently signed on. The number of sessions show how
 many sessions are active. A single user can have several sessions active at one.

• The response time is the response time this program is seeing. It is an indication of the system response
 time but is not an average response time people are getting. (The response time people will see depends
 on the queue the system has placed them in. This depends in turn on what type of work they are doing.)

• The CPU usage gives the % of the CPU MUSIC is using. This includes any VM overhead on behalf of
 MUSIC.

• The "running" number shows the number of tasks that are running. Many of them may be waiting for
 input from users. That number is shown in the "idle" field. The number actually running in the user
 regions is shown in the "active" field. The number that is waiting to get into a user region is shown in
 the "queued" field.

• The "in core" field shows how many of the running tasks are in main storage. The "swapped" field
 shows how many tasks the system had to swap out to disk.

• The table in the display shows the total number of specific events that have occurred since your system
 was last IPLed. It also shows the rate of these events. The rate is the more interesting number.

• The number of I/O operations per second is an indication of the how busy your I/O devices are. If you
 see this number never gets higher than a certain number at peak times, then this could mean that you
 have an I/O bottleneck. The IOTIME utility can be used to analyze your I/O activity.

• The number of page events per second is an indication of how much paging you are doing. It does not
 directly show your paging rate in terms of number of pages read or written per second as explained
 below.

• The "page wr" figure shows the number of page write operations being done per second. Each of these
 operations typically writes 8 4K pages to disk in one disk I/O operation.

• The "page rd" gives the number of page reads done. Page reads are done one at a time. Page reads done
 from the PLPA area are shown separately. Large paging rates here are an indication that some users are
 running jobs do not fit well in the MAXRRS area. You can increase the size of the MAXRRS area by
 doing a NUCGEN but that may increase the amount of swapping done.

• PLPA pages are for routines that have been placed in the PLPA area. They are typically reentrant
 compilers. PLPA page reads are done one at a time. A high PLPA rate would be an indication that you
 should move some items into the fixed link pack area. Consult the section "Link Pack Area Considera-
 tions" in Chapter 21 - Load Library and Link Pack Area for information on this topic.

 Internals - Chapter 23. Performance and Tuning 493

• The number of swap reads and writes shows the rate of swapping. Each swap will typically take several
 I/O operations. This is because each swap piece is 40K in size. Refer to section "Paging and Swap-
 ping" in Chapter 18 - System Internals for more information.

 Main Storage Usage

Many sites have found that they are not using main storage in an optimal fashion. The output from the
MAPMEM utility shows you how your main storage is used. It can be run by typing MAPMEM as a
command or from the ADMIN facility's "Information and Statistical" menu and selecting "Display Memory
Map". The numbers displayed will not change until some system parameters are changed and the system
re-IPLed.

The following notes point out key items of interest in performance and tuning work.

• The first information listed is similar to that shown with the SSTAT utility described above. Take note
 of the page pool size shown on the first line. That is the amount of storage available for user regions.
 User regions are the area that user jobs run in. A specific user job cannot use more any more real stor-
 age than shown in the MAXRRS number. The size of the page pool is determined by what is left over
 when all the other storage areas have been allocated.

• The length column in the table of addresses is the most important field for performance and tuning
 considerations. The amount used by the BPOOL area is important. Run the BPOOL utility at the end
 of a typical day to see the maximum number used. (The system must have been up during your peak
 times to have useful numbers here.) You can change the number of buffers in this pool by a parameter
 in the NUCGEN utility. Refer to the topic "Terminal Buffer Pool" in Chapter 18 - System Internals for
 more information.

• The LPA area shows the amount of storage being used by your fixed link pack area. Increasing this area
 reduces the amount of size of the page pool. Consult the section "Link Pack Area Considerations" in
 Chapter 21 - Load Library and Link Pack Area for information on this topic.

• The RAMDSK area shows the memory reserved for use as a RAM disk. Files are loaded into here when
 the system starts up and can be subsequently referenced without any physical I/O. Usually significant
 performance benefits can be gained by reserving about 400K of memory and loading in frequently used
 files. See the section "Configuring your RAM Disk" for more details.

• Cache all the Save Library space bit maps in memory, by specifying ULMAPS=1 in the NUCGEN util-
 ity.

• The trace area is set by a parameter in the NUCGEN utility and is usually no more than 20k.

• The nucleus area and low core areas are used by the system for its control code and buffers. These areas
 are not changed for tuning reasons.

• Ignore the page pool 1 and 2 numbers for tuning purposes. Use the page pool total on the first line
 instead.

 Tuning Examples

The following are suggestions of what to do to improve specific performance bottlenecks.

494 MUSIC/SP Administrator's Reference - Part V

Poor Response, CPU Usage High (eg 90%)

The demand for CPU cycles is greater than can be provided by your CPU. If this situation exists consider-
ately throughout the day, you should consider reducing the number of users or upgrading your CPU. If it
occurs periodically it may be caused by a group of users (like a student lab) running a specific piece of soft-
ware. Have them use that software during non-prime time or spread its use out over the day rather than
having them all run it at once. Maybe change from a lab format to a "work on your own" format.

Poor Response, CPU=40%, Swapping High

In this case the system may be I/O bound on the SWAP data sets. The output from the IOTIME program
will indicate the amount of time spent swapping. There are various things that can be done to improve this.
They are listed below in the order that we feel will have most effect.

• Give the MUSIC machine more main storage. This will enable the system to keep more users in storage
 and therefore reduce the swap load.

• Spread the swap load over more than one channel if possible. It is best to place the swap data sets on
 disks that have very little other activity on them. These disks should be on channels used exclusively by
 MUSIC. Some sites have found that some improvement can be obtained if the second (or third) SWAP
 data set is placed on a "low usage" VM channel. If this is attempted monitor the SWAP times very
 closely since if the channel becomes busy, the "solution" could be worse than the original problem.

• If you have specified a large MAXRRS value in the NUCGEN you may want to try reducing it. If a lot
 of people are using large region sizes making MAXRRS smaller can significantly reduce the amount of
 data that is swapped. This will increase the paging overhead for those using large user regions but will
 improve system performance for the majority of users.

• Optimize the location of the SWAP data sets if possible.
 • MUSIC owned channel (no interference from VM)
 • Dedicated disk (not minidisk)
 • Low usage pack if possible
 • Near center of pack

Poor Response, CPU=5%, I/O Rate Low

This is probably a problem in the I/O configuration or VM environment. MUSIC is spending most of its time
in WAIT state. The key is to figure out what it is waiting for. Usually it is either waiting for an I/O interrupt
from a terminal or a disk, or an external interrupt from a system timer. Whatever the case this situation
should be reported as a system problem.

Response Ok Except for a Few Users

Look at the paging rates. It will usually indicate a significant amount of paging activity. The jobs that take a
long time probably use a large user region and have a working set (of pages) larger than the MAXRRS.
They are "thrashing". That is, spending the majority of time paging and doing very little useful work. Jobs
like this do not seriously effect the performance of the rest of the system, however it can really be frustrating
for the user since they have no idea of why their job is taking so long due to the exponential nature of the
effect.

 Internals - Chapter 23. Performance and Tuning 495

e.g. Waterloo Script Job (MAXRRS=232K)

 100 page document..............5 minutes
 300 page document..............2 hours
 600 page document..............Cancelled after 18 hours.

There are two possible solutions.....

• If the thrashing program is reentrant then placing it in the FLPA will reduce the user region storage
 requirements by the size of the program and thus increase the available working storage.

• Increase the MAXRRS so that it is larger than the working set of the program. The value of MAXRRS
 effects other aspects of system performance. These should be monitored to determine whether the gains
 obtained by increasing MAXRRS are not outweighed by loses in other areas.

 • Increasing MAXRRS will reduce the number of tasks that can be kept in the page pool thus poten-
 tially increase the swap load. If you have sufficient main storage this should not be a problem.

 • If you have insufficient storage increasing MAXRRS will reduce the MAXMPL (maximum multi-
 programming level). Usually a MAXMPL of 3 or 4 is sufficient.

 • The MAXRRS value indicates the maximum data transfer amount on a SWAP operation. If a lot
 of users are using large region sizes, increasing MAXRRS will increase the data transfer overhead
 for each swap operation. This may be offset however by substantial savings in paging overhead.

Poor Response at Peak Times

Performance is ok during most of the day except for the peak times. These peaks may last for half an hour or
more. The response time monitor will show that the user region is active 100% of the time during these peri-
ods. CPU and I/O rates are not excessive and are similar to the ones you normally got from the machine at
peak times before response started getting poor. The current situation is that the number of users (or the jobs
they are running) have exceeded the capacity of your CPU current configuration. There is probably no obvi-
ous bottleneck. You must look at output of the performance measuring tools in more detail. The following
is a list of things that you can try. The list is in order of what we feel will give you the most improvement.

• Give MUSIC as much main storage as possible and optimize its use as follows:

 • Place any high usage processors in the FLPA. Note the usage of processors such as
 VS/FORTRAN, and VS/PASCAL may vary depending on the time of year at academic sites. If
 you cannot fit them all in the FLPA, at least put the most used ones there. If you do not have any
 high usage reentrant processors, do not waste the storage by putting infrequently used modules in
 the FLPA. Use the output of the LDCNTS program to see which modules are being used the most.
 Use the LDLIST program to see the sizes of the individual modules. Refer to the topic "Link Pack
 Considerations" in Chapter 21 - Load Library and Link Pack Area for details on what processor
 each module is associated with.

 • If you have not already done so, reserve about 400K of memory for use as a RAM disk and load
 any frequently used files into it. Use the RAMREP utility to determine if the files loaded in RAM
 are being used frequently enough and replace any low usage files with others that you feel may
 have a higher hit count. A properly configured RAM disk should be able to handle 15% - 25% of
 file opens.

 • The number of RCBs effects the swap load. In adding main storage you should hope to increase
 the number of RCBs. Try to keep the number of RCBs to at least 25% of the number of active
 users. Once the key modules have been placed in the FLPA, additional storage is best spent in

496 MUSIC/SP Administrator's Reference - Part V

 additional RCBs. The number of RCBs is automatically determined from the size of the pageable
 storage pool. This pool contains the storage that is not allocated to other things like the FLPA,
 BPOOL, trace table, etc.

 • Try to keep the MAXRRS to at least 232K. The system will reduce this value if there is insuffi-
 cient storage left due to trying to put too much in the FLPA.

 • If storage is at a premium remove any terminals, BTRMs and extra sessions (XSES) that are not
 required. Set the size of the BPOOL to be slightly higher than the high water mark indicated by the
 BPOOL program. Never let the BPOOL size be considerately equal to this high water mark.
 Reduce the trace table size (MAXTRC) to 8K.

• Improve MUSIC's virtual machine environment where possible.
 • Run MUSIC V=R or lock ALL its pages
 • Use dedicated disks not minidisks
 • If disks are on separate real channels, configure than as such on MUSIC.
 • Put all your MUSIC disks on different virtual channels. For example, if you disks are addresses
 130, 131, 132, 134, try defining them to VM as 130, 230, 330, 430. This allows VM to better
 service the disks.
 • Do not use VM's multi-path support to access disks. This has shown to have a major negative
 effect on throughput.

• Improve MUSIC's disk configuration by adding channels or disks or moving high access data sets to
 channels or disks that are not so busy. If multiple real channels are used the swap and page load should
 be spread over all the channels. High access data sets such as SYS1.MUSIC.UIDX should be placed in
 the center of low activity disks on low activity channels. The IOTIME utility is useful in determining
 I/O activity on a data set by data set basis.

• Force a reduction in the user load. This is usually the least desirable though often the only resort once
 all of the above has been tried. There are two basic methods:

 • Restrict the usage of certain software to certain users or certain times. Subset environments can be
 set up using TMENU or REXX to restrict users to the assigned task and eliminate game playing or
 private projects which can consume resources.

 • Limit the number of users by limiting the number of terminals defined on the system. This may
 seem cruel but, when the peak time of the year rolls around and you have tried all of the above and
 response is still poor, it is probably better to have 100 people getting work done and 20 waiting for
 a terminal than to have 120 sitting at terminals getting work done slowly.

 Internals - Chapter 23. Performance and Tuning 497

498 MUSIC/SP Administrator's Reference - Part V

