MUSIC/SP User's Reference Guide

Part 4 - Chapter 8 (UR_P4.PS)

Chapter 8. Processors

Chapter 8. Processors 313

Overview of Processors

To run a program written in a high-level language, the system goes through several steps before the program
actually startsrunning. The high level language input is referred to as the "source” language. The desired
result of a compilation is machine language code, or object code, which is placed in afile known as the
object module.

The first step isthe compile step. Here acompiler checks over your source statements and the compiler may
give you a source listing of them. Y ou use a compiler that was specifically designed to handle the particular
computer language that you are using. Any errors that the compiler finds are identified (or flagged) so that
you can correct them. These error messages may appear within your source listing or they may appear |ater
under a heading of diagnostics. The compiler produces what is known as object code based on your source
statements and this object code is kept for usein the next step. Y ou can get a copy of this object code if you
want in aformat known as an abject module. (The object modules cannot be converted back to source
programs. Thus you should not discard your source just because you now have an object module.)

The next step isthe load step. Here the loader receives the object code produced by the compiler and loads it
into main storage. Any system-supplied subroutines that your program needs are also loaded into main stor-
age at thistime.

The last step isthe execute (GO) step. Thisis where the program is given control. The program communi-
cates with the system through a set of system routines called the user-system interface.

Note: FSI (Full Screen Interface) provides a menu option for creating programs and using processors.
MUSIC Compilers

The MUSIC compilers automatically start the chain of events through the steps described above without you
having to be aware of them. If the compiler or loader notices some errorsin your program, then it stops the
chain so that you can correct the errors and start again.

The name on the /LOAD statement specifies the required processor. This may be the name of a compiler,
loader, interpreter, or other processor.

APL, VSAPL, BASIC, and REXX operate differently from compilers and are considered interpreters.
GDDM isacollection of subroutines and utilities used in conjunction with a compiler.

Figure 8.1 below illustrates the stepsinvolved in processing a program through a compiler.

314 MUSIC/SP User's Reference Guide

SOURCE Output:

COMPILER ——> sourcelisting
i
OBJECT MODULES —>file
1
LOADER ——>map

l

User Application
Program

Figure 8.1 - Compilers
MUSIC Loaders

If you have object modules produced by a compiler, then you can bypass the compiler step and proceed
directly to the loader step. You normally accomplish this by specifying a/LOAD ASMLG statement except
in the case of PL/I. PL/I requiresits own loader, /LOAD PLILG.

If parts of your program are in source form and other partsin object modules, then just use the compiler.
MUSIC compilers will separate out the object modules and cause them to be |oaded at the appropriate time.

MUSIC Linkage Editor

Instead of loading the object modules directly into main storage, you have the option of creating aload
module with the MUSIC Linkage Editor and stored in afile. The MUSIC Linkage Editor iscaled by a
/LOAD LKED. There are two main reasons why you might want to use the Linkage Editor. Oneisthat your
program istoo big for al of it tofit into the MUSIC user region at onetime. In this case, you use an overlay
structure to split your program into segments that will each fit into the user region. The other main use of the
Linkage Editor isto achieve afaster loading time for programs that are used often. You will find that it is
normally faster to load aload module than loading the program from the corresponding object modules.

Figure 8.2 shows the steps involved in creating aload module with the linkage editor.

Chapter 8. Processors 315

OBJECT MODULE Output:

1

LINKAGE
EDITOR ——>map
!
LOAD MODULE —— > file, load module,
map
!
FORTRAN/MUSIC

Execution Interface

Figure 8.2 - Linkage Editor
L oad M odule Executors

L oad modul e executors are used to execute a program that has been previously created with the MUSIC
Linkage Editor. The loading process can be considerably faster than the use of a standard loader. The names
of the two load module executors on MUSIC are: XMON and XMPLI. For aload module produced by an
object module from aPL/l program, use the /LOAD XMPLI statement. Y ou must use the /LOAD XMON
statement if the load module is produced by an object module from a COBOL or VS Assembler program.
The OS/IMUSIC interfaces will be loaded in the last two cases.

Object modules are used to form the load modules. However, once you have aload module you cannot
transform it back into object modules.

MUSIC Interpreters

Aninterpreter takes asinput a source language. However, unlike a compiler, an interpreter does not generate
machine language code in an object module. Instead, the source language statement is executed immedi-
ately. Oneway of thinking about it is that the machine language instructions for the current source language
statement are generated, then executed, and then discarded.

Processors, such as REXX, APL, and BASIC, are interpreters, and as such do not adhere to the sequence of

events described above in "MUSIC Compilers'. Refer to the individual descriptions for complete informa-
tion on how to run these processors on MUSIC.

316 MUSIC/SP User's Reference Guide

Programming Tutorials

MUSIC provides atutorial facility for learning programming languages. To invoke this facility type"TUT"
in *Go mode or choose the "Tutorials" item on the FSI main menu. Help is provided once this facility is
invoked.

Chapter 8. Processors 317

APL - Subset Version

MUSIC supports two versions of APL. The subset APL version described below should be used only if your
installation does not have VS APL (Program Product 5748-AP1).

The MUSIC/APL Subsystem is an implementation of the IBM APL S/360 Type Il program. APL isa
conversational time-sharing facility based on a mathematical programming language called "A Program-
ming Language". MUSIC/APL runs under MUSIC in much the same way as any other program. The entire
MUSIC/APL session isregarded by MUSIC as one job.

The APL languageis concise and has a small number of syntax rules. It supports built-in mathematical oper-
ators which permit vector and matrix manipulation. It operates as both a sophisticated and powerful desk
calculator and as a programming language.

Running MUSIC/APL

The user invokes MUSIC/APL by typing APL when the workstation isin command (* Go) mode. (Some
installations may require you to type /EXEC APL if your user profileis set up not to alowed the implied
EXEC feature.) To end the APL session, the user types the APL command JOFF. This APL command will
return the user to MUSIC command mode. The APL session can also be terminated by the user typing in the
MUSIC command /CANCEL.

A MUSIC execution time limit applies for your entire APL session. MUSIC/APL has alimiting time feature
which allows user notification when excessive function evaluation time is detected. Thisfeature is discussed
in more detail later in this writeup, together with afull description of how the APL session time limit is set.

Workstation Requirement - APL

MUSIC/APL can be run from most workstations supported by MUSIC. However, it uses a different set of
characters to those normally available. Some workstations have an optional APL character set feature.
Operation of APL from workstations without the APL character set is not recommended. The following
topics discuss the operation of APL on the different types of supported workstations.

APL on 2741 and 3767 Terminals

These APL characters are available on an IBM 2741 terminal through the use of an interchangeable type
element. Thiselement isavailable for both the EBCD keyboard arrangement (#1167988) and the correspon-
dence arrangement (#1167987). The last three digits of the part number is stamped on the top rim of the type
element.

The APL character set for an IBM 3767 terminal is available through the aternate character set feature.

The ATTN key on these terminalsis handled according to the usual APL rules. These rules are somewhat
different to the usual MUSIC usage of this key.

318 APL - Subset Version - MUSIC/SP User's Reference Guide

APL on 3270 SeriesTerminals

The APL character set is available on the 3270 series display terminal s through the APL character set
feature. Toinform MUSIC that your 3270 terminal has this feature, you must use the terminal class specifi-
cation of 3270A, if itisa 3277 terminal, or use 3270B, if it isa 3278 or 3279 terminal, when you sign on to
MUSIC. Seethe/ID command for details on how to specify the trmcls parameter.

When installed, the special APL ON/OFF key is used to select the APL character set used for entry of char-
acters. Theterminal can always display APL characters. The PA1 key isused in the usual MUSIC manner
to signa attention when the terminal isin WORKING mode. Escape from input in APL is through the OUT
sequence signalled viathe PA1 key when the terminal isin READING mode. The PA2 key isused in the
usual MUSIC manner to signal that the next page is to be displayed.

APLONnTTY Terminals

Some TTY terminals have an APL characters available on them. MUSIC/APL may work correctly from
these devices, though you must check this out with the one you want to use. Since various manufacturers
have established different conventionsin APL mode, the user must indicate which oneisto be used. The
TRT option described below is used to specify the scheme used. (The default value of 4 suits alarge number
of terminals.)

[/ OPT TRT=n (nis 1,2,3 or 4)
To verify that you have chosen the right number for the TRT option, execute the function KEY BOARD
contained in the MUSFNS workspace. Y ou should get a printout like the one shown in the example at the
end of the VS APL discussion of this chapter of the manual.
TheTTY terminas should be set to transmit even parity.

Some TTY terminals can generate afew more characters than are defined for an IBM 2741 terminal. These
additional characters may be rejected if an attempt is made to enter them in APL mode.

TTY terminals have no direct equivalent of the ATTN key on an IBM 2741 terminal and so the following

should be doneinstead: Use the LINE FEED key instead of the ATTN key to correct typing errors. Use the
BREAK key instead of the ATTN key in all other cases.

Usage Notes- APL

APL workspace numbers follow a convention described under the heading "APL Workspace Concepts”.

MUSIC/APL workspaces are transferable to other MUSIC/APL systems. APL workspaces generated on
other systems such as OS, CMS cannot be installed on MUSIC/APL.

MUSIC/APL handlesthe ATTN key according to the usual APL rules. These rules are somewhat different
to the usual MUSIC usage of this key.

It is advisable to periodically save your current APL workspace since its contents will be lost should your
workstation become disconnected from the computer for any reason.

Each input lineis checked for the MUSIC command /CAN (the abbreviation of the /CANCEL command),
and if found will terminate the APL session.

Chapter 8. Processors - APL - Subset Version 319

APL Workspace Concepts

Your APL programs or functions are run in an area known in APL as your workspace (abbreviated WS).
The contents of your active workspace may be saved as part of your workspace library. Another workspace
may be loaded from this library to become the new active workspace.

The APL workspace library on MUSIC is contained on one or more User Data Set (UDS) files. The APL
workspace number is used to indicate which APL workspace library isto be used. If this number is not spec-
ified, then library number 1 isassumed. The library number corresponds to the MUSIC 1/O unit number as
defined on the MUSIC /FILE command. The workspace sizeis fixed at 36,000 bytes.

Library number 3 contains the APL workspaces that are provided with the MUSIC system. These work-
gpaces contain functions and information of common interest to MUSIC/APL users. The contents of this
workspace are described later on in this writeup.

Initializingan APL WS

Y ou can make extensive use of APL without ever having your own workspace. However, if you want to
save your workspace you must set up aMUSIC UDS file to hold workspaces. The following procedure
illustrates how you can initializeaMUSIC UDSfile so it can be used as an APL workspace library. This
procedure is done only once for each UDS file you wish to use. Each UDS file can hold many workspaces,
though you will usually find that 1 or 2 is sufficient for most work. The NREC parameter on the /FILE state-
ment should be the number of workspaces times 284. Thus NREC(568) is used to allocate space to hold 2
workspaces. A sampleinitiaizing job follows:

/FILE 1 UDS(dsnane) NREC(568) VOL(vvvvvv) NEW
/1 NCLUDE APLI NT

The dsname is the dsname of you file and the wwwwy in this example is the disk volume that contains your
workspace library. Refer to the description on the /FILE statement in Chapter 6. MUS C Job Control State-
ments for more details about this control statement.

UsingA WSLibrary - APL

Y ou use the following set up to invoke MUSIC/APL with your workspace library:

/FILE 1 UDS(dsnane) VOL(vvvvvv) OLD
/ LOAD APL

The /FILE statement uses the same dsname and volume name that you used in the job to initialize the file.
Note that the NREC parameter is not given and that the OLD is used instead of NEW.

The above set of commands can be saved on the MUSIC Save Library to make it more convenient for you to
use them again at alater time. Thus, if you saved it under the name MY APL, then all you need do is type the
name MYAPL torunit at alater time.

In the above exampl e, the workspace library has been shown as being assigned as MUSIC unit number 1.
Y ou may also use MUSIC unit numbers 2 and 3 for more APL workspace libraries. Normally you do not
use unit number 3 for one of your own libraries since this will take the place of the system supplied one.
Y ou use the workspace unit number in the various APL system commands to tell APL which workspace
library you want it to refer to. If not specified, then unit number 1 will be used.

320 APL - Subset Version - MUSIC/SP User's Reference Guide

APL Public Workspaces

A MUSIC/APL user can access alibrary of public workspaces to do various functions. Thislibrary of work-
spacesis accessed as library number 3. A list of all the workspace hames can be obtained by the APL
command)LIB 3. To find out more about a specific one simply load it into the active workspace by the APL
command)LOAD 3 xxx and then type DESCRIBE.

The following is a summary of the contents of the MUSIC/APL library:

NEWS This workspace contains information specific to APL under MUSIC such as limita-
tions, hints and summary of the contents of the other workspaces.

MUSFNS This workspace contains functions which when executed tell how many users are on
MUSIC, how much job time you have used, etc. It also contains the function
KEYBOARD that will print all the valid APL symbols.

BOATPROB This workspace plays the age-old game of missionaries and cannibals, except this
one makes sure you don't loose any missionaries by making abad move. Further-
more, this game can be played in English, French or Spanish.

APLCOURSE Thisworkspace drills the user in the use of APL primitive functions and, in fact, isa
good way to familiarize yourself with them.

TYPEDRILL This workspace times how long it takes you to type lines of text which you supply.
It can be used as away to improve your typing speed.

PLOTFORMAT This workspace contains the functions required to plot graphs on the workstation.

ADVANCEDEX This workspace contains functions which can be used to find various mathematical
numbers such as binomial coefficients, gcd's and it also contains functions to invert
matrices.

WSFNS This workspace contains functions that do the equivalent to the system functions

)WIDTH, JORIGIN, etc.

TEST2741 Thisworkspace is useful in identifying failures of a 2741 termina and can also be
used to test it after repair. Thisworkspace is also of some valuein testing other
types of supported workstations.

APL System Commands

APL uses a set of system commands to perform the various workspace functions, aswell as several other
activities. These APL system commands have nothing to do with MUSIC commands which may have simi-
lar names. Each APL system command starts with a™)" character in the APL character set. (Usersare
cautioned that this character is probably NOT the same as that used when the workstation is not using the
APL character set.)

The following are the possible APL system commands that you may use:

)LI B) LOAD) SAVE) DROP) COPY) PCOPY
)CLEAR)WSI D YWDTH) Sl)SIV)ORI G
) OFF) FNS) VARS)ERASE)DIG TS

Chapter 8. Processors - APL - Subset Version 321

MUSIC/APL | Beams

The APL language defines a set of functions known as "l Beam" functions. These functions can be used to
obtain the current date and time as well as other information. Thelist below gives the | beam functions that
you may use. Timesarein sixtieths (1/60) of a second unless otherwise noted.

119 Accumulated keyboard unlocked timein this APL session

120 Time of day

121 Accumulated processing time used in the APL session in units of 1/60 of a service unit

122 Available space (bytes) remaining in current workspace

123 Number of users signed on to MUSIC

124 Time of day of the beginning of this APL session

125 Date as asix digit integer of the form mmddyy

126 Thefirst element of vector 127

127 The vector of statement numbersin the state indicator
Limiting Time Option - APL

The user can limit the amount of execution time performed between reads from the workstation. Thisis of
particular use to stop endless loops during function evaluation.

When the time limit expires, the execution of the function will be suspended and a time exceeded message
will be displayed. The specific function and line number will be identified in the same manner asif the
ATTN key had been hit at that moment.

/ OPT LI M T=nn (nnis time limt in service units)

The above control statement is used to specify the limiting time value and is placed following the /[LOAD
APL control statement. The actual cutoff point may be dightly greater than that specified. (Note that if
other /OPT statements are used, they must each appear as separate /OPT statements asit is not permissible to
combine these /OPT statements into one.)

The total amount of execution time used so far can aways be determined by the I-BEAM 21 function of the
APL language.

Extension of Session TimeLimits- APL

The limit on the amount of execution time for aMUSIC job is normally the default job time limit associated
with the user's userid. For APL, this maximum is automatically multiplied by 10 (up to a maximum of 600
service units), and alimiting time option (/OPT LIMIT=m) is set using m = the original time limit. This
extension is not done for a batch job, or if the original time limit is 600 service units or more, or if a specific
time limit is specified by /SYS TIME=n (where n is not MAX).

322 APL - Subset Version - MUSIC/SP User's Reference Guide

Examples:

1. If theuser'sdefault timelimit is8 SU and /SY S TIME= is not used, the APL job will get alimit of 80
SU and /OPT LIMIT=8 will bein effect.

2. If theuser'sdefault timelimit is 180 SU and /SY S TIME= is not used, the APL job will get alimit of
600 SU and /OPT LIMIT=180 will bein effect.

3. If theuser's maximum time limit is 16 SU and /SY S TIME=MAX is specified, the APL job will get a
limit of 160 SU and /OPT LIMIT=16 will bein effect.

The user may specify alower limiting time option if desired.

If the user specifies ajob time limit viathe /SY S TIME=n control statement (but not /SY S TIME=MAX),
then the time extension will not be done nor will alimiting time option be set. This allows users to control
the amount of processing time used in the usual manner.

References- APL

IBM APL/360 Primer (GH20-0689)

Chapter 8. Processors - APL - Subset Version 323

APL Interpreter - VSAPL

VSAPL isan IBM Program Product (5748-AP1) that interprets statements written in APL. The APL
language has a uniform notation, tailored to solving a great variety of problemsinteractively at a workstation.
The language was originated to define problems concisely using well-known mathematical symbols. It
supports built-in mathematical operators which permit efficient vector and matrix manipulation. It operates
as both a sophisticated and powerful desk calculator and as a programming language.

VS APL supports a shared variable facility that allows APL users to communicate with the MUSIC files that
may have been created by APL or other processors and editors running under MUSIC.

In VS APL, dataand programs are gathered together and stored in user areas called workspaces. These
workspaces can be stored for later use using APL commands. Workspaces created by other users can be
accessed subject to the security rules of VS APL and MUSIC. A collection of public workspaces are avail-
ableto assist usersto perform various functionsin APL.

The IBM publication APL Language (GC26-3847) should be used as the reference for APL.
Usage Notes- VSAPL

VS APL runs under MUSIC in much the same way as any other program. That is, the entire APL sessionis
regarded by MUSIC as onejob.

A MUSIC execution time limit applies for your entire APL session. VS APL has alimiting time feature
which allows user notification when excessive function evaluation time is detected. Thisfeature is discussed
in more detail later in this writeup, together with afull description of how the APL session time limit is set.

It is advisable to periodically save your current APL workspace since its contents will be lost should your
workstation become disconnected from the computer for any reason.

Running VSAPL

There are two techniques to invoke VS APL. Oneisto type VSAPL or VSAPL.FS when the workstation is
in command (* Go) mode. VSAPL.FS should only be used by users who will invoke the full screen editor
functions from 3270-type workstations.

The second technique is used when you wish to specify some run optionsto VS APL. Thisisdone by creat-
ing afile on the Save Library containing the sequence of commands shown below. For example, if the
created file was called MY APL, then just type the name MY APL at * Go time to invoke VS APL with your
options.

/ SYS REGQ ON=nnn

/ FILE 1 UDS(&&TEMP)
/ | NCLUDE VSAPL

/| OPT TRT=n

/ OPT LI M T=nnn

The number on the SY S command is discussed later in the topic "Workspace Concepts'. The FILE
command isused if the user isinvoking the full-screen editor contained in the workspace called MUSIC.

324 APL Interpreter - VSAPL - MUSIC/SP User's Reference Guide

The number after TRT isdiscussed later inthetopic "APL on TTY Terminals'. The number after LIMIT is
discussed later in the topic "Limiting Time Option”. Omit the commands that contain options you do not
wish to use.

To end the APL session, the user types the APL command JOFF. This APL command will return the user to
MUSIC command mode.

Workstation Requirement - VSAPL

VS APL can be run from most workstations supported by MUSIC. However, it uses adifferent set of char-
actersto those normally available. Some workstations have an optional APL character set feature. Opera
tion of APL from workstations without the APL character set is not recommended. The following topics
discuss the operation of APL on the different types of supported workstations.

APL on 2741 and 3767 Terminals

These APL characters are available on an IBM 2741 terminal through the use of an interchangeable type
element. Thiselement isavailable for both the EBCD keyboard arrangement (#1167988) and the correspon-
dence arrangement (#1167987). The last three digits of the part number is stamped on the top rim of the type
element.

The APL character set for an IBM 3767 terminal is available through the aternate character set feature.

The ATTN key on these terminalsis handled according to the usual APL rules. These rules are somewhat
different to the usual MUSIC usage of this key.

APL on 3270 SeriesTerminals

The APL character set is available on the 3270 series display terminals through the APL character set
feature. Toinform MUSIC that your 3270 terminal has this feature, you must use the terminal class specifi-
cation of 3270A, if itisa 3277 terminal, or use 3270B, if it isa 3278 or 3279 terminal, when you sign on to
MUSIC. Seethe/ID command for details on how to specify the trmcls parameter.

When installed, the special APL ON/OFF key is used to select the APL character set used for entry of char-
acters. Theterminal can always display APL characters. The PA1 key isused in the usual MUSIC manner
to signa attention when the terminal isin WORKING mode. Escape from input in APL is through the OUT
sequence signalled viathe PA1 key when the terminal isin READING mode. The PA2 key isused in the
usual MUSIC manner to signal that the next page isto be displayed.

APLONTTY Terminals

Some TTY terminals have an APL characters available on them. VS APL may work correctly from these
devices, though you must check this out with the one you want to use. Since various manufacturers have
established different conventionsin APL mode, the user must indicate which oneisto beused. The TRT
option described below is used to specify the scheme used. (The default value of 4 suits alarge number of
terminals.)

[/ OPT TRT=n (nis 1,2,3 or 4)
To verify that you have chosen the right number for the TRT option, execute the function KEY BOARD
contained in the MUSFNS workspace. Y ou should get a printout like the one shown in the example at the

Chapter 8. Processors - APL Interpreter - VSAPL 325

end of this section.
TheTTY terminas should be set to transmit even parity.

Some TTY terminals can generate afew more characters than are defined for an IBM 2741 terminal. These
additional characters may be rejected if an attempt is made to enter them in APL mode.

TTY terminals have no direct equivalent of the ATTN key on an IBM 2741 terminal and so the following
should be done instead: Use the LINE FEED key instead of the ATTN key to correct typing errors. Use the
BREAK key instead of the ATTN key in all other cases.

Itisoften difficult on TTY terminals to know when the system iswaiting for the user to enter character data
in response to a quote-quad read. The use of the /OPT BELLPR option will sound the terminal's bell when a
guote-quad read is done.

APL System Commands

APL uses aset of system commands to perform the various workspace functions, aswell as several other
activities. These APL system commands have nothing to do with MUSIC commands which may have simi-
lar names. Each APL system command starts with a™)" character in the APL character set. (Usersare
cautioned that this character is probably NOT the same as that used when the workstation is not using the
APL character set.)

The following are the possible VS APL system commands that you may use:

)CLEAR) CONTI NUE) COPY) DROP)ERASE) FNS
)GROUP)GRP) GRPS)LI B) LOAD) OFF
)PCOPY)QUOTA) SAVE) S) SI NL) STACK
) SYMBOLS) VARS) W8l D) WBSI ZE

Workspace Concepts- VSAPL

Your APL programs or functions are run in an area known in APL as your workspace. The contents of your
active workspace may be saved as part of your workspace library. Another workspace may be loaded from
this library to become the new active workspace.

The maximum size workspace you may use is determined by the size of the user region you are using. By
default, MUSIC will use aregion size of 108K which will result in a maximum workspace size of about 60K
(K=1024 characters.) To use more than this, specify alarger region size on the MUSIC /SY S statement.

When saving aworkspace, VS APL will write only the used part of current workspace to disk regardless of
the size of the MUSIC region.

The APL workspaces on MUSIC are stored on the Save Library together with files created by other proces-
sors and editors. MUSIC automatically prefixes the workspace name with a special character sequenceto
make their names different to those of other files. For example, the workspace SAMPLE will be stored
under the name @APLW.SAMPLE.

326 APL Interpreter - VSAPL - MUSIC/SP User's Reference Guide

Wor kspace Compatibility - VSAPL

VS APL workspaces are transferable to other VS APL installations. See your installation support personnel
for assistance in this matter. APL workspaces generated by other APL versions will not work on VS APL
without conversion. It may be possible to automatically convert these workspaces. The following topic
discusses how to convert workspaces created on MUSIC by the older APL version.

Workspace Conversion of old MUSIC/APL Workspaces

A conversion program exists to convert APL workspaces that were created on UDS files by the MUSIC/APL
(/LOAD APL) processor. The converted workspaces will be written to the Save Library using the workspace
nameif possible. If the workspace name contains characters other than the standard al phanumeric ones, then
the name will be converted to a suitable one. Workspace passwords, if any, will not be converted.

The conversion utility will display messages summarizing the changes made to the functions. It can run
from aworkstation or from batch. Running from batch may be useful when converting many workspaces.

The following sequence of commands will convert all MUSIC/APL workspaces on the UDS file described
by the /FILE command. This procedure automatically requests aregion size of 160K to perform the conver-
sion.

/FILE 1 UDS(dsnane) VOL(VVvVvVvVvVv)
/ 1 NCLUDE MASCON
...options if any

Use the option TEST to indicate that you do not wish the converted workspace to be written to disk. Usethe

option REPL option to indicate that the converted workspace is to replace any one of the same name on the
user's Save Library.

Workspace Library Numbers- VSAPL

Omit the library number when referring to workspaces stored on your own library.
Use the numbers 1, 2, 3 to refer to the public workspace libraries as described in the following topic.

Use the library number 1000 to store workspaces that are to be accessible to other users. Y ou may wish to
use aworkspace password to restrict access. Thisisequivaent of saving apublic filein the MUSIC Save
Library. A)LIB command will also list workspaces saved by the user using library 1000.

Use the library number 1000 to retrieve workspaces that were saved by others using library 1000. You are
not permitted to perform a)LIB 1000 command.

APL Public Workspaces

The VS APL user on MUSIC can access several public workspaces libraries to do various functions. Library
1 contains workspaces that IBM distributes as part of VS APL. Library 3 contains other workspaces that are
useful in the MUSIC environment. A list of all the workspace names can be obtained by the APL)LIB n
command. To find out more about a specific one simply load it into the active workspace by the APL
command)LOAD n xxx. Thentype ABSTRACT, DESCRIBE or HOW to cause an abstract, description or

Chapter 8. Processors - APL Interpreter - VSAPL 327

usage details to be displayed.

Thefollowing isasummary of the contents of the some of the public workspaces:

NEWS Thisworkspace on library 1 contains information specific to APL users.
PLOT Thisworkspace on library 1 contains the functions required to plot graphs on the work-
station.

EXAMPLES Thisworkspace on library 1 contains functions that illustrate the power of APL in solving
problems. Sample functions dealing with scientific, engineering, mathematical and commer-
cial areas are presented.

FORMAT Thisworkspace on library 1 contains functions designed to aid in the formatting of output.

SBIC Thisworkspace on library 1 contains the application illustrated in the APL Language
Manual (GC26-3847). Itisaskeletal system for sales, billing and inventory control.

MUSFNS Thisworkspace on library 3 contains functions which tell how much job time you have used,
the current time and date, etc. It also contains the function KEY BOARD that will print al
the valid APL symboals.

BOATPROB Thiswarkspace on library 3 plays the age-old game of missionaries and cannibals, except
this one makes sure you don't |oose any missionaries by making abad move. Furthermore,
this game can be played in English, French or Spanish.

TEST2741 Thisworkspace on library 3 is useful inidentifying failures of a 2741 terminal and can aso
be used to test it after repair. Thisworkspace is aso of some valuein testing other types of
supported workstations.

MUSIC Thisworkspace on library 3 contains a function that will invoke the MUSIC context editor to
assist users of 3270 APL terminals modify their functions.

Transporting VSAPL Workspacesto Other Installations

A program is available to dump (write) MUSIC VS APL workspaces to tape in aformat which is transporta:
bleto VS APL installations which are not running MUSIC. The output tapeisin the same format as that
used by IBM when they distribute VS APL workspaces. (The FILARC program, which is described in
Chapter 10. Utilities, should be used to send workspaces to other MUSIC installations.)

To run the program, use the following sequence of control statements:

/ FILE 1 TAPE BLK(800) LRECL(80) VOL(xxxxxx) OLD
/ 1| NCLUDE DUMPWB

code: nanel (names of workspaces to be dunped)
code: nane2

The output tape must be defined by the I/O unit number 1, and must be blocked into 800 byte blocks with a
logical record length of 80 bytes as shown above. Each workspace name must be specified on a separate line
starting at column 1. The name must be in the form of code:name; code must be avalid 4 character MUSIC
user code, name isthe VS APL workspace name (maximum 11 characters). (The actual file nameis

"userid: @APLW.name".) The workspaces will be dumped in the order supplied and each workspaceis
dumped on a separate file on the tape. Since the dumped workspaces on the tape will have no workspace

328 APL Interpreter - VSAPL - MUSIC/SP User's Reference Guide

names or passwords, it is advisable to keep alist of the order of the workspaces on the tape (this program
produces such alist).

Limiting Time Option - VSAPL
The user can limit the amount of execution time performed between reads from the workstation. Thisis of

particular use to stop endless loops during function evaluation.

When the time limit expires, the execution of the function will be suspended. The specific function and line
number will be identified in the same manner asif the ATTN key had been hit at that moment.

/ OPT LI M T=nn (nnis time limt in service units)

The above control statement is used to specify the limiting time value and is placed following the /[LOAD
VSAPL control statement. The actual cutoff point may be dightly greater than that specified.

Thetotal amount of execution time used so far can always be determined by the "QUAD Al" APL system
variable.

Extension of Session TimeLimits- VSAPL

The limit on the amount of execution time for aMUSIC job is normally the default job time limit associated
with the user's userid. For APL, this maximum is automatically multiplied by 10 (up to a maximum of 600
service units), and alimiting time option (/OPT LIMIT=m) is set using m = the original time limit. This
extension is not done for a batch job, or if the original time limit is 600 service units or more, or if a specific
time limit is specified by /SYS TIME=n (where n is not MAX).

Examples:

1. If theuser's default timelimit is8 SU and /SY S TIME= is not used, the APL job will get alimit of 80
SU and /OPT LIMIT=8 will bein effect.

2. If theuser'sdefault timelimit is 180 SU and /SY S TIME= is not used, the APL job will get alimit of
600 SU and /OPT LIMIT=180 will bein effect.

3. If theuser's maximum time limit is 16 SU and /SY S TIME=MAX is specified, the APL job will get a
limit of 160 SU and /OPT LIMIT=16 will bein effect.

The user may specify alower limiting time option if desired.
If the user specifies ajob time limit viathe /SY S TIME=n control statement (but not /SY S TIME=MAX),

then the time extension will not be done nor will alimiting time option be set. This allows users to control
the amount of processing time used in the usual manner.

References- VSAPL

APL Language (GC26-3847)

APL/360 Primer IBM (GH20-0689)

Chapter 8. Processors - APL Interpreter - VSAPL 329

Assembler - ASM

The MUSIC VS Assembler isthe IBM OS/VS Assembler processor interfaced to run under MUSIC.

The VS Assembler programs must normally be assembled and executed using the OS/MUSIC interface. The
/LOAD ASM procedure automatically loads this interface at execution time.

Assembler subroutines that do not perform input or output may be called from FORTRAN programs.

If more than one assembler module is to be compiled at the same time then they must be separated from each
other by /OPT statements. If these /OPT statements are blank, then the options previously given will
continue to be used. After loading is complete, the program is executed under control of the OS/MUSIC
interface.

A program made up of only object modules produced by this Assembler and optionally COBOL object
modules, can be loaded more quickly by using the /LOAD ASMLG procedure. Alternately the /[LOAD
LKED can be used to produce aload module from these modul es.

Notes:

1. Since VS Assembler programs can invoke all the facilities of OS/V S operating system, some of which
are not available on MUSIC, it is possible to assemble an assembler program which will not execute
properly. Certain OS/V Sfacilities are provided by the OSYMUSIC interface. Attempts to use unavail-
able features results in the execution time message FEATURE NOT SUPPORTED.

2. TheDXD, and CXD facilities of the VS Assembler are not supported with the /LOAD VSFORT and
/LOAD LOADER procedures. Programs which are to be executed must have a CSECT or START
before the first EXTRN or ENTRY. If FORTRAN and assembler programs are to be used in the same
execution, the main program should be written in FORTRAN. The standard save area linkage conven-
tions should be followed.

3. Most MUSIC system routines (such as TSTIME, NXTPGM, NPRMPT, etc,) may be called from assem-
bler programs. For more information about these routines, consult Chapter 9. System Subroutines of
this guide.

4. Themessage FI LE ERROR. CANNOT ADD SPACE TO THI' S FI LE may occur for one of the assem-
bler work files SYSUTL, SYSUT2, or SYSUT3 if your assembler program isvery large. To correct this
problem, supply the following /FILE statement before the /LOAD, using n=1, 2, or 3 as appropriate.
The default space allocation is SPACE(200) (i.e. 200K primary space) for SY SUT1, and SPACE(150)
for SYSUT2 and SYSUTS3.

/ FI LE SYSUTn NAME(&&TEMP) NEW DELETE RECFM V) SPACE(400)
MacroLibrary - ASM

A macro library containing many OS macro-instructions is automatically available for your use (see below).
The user can specify a different macro library by placing a/FILE statement defining the macro library at the
beginning of the job. The /FILE statement must have a ddname of SY SLIB and the PDS parameter speci-
fied. (Consult the description of the /FILE statement for files.) For example, if the PDS parameter is speci-
fied as PDS(*.MAC), then if amacro, say, ABC isused in the program, the file ABC.MAC will berefer-
enced. This meansthat al you need to do is to create a series of macros stored in files with names

330 Assembler - ASM - MUSIC/SP User's Reference Guide

XXX.MAC, where XXX isthe name of the macro used. The default /FILE statement for the macro library is
[FILE SYSLIB PDS(*.M). If you want to add in any special macros to the default ones, you just create files
with names XX X.M as described above. Y ou may also use /INCLUDE statements to bring in any special
macros that you may write.

Macro Instructions- ASM

Thefollowing isalist of the OS/VS macro instructions provided, showing the extent to which they are
supported by the OS/MUSIC interface.

Macro

ABEND
CALL

CHECK
CLOSE

DCB

DCBD
ESTAE
FREEMAIN
GETMAIN
GET
OPEN
POST
PUT
READ
RETURN
SAVE
SNAP
SPIE
STAE
STIMER

TGET
TPUT
TIME
TTIMER

WAIT
WAITR
WRITE
WTO
WTOR

Comments

Completion code and dump options only.
Non-overlay form only.

LEAVE and REREAD only. REREAD rewinds the data set. CLOSE writes an end-of-file
after the last data record.
All parameters, except SY NAD, supported with the following restrictions:

BUFNO 1 only

BFTEK Sonly

DSORG PSonly

MACRF GM,GL,PM,PL,R,W only

RECFM F,FA,FM,FB,FBA,FBM only

Specify ABEND exit routine.
VC, VU, and R formsonly.
VC, VU, EC, EU, and R only.

INPUT, OUTPUT or INOUT, OUTIN.

SF, length or Sonly.

See the description later on.

Specify ABEND exit routine.
TASK option only. Thetime interval must be specified asBINTVL or TUINTVL. Timer
exit routines are not supported and are ignored if specified.

TASK option only. Thetime interval must be specified asBINTVL or TUINTVL. Timer
exit routines are not supported and are ignored if specified.

SF,length or Sonly.
Output on MUSIC unit 6.
Input on MUSIC unit 9, output on MUSIC unit 6.

Chapter 8. Processors - Assembler - ASM 331

SNAP Macro- ASM

The SNAP macro instruction can be used within assembler programs on MUSIC. Thisinstruction can
produce a snapshot dump of the program status word (PSW), the general and floating point registers, and
specified areas of main storage. The dump can be written to the workstation or to afile. SNAP can also
invoke a conversational debug routine, which lets the user inspect and modify main storage, the PSW and the
registers before resuming program execution. SNAP isavaluable tool for debugging assembler programs.

For a description of how to use the SNAP macro, refer to the IBM manual OS'VS2 MVS Supervisor Services
and Macro Instructions, GC28-0683. All of the parameters described can be used on MUSIC, athough
some (such as TCB, SDATA and STRHDR) are ignored by MUSIC. Since the macro expands differently
under MUSIC and MV S, previously written MV S programs using SNAP must be reassembled on MUSIC
before they can be run on MUSIC. The execute (MF=E) and list (MF=L) forms are supported.

SNAP isnot limited to programs running in OS simulation mode. 1t can also be used within assembler
routines running in MUSIC mode. The macro generates a call to system subroutine SNAPRTN.

The following additional parameters can be used on MUSIC:

UNIT=n This parameter can be used instead of the DCB parameter. It specifiesthelogical unit
number (1 to 15) to which the dump is written. For example, UNIT=6 writes the dump to
the workstation.

LINE=SHORT (or LINE=S)

LINE=LONG (or LINE=L)
This specifies whether SNAP is to use short (16 bytes per ling) or long (32 bytes per line)
dump lines. Short lines are usually more convenient for workstation output. The default is
LINE=SHORT for workstation jobs and LINE=LONG for batch jobs.

OPT=C This requests that the conversational debug routine be called after the dump, before resum-
ing program execution. The debug routine reads statements from logical unit 9 and writesto
logical unit 6. OPT=C isignored for batch jobs. To change registers or the PSW during
debug, use the STORE command to change the valuesin main storage. The HELP
command tells you where the PSW and registers are in main storage.

Notes:

1. Whenthe DCB parameter is used, the SNAP routine will open thefileif it is not already open. The data
control block (DCB) must specify DSORG=PS, and either MACRF=PM or MACRF=W. The record
format must be F, FA, FB, FBA, V, VA, VB, or VBA. Record length may be up to 160. The recom-
mended values are MACRF=PM, RECFM=FBA, LRECL=121.

2. ThePDATA parameters JPA, LPA, ALLPA, and SPLS are ignored on MUSIC.

3. The SAH parameter dumps the current save area (pointed to by register 13). The SA parameter dumps
the current save area and also gives a save area traceback.

4. All registers are preserved by the SNAP routine (SNAPRTN) except RO, which is set to 0. The expan-
sion of the SNAP macro changes R1. Theregister values dumped by SNAP are the values before the
SNAP macro, except for R1, which has the address of the SNAP argument list.

5. Theexpansion of the SNAP macro usually contains Ol and NI instructions (which change the condition
code), so the condition code in the PSW dumped by SNAP is not meaningful.

6. For the execute form of the macro, OPT=C must be specified if wanted, even if it was specified in the

332 Assembler - ASM - MUSIC/SP User's Reference Guide

list form. Other options are changed only if specified.

Examples:
1. SNAP DCB=MYDCB, | D=1, PDATA=(REGS, PSW , OPT=C
MyYDCB DCB DDNAME=SYSPRI NT, DSORG=PS, MACRF=PM X
RECFM=FBA, LRECL=121, BLKSI ZE=1210
2. SNAP UNI T=6, | D=2, PDATA=(REGS, PSW SA) , X

STORAGE=(AREA1, END1, AREA2, END2) , LI NE=LONG
| nput/Output - ASM

Sequential input/output operations using BSAM and QSAM are supported at execution time. These 1/0O
techniques cannot be used in combination with FORTRAN 1/O in asingle program.

A standard set of DDNAMES for 1/0O operationsis provided, complete with default values for logical record
length.

DDNAME LRECL MUSIC I/O

SYSIN 80 input stream (data following /DATA)

SYSPRINT 121 printed output

SYSPUNCH 80 output to holding file (workstation
jobs) punched output (batch jobs)

SYSTERM 121 printed output

CONSOLE 80 conversational input (workstation jobs)

input stream (batch jobs)
Notes:

1. Additiona ddnames can be defined by specifying /FILE statements with the corresponding ddnames at
the beginning of thejob. (Consult the description of the /FILE statement.)

2. Thedefault values for LRECL may be overridden by use of the LRECL = parameter in the DCB macro
instruction.

3. For the WTO and WTOR macro instructions, input is performed on MUSIC unit 9 and output on
MUSIC unit 6.

4. End-of-file can beindicated on a conversational read by typing /EOF.
Usage- ASM

The Assembler isinvoked by the use of a/LOAD ASM statement. This statement can be followed by a
/OPT statement specifying options for the Assembler and by a/JOB statement specifying parameters for the
loading step. The Assembler loads and executes the object code unless /JOB NOGO has been specified.

/LOAD ASM specifies that the lines following form a program written for the VS Assembler (and option-

aly, object modules), and are to be processed by the Assembler and the resulting object programisto be
loaded and executed using the OS/MUSIC interface. /LOAD statements following this statement are

Chapter 8. Processors - Assembler - ASM 333

ignored.

Parameters. Compile Step - ASM

/ OPT {NOLI ST}{, NOXREF }{, NODECK} { , SYSPARME(xxx) }
{LIST }{, XREF(SHORT)}{, DECK }
{, XREF(FULL) }

NOLIST

LIST

NOXREF

X REF(SHORT)

XREF(FULL)
NODECK
DECK
SYSPARM

Notes:

Assembled program listing is not to be printed. Thisisthe default for jobs run from
aworkstation.

Assembled program listing isto be printed on SYSPRINT. Thisisthe default for
jobsrun from batch. (If LIST is specified for ajob run from aworkstation, you can
use the PRINT NOGEN or PRINT OFF assembler statements to reduce the amount
of output to your workstation.)

No cross-reference list. Thisisthe default for jobs run from a workstation.

A cross-reference list of all referenced statement labelsisto be printed. Thisisthe
default for jobs run from batch.

A cross-reference list of all statement labelsis to be printed.
No object moduleisto be produced. Thisisthe default.
An object moduleisto be written on SY SPUNCH.

Specifies the value to be assigned to the symbolic variable & SY SPARM.

1. Multiple/OPT statements may be used if desired. Other options that can be used are given in the IBM
OS/VS Assembler Programmer's Guide publication (GC33-4021).

2. If multiple source programs are in the input stream, they must be separated from each other by /OPT
statements. For this purpose, a/OPT statement with no operand may be used.

3. /FILE statements with ddnames of ASM.SY SIN, ASM.SY SPRINT, and ASM.SY SPUNCH can be
defined at the beginning of the job to inform the compiler where to read the input source program,
where to print the program listing and punch the object module respectively, instead of the default defi-

nitions.

334 Assembler - ASM - MUSIC/SP User's Reference Guide

Parameters: Loader Step - ASM

/3J0B {MAP }{,NOGO}{, LET}{, NOPRI NT}{, DUVP} {, CDUMP} { , DEBUG}
{ FULMAP}

{, FILRFM {, NOSEARCH} {, | OTRACE{ (C) } } {, SVCTRACE{ (O) } }

Parameters can be separated by one or more commas or blanks.

MAP

FULMAP

NOGO

LET

NOPRINT

DUMP

CDUMP

DEBUG

FILRFM

NOSEARCH

IOTRACE

SVCTRACE

Notes:

List a storage map of the loaded program.
List an extended storage map of the loaded program.
Do not load or execute the program.

Allow the program to be executed even if unresolved externa references (such as missing
subroutines) are found.

Informative and diagnostic messages are not to be produced.

Request a storage dump to be produced if the job abnormally terminates. Even when the
DUMP parameter is used, not all error conditions result in a dump.

Reguest a conversational trace and dump when an error occurs.
Load the DEBUG program into memory for debugging.
Supply the RECFM V if thefileisV/VC.

Do not search the subroutine library for unresolved routines.

Trace the I/O operations during the execution of the program. If IOTRACE(C) is specified,
the trace for the I/O operations during the compilation of the program is performed.

Trace the SV C instructions during the execution of the program. 1f SVCTRACE(C) is speci-
fied, the trace for the SV C instructions during the compilation of the program is performed.

1. Multiple/JOB statements may be used if desired.

2. TheDUMP, IOTRACE and SVCTRACE options are ignored when used with /LOAD ASMLG, /LOAD
COBLG, or /[LOAD PLILG. They can be used with/LOAD ASM, /LOAD COBOL, /LOAD PLI, and
the other OS-mode processors that do not invoke the OS-mode |oader directly.

Chapter 8. Processors - Assembler - ASM 335

Parameters: Go Step - ASM
Parameters can be passed to the GO step by specifying a"/PARM xxx" statement at the beginning of the job.
XXX is the parameter desired.
SV C instructions and 1/0 operations can be traced during execution of the program. Thisis done by specify-
ing SVCTRACE and IOTRACE respectively on the /JOB statement. The DUMP option can be specified on

the /JOB statement to produce a storage dump, in some cases, if the job abnormally terminates. (Refer to the
description of /JOB statement above.)

TitleLines- ASM

Block letter titles (maximum 2 lines) can be printed on separator pages preceding the program listing if the
jobisrunon batch. Thisisdone by specifying a"=TITLE xxx" statement (for thefirst title line) and a
"=TITLE2 xxx" statement (for the second title line) after the /LOAD statement. xxx isthetitlelineandis
from 1 to 10 charactersin length.

References- ASM

IBM Systenv370 Principles of Operation (GA22-7000)

OS/VS Assembler Language (GC33-4010)

OS/VS Assembler Programmer's Guide (GC33-4021)

09V MVS Data Management Services Guide (GC26-3875)
09V MVS Data Management Macro Instructions (GC26-3873)

OS2 MVS Supervisor Services and Macro Instructions (GC28-0683)

Examples- ASM

1. Anassembler job with options to be used by the assembler and loader. /FILE statements for GO step
(execution time) ddnames are also defined.

336 Assembler - ASM - MUSIC/SP User's Reference Guide

/ FI LE GO. CARDI N RDR

/ FI LE GO. PRI NTER PRT

/ LOAD ASM

/JOB MAP

/ OPT LI ST, XREF

VS Assenbl er source program 1

| OPT

VS Assenbl er source program 2

Assenbl er or COBOL object nodul e(s), if any
/| DATA

Dat a

A VS Assembler job that reads data from SY SIN (data following /DATA), liststhem on SYSPRINT

(printed output), and writes them on FILEOL (atemporary UDSfile). When end-of-file is encountered
on SY SIN, the disk data set FILEO1 is rewound, and the card images on this data set are read back and

listed.
/ FI LE FI LEO1 UDS(&&TEMP) NREC(100)
/ LOAD ASM
TEST1 START 0
SAVE (14,12),,* SAVE REG STERS
BALR 12,0 | NI TI ALI ZE BASE REG STER
USING *, 12 TELL ASM TO USE I T
LR 11, 13
LA 13, SAVREG
ST 11, 4(0, 13)
ST 13, 8(0, 11)
OPEN (CARD, (I NPUT), PRI NT, (QUTPUT)) OPEN SYSI N +
* SYSPRI NT
OPEN (DI SK, (OQUTPUT)) OPEN FI LEO1
LOOP1 GET CARD, WORK READ A CARD
PUT PRI NT, WORK LISTIT
PUT DI SK, WORK WRI TE I T TO DI SK
B LOOP1 DO I T AGAIN
CDEND CLOSE (CARD,, DI SK, REREAD) CLOSE SYSI N, CLOSE AND
* REW ND DI SK FI LE
WO ' RECORDS FROM DI SK FI LE' SEND MESSAGE
OPEN (DI SKIN, (I NPUT)) RE-OPEN DI SK FI LE FOR | NPUT
LOOP2 GET DI SKI N, WORK READ RECORD FROM DI SK
PUT PRI NT, WORK LI ST RECORD
B LOOP2 DO I T AGAIN
DSKEND CLOSE (PRINT,,DISKIN) CLOSE FILES
L 13, 4(0, 13) RETRI EVE SAVED REG 13
RETURN (14,12), T RESTORE REGS AND QUI T
SAVREG DC 18F' 0O’ REG STER SAVE AREA
VORK DS 80C WORK AREA

Chapter 8. Processors - Assembler - ASM

337

CARD DCB

PRI NT DCB

DI SK DCB

DI SKIN DCB

END
/ DATA
DATA CARD 1
DATA CARD 2
DATA CARD 3

DDNAVE=SYSI N, MACRF=(GM) , DSORG=PS,

LRECL=80, BLKSI ZE=80, RECFM=F, EODAD=CDEND
DDNAVE=SYSPRI NT, MACRF=(PM) , DSORG=PS,
LRECL=80, BLKSI ZE=80, RECFM=F

DDNAVE=FI LEO1, MACRF=(PM) , DSORG=PS,
LRECL=80, BLKSI ZE=480, RECFM=FB

DDNAVE=FI LEO1, MACRF=(GM) , DSORG=PS,
LRECL=80, BLKSI ZE=480, RECFM=FB, EODAD=DSKEND

338 Assembler - ASM - MUSIC/SP User's Reference Guide

Assembler (Loader) - ASMLG

ASMLG (VS Assembler Load and Go) is the name used to access the loader. The/LOAD ASMLG state-
ment informs MUSIC that the lines following consist exclusively of abject modules created by VS Assem-
bler and/or ANS COBOL. (This statement isfunctionally identical to the/LOAD COBLG statement.)
Object modules will load faster if this statement is used instead of /LOAD ASM.

After loading is complete, the program is executed.
Usage- ASMLG

This loader isinvoked by the use of the/LOAD ASMLG statement. This statement can be followed by a
/OPT SY SIN statement specifying the input unit number and by a/JOB statement specifying parameters for
the loading step.

Parameters- ASMLG

/JOB {MAP }{, NOGO {, LET}{, NOPRI NT}{, NOSEARCH} {, FI LRFM
{ FULMAP}

Parameters can be separated by one or more commas or blanks.
MAP List a storage map of the loaded program.
FULMAP List an extended storage map of the loaded program.
NOGO Do not load or execute the program.

LET Allow the program to be executed even if unresolved externa references (such as missing
subroutines) are found.

NOPRINT Informative and diagnostic messages are not to be produced.

NOSEARCH Do not search the subroutine library for unresolved routines.

FILRFM SuppliesaRECFM V if thefileisV/VC.

Notes:

1. Multiple/JOB statements may be used if desired.

2. TheDEBUG, CDUMP, DUMP, IOTRACE and SVCTRACE parameters are ignored when used with

/LOAD ASMLG, /LOAD COBLG, or /[LOAD PLILG. They can be used with/LOAD ASM, /LOAD
COBOL, /LOAD PLI, and the processors that do not invoke the loader directly.

Chapter 8. Processors - Assembler (Loader) - ASMLG 339

/ OPT {SYSI N=n}

SYSIN=n Specifies that input isto be taken from the MUSIC unit number n. A /FILE statement defin-
ing MUSIC 1/O unit n as the appropriate input file must appear at the beginning of the job.
When an end-of-file or a/DATA statement is encountered on thisinput data set, further
input is taken from the normal input stream.

Example- ASMLG

/ LOAD ASMLG

/JOB NAP, LET

/1 NCLUDE OBJ1 (VS Assenbl er object nodul e)
/ DATA

/1 NCLUDE DATA1l (user's data)

340 Assembler (Loader) - ASMLG - MUSIC/SP User's Reference Guide

IBM BASIC Environment - IBMBASIC

IBM BASIC (Program Product 5665-948) is an interactive development language. Interactive processing
allows you to enter programs and data from a workstation for processing and enables you to verify results.
The interactive mode a so supports immediate execution of BASIC commands. Y our installation may
choose not to have this environment available for your use.

Usage- IBMBASIC

Issue the command IBMBASIC to start IBM BASIC. This puts you into the full screen environment. To
exit issue the QUIT command.

Notes:

1. IBM BASICrunsin a3270 type environment in full screen mode.

2. ThefileIBMBASIC.PROFILE isused at start up time to control the BASIC environment. The user can
edit thisfile and save amodified copy under their own userid. Refer to the IBM BASC Programming
Guide for details.

3. The SYSTEM command can be used to issue any MUSIC/SP command. For example

CALL SYSTEM ' nusi c conmand' oOr
SYSTEM ' nusi ¢ command’

can be used from a BASIC program or in immediate mode.

4. The QUERY command is not supported. The MUSIC/SP LIBRARY command can be used in its place.
Use the SY STEM command to issue the MUSIC/SP LIBRARY command. For example

SYSTEM ' LI BRARY *TEST*. BASI C
lists all files that contain TEST in the file name that are BASIC source.

5. SinceBM BASIC programs can invoke facilities of the MV S operating system, some of these are not
available on MUSIC/SP. Refer to the IBM BAS C/MVS Systems Services manua for more details.

6. ThelBM BASIC/GDDM interfaceis not supported under MUSIC/SP.
7. ThelBM BASIC/SQL interface is not supported under MUSIC/SP.

8. Filenamesare limited to 8 charactersif not enclosed in quotes. BASIC automatically appends a quali-
fier to the end of file names not enclosed in quotes. The BASIC qualifiers are:

.BASDATA datafiles,

.BASIC sourcefiles,
.BASLOG log files,
.BASOBJ workspace files,
.PROFILE profilefiles,
LIST list files,

.OBJ object files.

Chapter 8. Processors - IBM BASIC Environment - IBMBASIC 341

10.

11.

342

A quoted file name is not automatically qualified.

So, aMUSIC/SP file name can be used

if the file name is enclosed in quotes.

The following two statements are examples of the use of

file names that would be qualified by BASIC.

BASIC would load MYFILE.BASIC and would open MYFILE.BASDATA
respectively.

| oad MYFI LE
open #1: ' MYFILE , QUTPUT, NATI VE, SEQUENTI AL, FI XED

The following two statements are examples of the use of file names that would be used asis by BASIC.
BASIC would load MY FILE and would open MY FILE.OUTPUT respectively.

| oad ' MYFI LE
open #1: "' MYFILE. OQUTPUT' ", OQUTPUT, NATI VE, SEQUENTI AL, FI XED

The /FILE definition can be used if the entered file name is the same asa DDNAME that has been setup
on a/FILE statement. To define your /FILE definitions to the BASIC environment, make a copy of the
file $IBB:IBMBASIC and save it on your userid. Edit it and add your /FILE statements and save it.

BASIC automatically creates fixed compressed (FC) files on MUSIC/SP for the following types of files:
BASDATA, BASIC, BASOBJ, PROFILE, and OBJ with arecord length of 80; BASLOG, LIST witha
record length of 133; and for al other FIXED format files with arecord length of 80.

BASIC creates variable compressed (VC) files when you use the VARIABLE option on the BASIC
OPEN statement.

Y ou must create afile outside of BASIC if you need to create afile that is different from the defaults.
Y ou can use the following system call to create afile

syst em ' CREATE. BASFI LE N(MYTEST) LRECL(250) NEW REPL)'
This call createsthe file MY TEST with arecord length of 250.

The program CREATE.BASFILE isthe IBM BASIC version of the MUSIC/SP /FILE statement. This
allows you to specify any /FILE statement options on the system call to CREATE.BASFILE. After you
have defined your file using the system call, you can access thisfile in your BASIC program viaitsfile
name.

Alternatively, you can use the /FILE statement to define afile to be used within the BASIC environ-
ment. Make a copy of the file $IBB:IBMBASIC and save it on your userid. Edit it and add your /FILE
statements and saveit.

A direct access file must be created initially with dummy records. The program CREATE.DIRECT can
be used to create your direct accessfile. CREATE.DIRECT prompts you for the file name, number of
records, and record size. Then it creates the file and fills it with dummy records. Then the direct access
file can be used from within your BASIC program. Y ou can use the following system call to create a
direct access file from within BASIC

system ' CREATE. DI RECT'
The execution of OBJECT files created by IBM BASIC is supported when running within or outside of
the BASIC environment. Use the COMPILE command to compile your BASIC program and store the

object deck in afile. Usethe RUN command to run the object deck within the IBM BASIC environ-
ment. For example

IBM BASIC Environment - IBMBASIC - MUSIC/SP User's Reference Guide

RUN MYPROG (OBJ

runs MY PROG from object module. Y ou can execute the OBJECT file by using the MUSIC/SP link-
age editor outside of the IBM BASIC environment.

The performance of using compiled object files within the Interactive BASIC environment is slow.
Running from aload module provides better performance.

IBM BASIC programsasload modules

An IBM BASIC program can be run outside of the IBM BASIC environment as aload module. The follow-
ing example shows the steps to create and run aload module. 1n this example, the object module for the
BASIC program residesin the file MYBASIC.OBJ.

1. Link editing the object module MYBASIC.OBJto create aload module

/ FI LE LMOD N(MYBASI C. LMOD) NEW REPL)
/ LOAD LKED
/ JOB NOGO, MODE=0S
/1 NC MYBASI C. OBJ
/1 NC $1 BB: | BVBASI C. OBJ
/1 NC $1 BB: MBLI OVRT. OBJ
ENTRY BLI OVRT
NAVE MYBASI C

2. Executing the programn MYBASIC

/ SYS REG=400

/ FI LE LMOD N(MYBASI C. LMOD)
/ LOAD XMON

MYBASI C

|IBM BASIC Interlanguage Communications

IBM BASIC programs can invoke routines written in Assembler, COBOL, FORTRAN, and PLI. The
following example calls the MUSIC/SP subroutine TSUSER. As defined by IBM BASIC interlanguage
communications, you must call FLINK with the FORTRAN routine name first before you call the
FORTRAN routine.

100 I NTEGER N

105 CALL FLINK (' TSUSER)

110 CALL FORTRAN (' TSUSER , 1, N)

120 PRI NT ' The val ue returned from TSUSER was ', N
130 END

There are afew things to keep in mind when you are using VS FORTRAN subroutines with your BASIC
program.

1. BASIC character variables have two lengths, the current length and the maximum length. The current
length must be assigned to the variable before the variable is used in the calling sequence for the
FORTRAN routine. This can be done by assigning spaces to the whole length of the variable. For
example

Chapter 8. Processors - IBM BASIC Environment - IBMBASIC 343

DI M A$* 8

A$ = -

CALL FLINK (' MYFORT')

CALL FORTRAN (' MYFORT' , A$)

2. If you are doing any 1/0O within your program and you call a FORTRAN routine, you must define
FTO5F001 and FTO6F001 to IBMBASIC before you start. Make a copy of the file $iIBB:IBMBASIC
and save it on your userid. Edit it and add the following two /FILE statements and save it.

/ FI LE FTO5F001 RDR
/ FI LE FTO6F001 PRT

On MUSIC/SP, when you run a program, aload module is created and executed. To use
routines in other languages, you must include these object decksin the link edit that BASIC
does behind the scenes. The program that does these steps for you is
$IBB:@RUNTIME.LOADLIB. Y ou should make a copy of thisfile on your userid and add
/INC statements for your object modules at link edit time.

Refer to the IBM BAS C Programming Guide for further details on interlanguage communi-
cations.

|IBM BASIC VSAM Support

IBM BASIC supports VSAM under MUSIC/SP. You must first create your VSAM file using the
MUSIC/SP utility program AMS. See Chapter 10 of this manual for further detailson AMS. In order to use
VSAM, you must start BASIC with a/FILE statement for the VSAM file. Make a copy of thefile
$IBB:IBMBASIC and save it on your userid. Edit it and add a/FILE statement for the VSAM file. Refer to
the IBM BAS C Programming Guide for further details on how to use VSAM with IBM BASIC.

References- IBMBASIC

Bisfor BASC (GS26-4102)

IBM BAS C General Information (GC26-4023)

IBM BAS C Language Reference Summary (SX26-3736)
IBM BAS C Language Reference (GS26-4026)

IBM BAS C Programming Guide (SC26-4027)

IBM BAS C/MVS Systems Services (SC26-4106)

344 |IBM BASIC Environment - IBMBASIC - MUSIC/SP User's Reference Guide

BASIC Compiler - VSBASIC

The VS BASIC compiler isan optional IBM Program Product (5748-XX1) that may be available for your
use. VSBASIC programs may be entered and modified using the usual MUSIC techniques or you may use
the MUSIC VS BASIC Editor. Thiseditor is designed specifically to handle VS BASIC programs. The
writeup for this special editor can be found immediately following this writeup about the VS BASIC Compi-
ler. The standard MUSIC editor may also be used for entering and modifying VS BASIC programs and data.

VSBASIC Highlights

» Arithmetic facilities, in short and long precision, enabling the user to assign values and to perform arith-
metic operations on variables and arrays.

» Character facilities, enabling the user to define character variables of different lengths, to concatenate
groups of character dataitems, and to locate and extract substrings within character strings.

» Array facilities, enabling the user to define one and two dimensional character and arithmetic arrays, to
re-dimension arrays, to assign asingle vaueto all elements of an array, and to sort arrays into ascending
or descending order.

» Stream-oriented file facilities, enabling the user to read and write files, and to reposition files to their
beginning or their end.

* Record-oriented input/output functions for both sequential and direct access files.

e Output formatting capabilities, enabling the user to position dataitems on a print line, and offering
commercia formats with comma insertions, asterisk protection, and floating plus, minus, and dollar
signs.

» A comprehensive library of built-in mathematical and character functions, performing numerous arith-
metic, character-string, and conversion operations.

» User-defined functions, enabling the user to define special-purpose functions not available as built-in
functions. Such functions can be defined in one statement or over many statements, and can specify
multiple, single, or no arguments.

* Program segmentation statements, enabling the user to sequentially execute a number of separate
BASIC programsto fit special needs, and to pass information between these programs.

* Internal constants, supplying commonly-used arithmetic values such as pi and the square root of 2, and
providing such metric conversions as inches to centimeters and gallons to liters.

L anguage Specifications- VSBASIC

The language specifications may be found in the IBM publication SYSTEM/370 VS BAS C Language
(GC28-8303).

Chapter 8. Processors - BASIC Compiler - VSBASIC 345

Usage Notes- VSBASIC

« TheDELETEFILE, KEY, NOKEY, DUPKEY, NOREC, and DUPREC statements for record-oriented
input/output are not supported. This means that they may be coded but will have no effect. REWRITE
isonly supported for direct files.

» Direct files, those using the REC clause, must be files with arecord format of FIXED (F). Note that the
system default is FIXED COMPRESSED (FC). FIXED record format files may be created using /FILE
statements. For example,

/EILE 1 NAME(XXX) NEW LRECL(100) RECFM F) SPACE(50) NORLSE
/ LOAD | EFBR

will create a FIXED format file called XXX with arecord length of 100 and space of 50K.

* Record-oriented files must be allocated prior to running the VS BASIC program.

* MUSIC checksthefile's record format to determine which type of accessisvalid. If itis FIXED, the
fileis assumed to be direct (RRDS), and both sequential and direct access are allowed. For fileswith

any other record formats, or UDSfiles, the fileis assumed to be sequential (ESDS).

» After aFIXED file has been accessed by VS BASIC, the MUSIC /LIST command, and other related
commands, may get confused as to the number of linesin the file, since they have not been processed
sequentially. Editing thefile and saving it back will reset the end of file pointers and cause this problem
to disappear.

» TheMUSIC subroutine library is not available to VS BASIC programs, and VS BASIC cannot commu-
nicate with subroutines written in other languages.

» The EOF clause on the PUT statement is not supported for files (ddnames) SY SIN, SY SPUNCH,
SYSPRINT and CONSOLE, unlessthey are specified on /FILE statements at the beginning of the job.

* Whenthe CHAIN statement is used, the file name is taken to be the name of afile. If the file name of
"*" js given then the chained program is assumed to be the next one in sequence in the input stream.

* Itispossibleto chain to programs written in other languages. To do this, the user must use a dightly
modified version of the CHAIN command as follows:

CHAI N ' %ane paraneters’

If the first character of the namefield is specified asa"%" sign, the program contained in the following
file nameis executed. Any characters following the file name are passed to the program as parameters.

Examples:
250 CHAIN ' %I LE1' execute the program in FILELl
100 CHAIN ' %°ROG X286' execute the program in PROG. The string 'X286' is passed as a

parameter.

* Theupward pointing arrow on TTY terminalsistreated asif it were the same as the vertical bar (]) char-
acter. Therefore use the symbol ** for exponentiationin VS BASIC.

» Toconserve main storage, REMARK statements are not passed to the compiler, unless the REM
compiler option is specified. Therefore, if REMARK statements are referenced by other statements

346 BASIC Compiler - VSBASIC - MUSIC/SP User's Reference Guide

such as GOTO, the REM option must be used.

* Source statements are limited to 80 columnsin length. See the following discussion of continuation
statements for one method of getting around this limitation.

Continuation Statements- VSBASIC

Since VS BASIC source statements on MUSIC are limited to 80 columns, it is occasionally necessary to
continue a statement onto another line. Thisis done by using aline number of the form n.m on the continua-
tion lines. nisthe number of the BASIC statement and m (1 or more) is the continuation line number. A
maximum of two continuation lines may be used.

The compiler concatenates the continuation text to the end of the previous line (at column 80). The continua:
tion text is considered to start immediately after the n.mline number if the following character is non-blank,
or one character after the n.m otherwise.

Examples:

120 LET X = A+ B
120.10 + C + D
120.20 + E + F

200 I NPUT A B, C,
200.1 D, E F

Main Storage Requirements- VSBASIC

The amount of main storage available for the user's program (object code plus array storage) depends upon
the amount of buffer space being used and the space required for storing the source statements, but is usually
about 25K (K=1024 bytes) in a 108K user region. This limitsthe size of each VS BASIC program to about
200 to 250 statements. However, severa programs may be chained together by use of the CHAIN statement.
Alternately, use a"/SY S REGION=nnn" statement to ask for alarger user region. Also, if the VSBASIC
compiler and library are kept resident in the system link pack areas (thisis done by your MUSIC instalation,
not by you), then the space available is increased by about 50K.

Control Statement Set Up - VSBASIC

The MUSIC VS BASIC Editor isavailable to assist in typing in, making corrections and running aBASIC
program. Thisfacility is described in more detail in the separate writeup that follows this one. Alternately a
VS BASIC program can be entered and run in amethod similar to the other MUSIC processors as follows:

[/ FILE statenments (if necessary)

/ LOAD VSBASI C

/ OPT paraneters (see bel ow).

... VS BASI C source program or object nodule.

|/ DATA
...data

Chapter 8. Processors - BASIC Compiler - VSBASIC 347

Notes:
1. Onthe/LOAD statement, VSBASIC may be abbreviated as VSBAS.
2. Any number of /OPT statements may be used.

3. A parameter specified on a/OPT statement remains in effect until specifically changed by alater /OPT
statement.

4. Morethan one source or object program may be used. They are compiled and executed separately, one
after another. Each must be separated from the preceding program by one or more /OPT statements.
For this purpose it is permissible to use a/OPT statement which does not contain any parameters. A
program may use the CHAIN statement to pass information to the next program.

5. If morethan one program is present, only the last oneis able to read from the input stream (data follow-
ing the /DATA statement). However, DATA statements can be used within each source program.

6. Following the/LOAD VSBASIC statement, any control line (other than /OPT, /JOB or /DATA)
containing aslash in column 1 isignored. A /JOB statement is treated exactly like /OPT.

7. Theuser may type/EOF to indicate end of file on a conversational read.
VSBASIC Object Modules

The VS BASIC compiler can produce an object modul e representing the BASIC program, and this object
module can later be used in place of the source program. However, this module is not a standard object
module, and cannot be processed by /LOAD LOADER. For most VS BASIC programs, there is no advan-
tage in using an object module, since the time to compile the source is usualy less than the time to load the
object module.

VSBASIC Compiler Parameters- /OPT Statement

Parameters on the /OPT control statement are used to specify compiler options, input/output options, and
other information. Parameters must be separated by commas and must not contain embedded blanks. One
blank must be present between /OPT and the first parameter.

LIST

NOLIST Specifies whether or not alisting of the source program isto be printed. Default is NOLIST
for workstations and LIST for batch.

PRINT

NOPRINT NOPRINT suppresses the compile and execution time messages.

GO

NOGO NOGO means that the program is to be compiled but not executed. The default is GO.

SPREC

LPREC SPREC specifies that the program isto use short precision for arithmetic cal culations.

LPREC specifieslong precision. The default is SPREC. SPREC and LPREC are ignored if
specified for an object module, since the option in effect at the time the program was
compiled is aways used.

348 BASIC Compiler - VSBASIC - MUSIC/SP User's Reference Guide

SYSIN=n This specifies the unit number n from which additional compiler input isto beread. The
additional input may contain source, object, and control statements. When end of file or a
/IDATA statement is reached on the specified unit, reading continues with the lines following
the /OPT statement containing the SY SIN=n parameter.

INPUT=n Specifies the input unit number to be used for reads resulting from execution of INPUT
statements in the BASIC program. Unit 9 (conversational input) is assumed if this parameter
isnot used.

REM

NOREM To conserve main storage, REMARK statements are usually not passed to the compiler. Use
the REM option if you wish REMARK statements to be processed. If remark statements are
referenced by other statements, (such as GOTO), then you must use the REM option. The
default is NOREM.

BUF=n Specifies the number of bytesto be reserved for data set buffers. The default is 4096 bytes.
If severa data sets are used, a value greater than 4096 may result in more efficient input/out-
put. However, specifying avalue greater than 4096 decreases the space available for object
code and arrays. If the BUF parameter is used, it should appear on the first /OPT statement.

BUFF=N Same as BUF=n.

NOPRINT This parameter causes some information messages to be suppressed, for example the
messages giving compile and execution times.

LINESIZE=n Specifiesthe maximum line length to be used for workstation display during execution of
the BASIC program. The default is 120, and the allowable range is 72 to 132.

DECK

NODECK Specifies whether or not an abject module isto be produced. The default is NODECK. If
DECK is specified, the object module will be written to SY SPUNCH (see the description of
ddnames below).

STORE

NOSTORE Same as DECK and NODECK.

Examples of /OPT statements:

/ OPT LPREC, LI ST

/ OPT NOPRI NT, LI NESI ZE=100, BUF=8192

/ OPT NOGO

Control of Input/Output Files- VSBASIC

User filesreferenced by VS BASIC input/output statements are identified by afile name specified on the
BASIC statement. Thisfile nameis associated with aMUSIC User Data Set or file in the following way:

1. VSBASICwill first attempt to match the file name with the ddnames defined on /FILE statements at
the beginning of thejob. A file name referenced thisway must be 1 to 8 characterslong.

2. If thefile name cannot be matched, VS BASIC will try to resolveit by looking for afile with the
specified file name in the Save Library. File names referenced this way can be 1 to 17 charactersin

Chapter 8. Processors - BASIC Compiler - VSBASIC 349

length.

3. For stream-oriented files, if the file cannot be found in the Save Library but isto be opened for output, a
new file will be created with the specified file name.

Pre-Defined DDNAMES-VSBASIC

Default Maximum Minimum
ddname LRECL LRECL LRECL MUSIC I/O
SYSIN 80 80 20 input stream (data following /DATA)
SYSPRINT 133 133 20 printed output
SYSPUNCH 80 80 20 holding file (workstation jobs)
or punched output (batch)
CONSOLE 80 80 20 conversational input (workstation jobs)

or input stream (batch)

The pre-defined ddnames can be overridden by specifying /FILE statements with the corresponding ddnames
at the beginning of the job.

Examplesof VSBASIC Programs

Example 1

*CGo

[ist vsbsn?

*In progress

/ LOAD VSBASI C

10 REM PROGRAM TO CALCULATE COVPQOUND | NTEREST

20 PRINT '

30 PRINT ' COVPOUND | NTEREST PROGRAM . .
40 PRI NT '

50 PRINT ' ENTER | NI TI AL AMOUNT'

60 | NPUT P

70 PRINT ' ENTER | NTEREST RATE (E. G 4.5)'
80 I NPUT |

90 PRI NT ' ENTER NO. OF PERI ODS PER YEAR
100 I NPUT N

110 PRI NT ' ENTER NO OF YEARS

120 INPUT Y

130 FOR J=1 TO N*Y
140 P=P+P*1/(100*N)
150 NEXT J

160 PRINT ' FINAL AMOUNT IS, P
170 GO TO 50

180 END

*End

*Co

vsbsn?

*In progress

VS BASI C

COWPI LE = 0.12 SEC

350 BASIC Compiler - VSBASIC - MUSIC/SP User's Reference Guide

COVMPOUND | NTEREST PROGRAM . .

ENTER | NI TI AL AMOUNT

2

200. 00

ENTER | NTEREST RATE (E. G 4.5)
?

9.5

ENTER NO. OF PERI ODS PER YEAR
2

4

ENTER NO. OF YEARS

?

3

FI NAL AMOUNT | S 265. 0674

ENTER | NI TI AL AMOUNT
?

|/ eof

** END OF FILE ON UNI T 9
EXEC = 0.17 SEC

*End

* 0o

Chapter 8. Processors - BASIC Compiler - VSBASIC 351

Example 2

*Co

[ist vsbsnB

*In progress

/ FI LE FI LEO1 UDS(&&TEWMP) NREC(100)

/ LOAD VSBASI C

10 REM TH S PROGRAM READS NUMBERS FROM UNI'T 9
20 REM WRI TES THEM TO THE TEMPORARY UDS FI LEO1
30 REM THEN READS THEM BACK AND PRI NTS THEM
40 INPUT A B, C

50 | F A=999 GO TO 80

60 PUT ' FILEO1' ,A B, c

70 GO TO 40

80 CLCSE ' FI LEOY'

90 CGET 'FILEO1',A B, C, ECF 120

100 PRINT A B, C

110 GO TO 90

120 END

*End

*Co

vsbsnB

*In progress

VS BASI C

COWPI LE = 0.12 SEC

?

1.2, 3.4, 5.6

?

10, - 20, 30

?
999,0,0
1.2 3.4 5.6
10 -20 30
EXEC = 0.16 SEC
*End
*CGo

352 BASIC Compiler - VSBASIC - MUSIC/SP User's Reference Guide

Example 3

*CGo
list vsbsnb
*In progress
/ LOAD VSBASI C
10 REM TH S PROGRAM READS | N NUMBERS FROM A FI LE
20 REM AND DI SPLAYS THEM ON THE WORKSTATI ON.
30 PRINT ' ENTER FI LE NAME
40 | NPUT A$
50 CET A$, X, EOF 80
60 PRI NT X
70 GOTO 50
80 END
*End
*CGo
vsbsnb
*In progress
VS BASI C
COWPI LE = 0.12 SEC
ENTER SAVE FI LE NAME
dat 77
10
20
30
EXEC = 0.13 SEC
*End
*Co

Example 4. Copying one sequential file to another.

10 DI M A$80

20 READ FILE 'FILE1', A$, EOF 50
30 WRITE FILE 'FILE2', A$

40 GO TO 20

50 PRINT ' END OF COPY'

60 END

Example 5. Printing selected recordsfrom a direct file.

10 DI M A$80

20 PRINT ' ENTER NUMBER COF RECORD TO PRI NT'
30 I NPUT |

40 IF 1=0 GO TO 80

50 READ FI LE ' DATAFI LE', REC=I, A$

60 PRI NT A$

70 GO TO 20

80 END

VSBASIC Editor

ThisVS BASIC Editor provides a convenient method of entering, modifying and running programs written
inthe VSBASIC Language. It realizesthe fact that all BASIC statements have unique line numbers
assigned in numerical order.

Chapter 8. Processors - BASIC Compiler - VSBASIC 353

This editor is a standard feature of the MUSIC system support for the optional IBM VS BASIC compiler.

The norma MUSIC editor (the/EDIT command) may also be used for entering and modifying VS BASIC
programs and datafiles. The mgjor advantages of the VS BASIC Editor arethat it is statement number
oriented and can renumber BASIC programs.

BASIC statements may be entered in any order, since the editor will automatically arrange them in order of
their BASIC line number. Should two or more statements have the same line number, the one entered last
will betaken. An entire statement entered previously may be deleted simply by typing in just the BASIC
statement number with nothing following it.

Special commands are provided for list, delete, change, save, execute, and renumber operations. These
commands refer to lines of the file by their line numbers. Line numbers are of the following form:

nnnnn
or nnNNn.mmm

where nnnnn isthe 1 to 5-digit BASIC statement number, and mmm s an optional 1 to 3-digit continuation

statement number. Blanks may optionally be used preceding or following the line number, but the line

number itself must not contain embedded blanks.

Typesof Input Lines- VSBASIC Editor

The following types of input lines are accepted:

1. Control statementswith/in column 1:
These are accepted only at the beginning of the file. They are automatically assigned line numbers 0.10,
0.20, 0.30, etc. and may be referenced by these line numbers for purposes of replacement, listing, inser-
tion, etc. If no/ statements are present, the line'/LOAD VSBASIC' is automatically supplied as the first
line of thefile.

2. BASIC source statements:

nnnnn text

or nnnnn.mmm text

3. Speciad commands, optionally identified by $in column 1:

These commands (described below) enable the user to list, change or delete lines of the file, renumber
the BASIC program, turn statement number prompting on or off, save and execute the updated file, and
perform various other operations. The commands consist of acommand keyword followed by alist of
operands. A blank isoptional following the command keyword, except for the SAVE, EXEC and FILE
commands, where ablank is required. Normally the operands are separated by commas, but one or
more blanks (zero or more in the case of CHANGE) may be used instead of a comma.

A command may be identified as a command by typing adollar sign ($) before the command name, for

example: $CHANGE, $SAVE. The $ character is optional except when line number prompting is
active.

354 BASIC Compiler - VSBASIC - MUSIC/SP User's Reference Guide

Invoking the VS BASI C Editor
The VS BASIC Editor isinvoked by the MUSIC command /BASIC, which is used as follows:

/BASIC XXXXXX
where xoxxx is the name of an existing file which isto be edited. If the name is omitted, then the contents of
the existing /INPUT filewill be used. When the name NEW or NULFIL is used, the edit beginswith an
empty file; thisis useful when anew program isto be typed in.
The file xxxxxx to be edited must contain only MUSIC control statements (at the beginning of the file) and
the BASIC source statements for asingle BASIC program. The file must not contain a/DATA statement

followed by lines of data, but the BASIC DATA statement may be used. Files which do not conform to
these restrictions should be edited using the MUSIC Editor.

VSBASIC Editor Commands

CHANGE n, /stringl/string2/
C

This command changes stringl to string2 in the specified linen. The new lineisdisplayed. LAST may be
specified instead of aline number, meaning the last line of the file. If the line number is omitted, the
changeis applied to the last line typed in by the user. string2 may be null (that is, of zero length) but not
stringl. Normally aslash ("/") is used for the string delimiter, but any character other than a digit, |etter
(A-Z), blank, comma or period may be used instead. The third delimiter may be omitted.

DELETE {ni1}{, n2}
DEL

Thiscommand issimilar to LIST, except that the specified line or lines are deleted from the file. A line
may also be deleted by simply typing its line number.

END

This command writes the updated file to unit 10 and terminates the editor. The user must then type a
'ISAVE name,SV' or '/SV name' command in order to save thefile.

EXEC {nane}
EX

This command terminates the editor, saves the updated file under the specified name (using a scheduled
"/SV name" command), and then executes the BASIC program (using a scheduled "/EXEC name"

Chapter 8. Processors - BASIC Compiler - VSBASIC 355

command). If no nameis specified on the command, then the original file nameisused. If thereisapossi-
bility that the scheduled /SV command will not be successful, this command should not be used. (If the
automatic SAVE does not work, then the changed version of the file will belost.)

FILE {nane}

This command saves the updated file, using the specified file name or the name of the original file if no
name is specified on the command. The editor is then terminated. |f the name NULFIL or NEW was used
on the/BASIC command, the user will be prompted to enter afile name.

LI ST {nl1}{, n2}
L

The LIST command displays the specified line or range of lines, or the entire file if no line numbers are
specified. LAST may be specified instead of aline number, and means the last line of thefile.

PRI NT {ni1}{, n2}
P

The PRINT command isthe same as LIST.

PROWVPT {n,m }
PR {OFF }
{x }
{ NOCCHAR}

The PROMPT command is used either to request statement number prompting or to specify a prompt char-
acter.

When n and m are used, the editor begins issuing statement number prompts, using n as the starting number
and m asthe increment. Theincrement mis optional, defaulting to the previous m, or to 10 on the first
$PROMPT command. If OFF is specified, statement number prompting is terminated. nand m may be
from 1 to 99999. Initially prompting is off.

When the PROMPT command is used without any operand, it istaken as"PROMPT n" where nisthe
smallest multiple of the current increment which exceeds the largest line number in the file. This automati-
cally alowslinesto be added to the end of the file.

When statement number prompting isin effect, the user may type the text of the statement, a$ command,
or aline beginning with an overriding statement number.

When x is specified on the command, it is used as a conversational read prompt when statement number

prompting is not done. x must be a single character other than aletter or digit. The NOCHAR option
removes the prompt character. A conversational read prompt is useful for workstations whose keyboards

356 BASIC Compiler - VSBASIC - MUSIC/SP User's Reference Guide

do not lock.

QT

This command terminates the editor without saving the file.

RENUM a, b, c, d
REN

This command renumbers the BASIC program. The renumbering process includes scanning for statement
number references and altering them appropriately. It isassumed that the program conformsto the
language and syntax rules of VS BASIC. It isrecommended that the program be compiled (in order to
detect and correct language errors) before being renumbered. The parameters are:

a Starting new line number to be used. The default is 10.
b The statement number increment to be used. The default is 10.
c Theold statement number of thefirst line of the range of lines to be renumbered. If this parameter is
omitted, renumbering begins at the beginning of thefile.
d Theold statement number of the last line of the range of lines to be renumbered. If this parameter is
omitted, renumbering continues until the end of thefile.

RUN
RU

This command is similar to EXEC, except that the MUSIC input file (/INPUT) is automatically used. Thus
the new file replaces the /INPUT file and then the BASIC program is executed from the /INPUT file.

SAVE {nane}
sV

The SAVE command causes the current updated version of the file being edited to replace the file that has
the specified file name, without terminating the editor. Thisis similar to the FILE command except that the
edit session will not be terminated. 1f no name is specified on the command, then the replacement will be
done on the origina file being edited. The SAVE command cannot be used to store into the /INPUT file.

Examples of VS BASIC Editor Commands
LI ST 10, 300
LI ST 5, 20. 2

L LAST

Chapter 8. Processors - BASIC Compiler - VSBASIC 357

DEL50, 50. 1
CHANCE 25, / X=1. 9/ X=0. 19/
C25#ABCHDE#

C/ LTE/ LET/

Sample Usage of VS BASIC Editor

The following session illustrates how the VS BASIC Editor may be used to enter aBASIC program, make
changestoit, saveit, and execute it. Linestyped by the user are shown in lower case; lines displayed at the
workstation are shown in upper case.

(Some usersfind that it is more convenient to use the /INPUT file to temporarily hold a copy of the BASIC
program until they have debugged it. This can be done by replacing the /BASIC NUFIL command in the
following by /BASIC and by using aRUN command instead of the EXEC FILEPQ given here.)

/ basi c new

*In progress

BASI C

10 remthis program adds 2 nunbers
20 print '"enter 2 nunbers to be aded
25 input a,b

30 c=a+tb

40 go to 25

50 end

35 print '"the sumis',c

c 20 @Gded@dded' @

20 PRINT ' ENTER 2 NUVBERS TO BE ADDED
renum

RENUMBERED

list

/ LOAD VSBASI C

10 REM THI S PROGRAM ADDS 2 NUMBERS
20 PRINT ' ENTER 2 NUVBERS TO BE ADDED
30 INPUT A B

40 C=A+B

50 PRINT "THE SUMI S, C

60 GO TO 30

70 END

exec filepq

FI LED

VS BASI C

COWILE = 0.12 SEC

ENTER 2 NUMBERS TO BE ADDED

?

1.234, 2.005

THE SUM I S 3.239

?

/ eof

**END OF FILE ON UNI'T 9

EXEC = 0.06 SEC

*End

*Go

358 BASIC Compiler - VSBASIC - MUSIC/SP User's Reference Guide

IBM C/370 Compilers

Programs written in the C language can be compiled and run using one of two IBM C compilers. IBM C/370
compiler (Program Product 5688-040) or the IBM C/370 Compiler Version 2 (5688-187) and IBM C/370
Compiler Version 2 Library (5688-188).

The C processor invokes the compiler, and then the loader (unless /JOB NOGO is specified). After loading,
the program is automatically executed.

Usage - C/370

The C/370 Compiler isinvoked by the use of a/LOAD C370 statement. This processor invokes the C/370
Compiler first, and then the loader, upon successful completion of the compilation process. After loading,
the compiled program is automatically executed using the OSMUSIC interface (unless /JOB NOGO is used
or the compiler return code is 12 or more). The /OPT and /JOB control statements may be used with this
processor. C/370 object modules can optionally be produced and saved, intermixed with source. The aobject
modules are identical with those produced on OS.

Available Unit Numbersand Buffer Space- C/370

Any tape blocksize up to 32760 may be used, provided the user region size (specified on /SYS
REGION=nnn) is large enough.

The user can use 3 UDSfiles. MUSIC 1/0O unit 4 cannot be defined in /FILE statements since it is used for
the compiler modules.

External File Names- C/370

A standard set of external file names (ddnames) is provided, along with default values for logical record
length (LRECL).

Chapter 8. Processors - IBM C/370 Compilers 359

DDNAME LRECL MUSIC1/O

SYSIN 80 input stream (data following /DATA)

SYSPRINT 121 printed output

SYSLIN 80 output to holding file (workstation jobs)
punched output (batch jobs)

SYSTERM 121 printed output

SUBLIB - object modules for C/370 library functions

SYSLIB 80 PDS containing C/370 header files (.H in source)

SYSMSGE - PDS containing C/370 compiler messages

SYSCPRT 133 print output (source listing)

SYSUT1 80 compiler work file

SYSUT2 80 compiler work file

SYSUT3 80 compiler work file

SYSUT4 80 compiler work file

SYSUTS 80 compiler work file

SYSUT6 3200 compiler work file

SYSUT7 3200 compiler work file

SYSUT8 3200 compiler work file

SYSUT9 137 compiler work file

SYSUT10 133 compiler work file

Additional ddnames can be defined by specifying /FILE statements with the corresponding ddnames at the
beginning of the job. (Consult the description of the /FILE statement.)

Note that in some cases, file SY SCPRT must refer to a dataset and not to a workstation or printer. For exam-
ple, when the LIST parameter is specified, C/370 attempts to read the SY SCPRT file. A workstation or
printer cannot be rewound and read, and so the compile step fails.
In order to specify user-defined header files, use the following MUSIC JCL statement:

/ FILE SYSLI B PDS(*. HDR, $I BC: C#3. *. HDR)

End-of-file can be indicated on a conversational read by typing /EOF.
Parameters. Compiler Step - C/370

Compiler options may be specified on a/OPT statement preceding the C/370 source. The options should be
separated by commas, and the last option must be followed by ablank. A /OPT statement may also be used
to indicate the start of a new external procedure. 1f more than one /OPT statement is used, the effect is
cumulative, that is, each option remainsin effect for the rest of the job until reset by alater /OPT statement.

The C/370 "#pragma options statement within the source file may be used in place of a/OPT statement for
some options. Refer to the definition of the #pragma statement in the C/370 documentation for alist of those
options that may be specified. Options on #pragma statements are not cumulative. Note that options speci-
fied on a/OPT statement override #pragma options specified in source.

The default compiler options are listed below. Refer to the IBM C/370 User's Guide (SC09-1264-01) for a
description of the options and their abbreviations.

360 IBM C/370 Compilers - MUSIC/SP User's Reference Guide

Workstation Defaults: Batch Defaults (if different):

NOAGGREGATE

NOALIAS

DECK

NOEXPMAC

NOFLAG

NOGONUM
LANGLVL(EXTENDED)
NOLIST

MARGINS(1,72)

NOOFFSET

NOOPTIMIZE

NOPPONLY

NORENT
SEQUENCE(73,80)
NOSOURCE SOURCE
TARGET()

TERMINAL
NOTEST(SYM,BLOCK LINE)
NOUPCONV

NOXREF

/FILE statements with ddnames of C370.SY SIN, C370.SY SCPRT, and C370.SY SLIN can be defined at the
beginning of the job to inform the compiler where to read the input source program, where to print the
program listing and punch the object module respectively, instead of the default definitions. To provide
more space to any of the default compiler work files SYSUTn ("n" can be 1 through 10; the default work
gpaceis 100K) for very large programs, supply the following /FIL E statement before /[LOAD C370:

/ FI LE SYSUTn NAME(&&TEMP) RECFM F) LRECL(nmmm) SPACE(550) NEW DELETE

where mmmiis the logical record length as given in the table above.

Parameters. Loader Step - C/370

/3J0B {MAP }{,NOGO}{, LET}{, NOPRI NT}{, DUVP} {, CDUMP} { , DEBUG}
{ FULMAP}

{, FILRFM {, NOSEARCH} {, | OTRACE{ (C) } } {, SVCTRACE{ (O } }

Parameters can be separated by one or more commas or blanks.
MAP List a storage map of the loaded program.
FULMAP List an extended storage map of the loaded program.
NOGO Do not load or execute the program.

LET Allow the program to be executed even if unresolved externa references (such as missing
subroutines) are found.

Chapter 8. Processors - IBM C/370 Compilers 361

NOPRINT Informative and diagnostic messages are not to be produced.

DUMP Request a storage dump to be produced if the job abnormally terminates. Even when the
DUMP parameter is used, not all error conditions result in a dump.

CDUMP Request a conversational trace and dump when an error occurs.

DEBUG Load the DEBUG program into memory for debugging.

FILRFM Supply the RECFM V if thefileisV/VC.

NOSEARCH Do not search the subroutine library for unresolved routines.

IOTRACE Trace the I/O operations during the execution of the program. If IOTRACE(C) is specified,
the trace for the I/O operations during the compilation of the program is performed.

SVCTRACE Tracethe SV C instructions during the execution of the program. 1f SYCTRACE(C) is speci-
fied, the trace for the SV C instructions during the compilation of the program is performed.

Notes:
1. Multiple/JOB statements may be used if desired.
2. TheDUMP, IOTRACE and SVCTRACE options are ignored when used with /LOAD ASMLG, /LOAD

COBLG, or /[LOAD PLILG. Other OS-mode processors that do not invoke the OS-mode loader
directly.

Parameters. Go Step - C/370

Execution-time options can be specified by using a#pragma runopts statement in the source program, or by
specifying a"/PARM xxx" statement at the beginning of the job, where xxx is the option desired. However,
in order for the C/370 runtime routines to recognize this, it is necessary to specify the following statement in
your source program:

#pragma runopt s(execops)
since by default no execution-time options are recognized on the /PARM statement.
Regardless of whether execution-time options are specified, arguments to the application program must start
with aleading '/'. If thisisnot present, then no arguments will be passed to the application program. Note
that the leading '/' is not passed to the application program.
The /PARM statement should be coded as follows. If no execution-time options are required, the leading '/'
isstill required if application program arguments are to be supplied to the application program. If there are
no application program arguments, the /' is not required.

/ PARM execution-tinme options / application-argunents

The default execution-time options are:

362 IBM C/370 Compilers - MUSIC/SP User's Reference Guide

HEAP(4K 4K ANYWHERE,KEEP)
ISAINC(0)

|SASIZE(0)
LANGUAGE(UENGLISH)
NOREPORT

TEST(NONE,*,;

STAE

SPIE

SV C instructions and 1/0O operations can be traced at execution time. Thisis done by specifying
SVCTRACE and IOTRACE respectively on the /JOB statement The DUMP option can be specified on the

/JOB statement to produce a storage dump, in some cases, if the job abnormally terminates. (Refer to the
/JOB statement for a description of the syntax.)

TitleLines- C/370

Block letter titles (maximum 2 lines) can be printed on separator pages preceding the program listing if the
jobisrunon batch. Thisisdone by specifying a"=TITLE xxx" statement (for thefirst title line) and a
"=TITLE2 xxx" statement (for the second title line) after the /LOAD statement. xxx isthetitlelineandis
from 1 to 10 charactersin length.

References- C/370

IBM C/370 User's Guide, (SC09-1264).
Systems Application Architecture Common Programming Interface C Reference - Level 2, (SC09-1308).
IBM C Reference Summary, (SX09-1088).

IBM C/370 Diagnosis Guide and Reference V2, (LY 09-1804).

Example- C/370

This famous program writes a message to the workstation.
/ LOAD C370
/* This is a sanple C/ 370 Program */
#i ncl ude <stdio. h>

main ()

{
printf("Hello, World\in");

}

Chapter 8. Processors - IBM C/370 Compilers 363

CICSVM-MUSIC Interface- CICS

MUSIC/SP interfaces directly to CICS/VM (Customer Information Control System/VM) Release 2 (product
number 5684-011) running under VM. Trandlation and preparation of the application source files are
performed under MUSIC/SP. When the application isto be tested, an automatic transfer of the required files
is performed to one of apool of CM S accounts, and the application is started. When finished, your
MUSIC/SP session resumes.

Thisfacility allows you to develop CICS applications under MUSIC/SP, and then perform your testing as
required under CM S without requiring you to own a CM S account.

Usage- CICS

Y ou start the CICS/VM-MUSIC interface by issuing the command "CICS'. This brings up the panel
displayed in Figure 8.3.

------------------------- VMCCS Interface ------------------- Files
Command ==>
Create NEWENntry Nane: Type: (Aapp, Capp, Cdat , Cmap, Papp, Al st)
Execut e Appl. Nane: (Application LIST to be executed)
_ ACCT00. CAPP
_ ACCTO01. CAPP Sel ection Options
_ ACCTO02. CAPP
_ ACCTO03. CAPP D - Delete entry
_ ACCTO04. CAPP E - Edit entry
_ ACCTSET. CMAP G - Cenerate Application & Screen MAP
L - Create LIST of application & screens
T - Translate and conpile CICS source
V - Viewentry
X - Execute selected application & screens
Select the itens and then press PF4.
PFKeys 1-Help 2-Setup 3-Exit 4-Exec 5-Loc 7-Up 8-Dn 10-Refresh 12-Cnd

Figure 8.3 - CICSInterface

Y ou can create CICS applications in Cobol, PL/I or Assembler, utilizing the command level Application
Programming Interface (API) of CICS. Thisis commonly known asthe EXEC CICS interface. Maps,
created with BM S statements are also created with this facility.

Programs can be translated, which replaces the EXEC CICS commands with the appropriate language
CALLs and then compiles the program to create an object file. The translator will detect API statements that
are not supported and notify the user. Applications containing these statements will not compile.

Basic Mapping Support (BMS) is an interface between CICS and its application programs. BMS commands
have a simple generalized form, because formatting information is stored separately in what are called maps.

364 CICS/VM-MUSIC Interface - CICS - MUSIC/SP User's Reference Guide

Each map has two forms, physical and symbolic.

BMS formats a display by embedding control charactersin the data stream. A physical map tells it how to
do this.

A symbolic description map is a source language data structure that the assembler or compiler usesto resolve
source program references to fields in the map.

The command area allows for the execution of MUSIC commands. In addition, the following commands are
handled directly by the VM/CICS interface.

Top Move to the beginning of the list

Last/Bottom Move to the bottom of the list

Locate Find the next occurrence of 'string'

To create anew application program file or map, the name of the file and its type must be specified. The
name is a 1-8 character name that begins with the letter (A-Z). The remaining characters may be letters or
numbers.

The type must be one of the following:

AAPP - File contains an Assembler application program

CAPP - File contains a COBOL application program

CDAT - File contains date to be used by the CICS program

PAPP - Filecontains aPL/I application program

CMAP - File contains BM'S macro statements, defining a map

ALST - Name defines an application list that can be executed under the CICS/VM product

To execute an application under the CICS/VM product, the name of an application list must be specified.
When selected, the specified application files and maps are accessible to the CICS/VM product running

under the VM/CMS environment. When the CICS/VM environment completes control is returned to the
CICS Interface.

Application Lists- CICS

CICS applications and Maps can be operated on in avariety of ways from the selection screen. A list of
existing applications and mapsis presented. To the left of thelist isacommand option, which may be speci-
fied as one of the following:

Options- CICS

D Deletetheitem from the system. Once deleted, it can NOT be accessed.

E Edit theitem. You may edit applications, maps or application lists.

G Create the physical and/or symbolic maps. The file must contain BM'S macro statements. The type of
map created is specified viathe SETUP screen. By default BOTH the physical and symbolic maps are
generated.

L Specify which application programs and maps are grouped together to form an application list. The
application list can then be specified for execution under the CICS/VM product.

Chapter 8. Processors - CICS/VM-MUSIC Interface - CICS 365

To create alist, place "L" on each item that will be place of thelist. Y ou may move between multiple
screens. The "L" will be changed to an "*" each time afunction key or ENTER key is pressed. Once
all theindividual items have been selected, the name of the new application list is specified viathe
"Create NEW Application Name" field. The type must be selected as "alst".

T Trandate the EXEC CICS API into source language statements. If the tranglator completes without any
errors, the appropriate compiler/assembler isinvoked to create an object file. Thefile must beaCICS
application.

V View theitem. You may view applications, maps or application lists.

X Specify which application programs and maps are grouped together and then executed under the
CICS/VM product. Thisoptionissimilar tothe"L", but an application list isNOT created. Thisallows
for testing of specific applications before including them in an application list.

Place " X" on each item that will be grouped together for execution. Y ou may move between multiple

screens. The"X" will be changed to an "*" each time afunction key or ENTER key is pressed. Once
al theindividual items have been selected, press the F4 key to execute under the CICS/VM product.

Program Function Keys- CICS

F2 Select the VM/CICS Setup facility. Options allow for the specification of translator and compiler
options. Refer to the help associated with the SETUP facility for details.

F3 Exit the VM/CICS Interface

F4 Execute the items that have been selected viathe X option. Y ou must make the selections prior to
pressing this key.

F5 Find the next occurrence of the string specified viathe last LOCATE command.

F7 Scroll UP the list of applications programs, lists and maps.

F8 Scroll DOWN the list of application programs, lists and maps.

F10 Refresh thelist of application programs, lists and maps, by scanning the library. Normally thelistis
automatically updated when anew itemsis created. Thisautomatic updating can be turned-off viaa

SETUP option.

F12 Retrievethelast command issued from the command areato allow for re-executing or changing the
command.

CICS/VM Setup Facility
The Setup screen sets the options used by the VM/CICS interface to trandate and compile applications and

maps. Make any changes and press ENTER to effect the change.

Changes made to the options can be either on atemporary basis (just for this session) or permanently
(retained for future sessions).

Refresh By Default (Y) VM/CICS updates the list of applications

file and maps after adding anew item. If N is
list specified, the list will NOT automatically be updated after an add.

366 CICS/VM-MUSIC Interface - CICS - MUSIC/SP User's Reference Guide

Options for BMS macros to produce a DSECT and symbolic map.

Generation Option

Sydlib Search

Use this option to specify the type of map output. The choices are;

BOTH - produce the physical map and dsect (default)
MAP - produce the physical map only
DSECT - produce the DSECT only

Specify the search order used by the Assembler to locate the BMS macros used in
the created of the Dsect and symbolic maps. The default is $CIC:* AMAC,*.M.
Y ou would normally add additional search lists at the end.

The Source Trand ator translates the EXEC CICS commandsin a CICS/VM program and produces two

output files:

- A filecontaining the trandated output, ready for compilation.
- Afilecontaining the tranglator listing.

Trandator Options

Specify the trandator options. These are as described in the "CICS/V S Application
Programmer's Reference”. Note, however, that you must use the abbreviated forms
of any options having more than 8 characters. For example, you must specify OS
(instead of OPSEQUENCE). Each option is separated by a blank.

————————— VMCICS Interface Setup ---------------------

CGeneration Option: (Both, Csect, Dsect)

Refresh File List after ADD: (Y'N

Source Transl at or

CoBCL

ASSEMBLER

PL/ |

Syslib Search Order:

Transl ator Opti ons:

Conpi | er type:
Conpi l e Options:
Syslib Search Order:

Assenbl er Options:
Syslib Search Order:

Conpi l e Opti ons:
Syslib Search Order:

(COBOL or COBOL2)

PF-Keys: 1-Help 3-Exit 5-Tenporary Change 12-Exit NO Change

Figure 8.4 - CICSInterface Setup

Options for the COBOL Compiler are:

Compiler Type

Specify which Cobol Compiler you are using. COBOL 2 (the default), specifies that
the VS COBOL Il compiler be used. COBOL will utilize the OS/VS COBOL

Chapter 8. Processors - CICS/VM-MUSIC Interface - CICS 367

Compiler Options

Sydlib Search

compiler.

Specify the COBOL Compiler options to be used when compiling the program.
Each option is separated by a comma.

Specify the search order used by the Compiler to locate the files when the COPY or
BASIS verbs are used. The default is $CIC:* .CMAC,*.COPY ,*.CUSERMAC. You
would normally add additional search lists at the end.

Options for the Assembler are:

Assemble Options

Sydlib Search

Specify the Assembler options to be used when assembling the program. Each
option is separated by a comma.

Specify the search order used by the Assembler to locate the macros used in the
program. The default is $CIC:* AMAC,*.M,* AUSERMAC. Y ou would normally
add additional search lists at the end.

Optionsfor the PL/I Compiler are:

PL/I Options

Sydlib Search

Specify the PL/I compiler options to be used when compiling the program. Each
option is separated by a comma.

Specify the search order used by the Compiler to locate the %INCLUDE informa-
tion used in the program. The default is $CIC:* . PMAC,*.M,* .PUSERMAC. You
would normally add additional search lists at the end.

Program Function Keys- CICS

F3 Save the changes made and return to the main selection screen. The changes are permanently and
will be used for al further operations.

F5 Temporarily save the changes and return to the selection screen. The changeswill ONLY bein
effect for this session. The next time the VM/CICS interface is started, the permanently saved
options will be used.

F12 Return to the selection screen without changing any options.

References- CICS

CICSVM Application Programming Guide, (SC33-0570).

CICSVM General Information, (GC33-0571).

368 CICS/VM-MUSIC Interface - CICS - MUSIC/SP User's Reference Guide

COBOL Compiler - COBOL 2

MUSIC supports the OS/VS COBOL 1l (Program Product 5668-958). The COBOL 2 processor invokes the
compiler, and then the loader (unless /JOB NOGO is specified). After loading, the program is automatically
executed.

Since COBOL Il programs can invoke many of the facilities of the Operating System, some of which are not
available on MUSIC, it is possible to compile a COBOL Il program which will not execute on MUSIC.

Usage Notes- COBOL 2

1. Labeled (standard or nonstandard) magnetic tapes are not recognized as such on MUSIC/SP. If the
labels are present on tape, then they will appear as a separate file at the beginning of the tape.

2. Thelibrary management and teleprocessing (TCAM) features are not supported.

3. The AIXBLD run-time option is not supported. Dynamic building of VSAM aternate indexesis not
available. The alternate index must be created using Access Methods Services (see AMS in Chapter 10.
Utilities).

4. The MERGE verb is not supported.

5. The SORT control dataset is not used and the use of the SORT-CONTROL special register is not
supported and isignored. The following specia sort control registers may be used:
SORT-CORE-SIZE, SORT-RETURN, and SORT-MESSAGE. The RERUN clauseis not supported.

6. Using QSAM (files whose organization is sequential), the following restrictions apply:

* Open Extend is not supported. The use of the 'APPEND' on the /FILE statement will provide the
same result.

» Filestatus codes of 34 and 39 are not supported.

» Thel-O option on the OPEN statement is not supported.

7. Thefollowing restrictions apply to the COBOL |1 interactive debugger:

COBOL I Debug is supported in line mode only.

The ONABEND command is not supported and is ignored.

A COBOL Il program that calls GDDM functions cannot be debugged.

If the COBOL Il program being debugged abends due to a program interruption, the COBOL state-
ment in error will be displayed on the workstation and the program and debug environment will be
terminated. Control will not return to the debug environment.

| nput/Output - COBOL 2

I nput/output operations using QSAM and VSAM are supported. Thus sequential, keyed, and direct access
techniques are available on MUSIC/SP using VSAM, and sequential accessis also available using QSAM.
These operations require the use of the OS/MUSIC interface. Thisinterface is automatically loaded with the
/LOAD COBOL procedure. When object modules are used a one you should use the /[LOAD COBLG proce-
dure to load them.

Chapter 8. Processors - COBOL Compiler - COBOL2 369

For files whose organization is sequential, this I-O option on the OPEN statement is not supported, and the
REWRITE statements cannot be used.

System Names- COBOL2

In COBOL I, the programmer establishes a correspondence between file names defined in the program and
external input/output devices by means of a SELECT clause in the FILE-CONTROL section. For example,
the COBOL |l statement:

SELECT CARD- FI LE ASSI GN TO UR- 2540R- S- SYSI N

assigns the file name CARD-FILE to the input stream. The 1/O description UR-2540R-S-SY SIN is called
the system name.

This system name is made up of four components, the Device Class (UR), the Device Number (2540R), the
File Organization (S), and the external Name (SY SIN). MUSIC supports the following subset of System
Name specifications:

Device Class UR, UT, or DA

Device Number 2540R, 2540P, 1403, 2400, 2314, or 3330

File Organization S AS

External Name SYSIN, SYSPUNCH, SYSPRINT, SYSTERM, SYSOUT, CONSOLE,

SYSDBOUT (or a user-specified name - see Note 1 below)

External Names- COBOL2

A standard set of external names (DDNAMES) is provided, complete with default values for logical record
length and blocksize.

EXTERNAL NAME LRECL MUSIC I/O

SYSIN 80 input stream (data following /DATA)

SYSPRINT 121 printed output

SYSPUNCH 80 output to holding file (workstation job)
punched output (batch job)

SYSTERM 121 printed output

SYSOUT 121 printed output

SYSDBOUT 121 printed output

CONSOLE 80 conversational input (workstation jobs)

input stream (batch jobs)
Notes:

1. Additional external names can be defined by specifying /FILE statements with the corresponding exter-
nal names (ddnames) at the beginning of the job. (Consult the description of the /FILE statement.)

2. Thedefault values for LRECL and BLKSIZE are obtained by use of the RECORD CONTAINS and
BLOCK CONTAINS clauses. In other areas, the blocksize and the logical record length are defined by
the file description entry.

3. DISPLAY may be used alone or with the UPON CONSOLE or UPON SY SPRINT options. ACCEPT
may be used with FROM CONSOLE or FROM SY SIN. For batch jobs, ACCEPT FROM CONSOLE

370 COBOL Compiler - COBOL2 - MUSIC/SP User's Reference Guide

isequivalent to ACCEPT FROM SY SIN.

4. When adisk output data set is closed, an end-of-file is written at the end of the dataset. A COBOL
CLOSE followed by an OPEN has the effect of rewinding the file. Data sets except for disk data sets,
should always be processed using the LABEL RECORDS ARE OMITTED clause.

5. End-of-file can be indicated on a conversational read by typing /EOF.

6. Tooveridethe default work files (SYSUT1 to SY SUT7) for providing more space, define a/FILE
statement as the following and place it before /LOAD COBOL.:

/ FI LE SYSUTn NAME(&&TEMP) RECFM V) NEW DELETE SPACE(sss)
wherenis 1,2,3,4,5,6 or 7 and sssisthe number of K-byteswanted. The default is SPACE(100).
7. For unresolved externals you should point to the COBOL 2 subroutine library. Do this by including:
/ FI LE SUBLI B PDS(*COBOL2, * OS)
(for load and go)
/ FI LE SUBLI BOS PDS(* COBOL2, * OS)
(for linkage editor)
Those references will be resolved then.

8. Thefollowing statement is needed when you use /LOAD LKED to execute a COBOL 2 load module:

/ FI LE SUBLI BOS PDS(*COBOL2, *MJS, * CS, * EXT)
Usage- COBOL2

The COBOL compiler isinvoked by the use of a/LOAD COBOL2 statement. This statement can be
followed by a/OPT statement specifying options for the Assembler and by a/JOB statement specifying
parameters for the loading step. The COBOL compiler loads and executes the object code unless /JOB
NOGO has been specified.

/LOAD COBOL2 specifies that the lines following are a COBOL |1 program (and optionally, object
modules), and are to be processed by the VS COBOL Il Program Product compiler and the resulting object
program isto be loaded and executed using the OS/MUSIC interface. /LOAD statements following this
statement are ignored. Previously compiled object modules may be included in the input stream.

An input stream consisting entirely of COBOL 11 object modules (and optionally the VS Assembler object
modules) can be loaded more quickly for execution by specifying /LOAD COBLG or /[LOAD ASMLG to
invoke the OS-mode loader. Alternately the /LOAD LKED can be used to produce aload module from these
modules.

Multiple COBOL programs (for example, amain program and subprograms) may appear in asingle input
stream. Each source program must be separated by a/OPT statement.

For information on the use of VSAM fileswith COBOL, refer to the topic "MUSIC/SP VSAM" in Chapter
4. File System and 1/0O Interface of this guide.

Sort facilities are provided as described under "Using COBOL's SORT Feature" in Chapter 10. Utilities of
this guide.

Chapter 8. Processors - COBOL Compiler - COBOL2 371

If the COBOL COPY or BASIS verb isused, a/FILE statement with a ddname of SY SLIB and parameter
PDS must be defined at the beginning of the job. (Consult the description of the /FILE statement for files.)
The MUSIC /INCLUDE statement may also be used to perform a function similar to the COBOL COPY

verb.

Parameters. Compile Step - COBOL 2

[OPT [parms...] (see bel ow for possible paraneters)

The specified parameters should be separated by commas, and the last parameter must be followed by a
blank. A partial list of parameters and their MUSIC defaultsis shown here. Additional parameters may be
found in the IBM COBOL Il Programmer's Guide.

BUF=

NOSOURCE

SOURCE

NODECK
DECK
NOSEQ
SEQ

Notes:

The amount of main storage allocated to buffers. The default value is BUF=16000, which
will allow small and medium size source programs to be compiled relatively quickly. If the
message INSUFFICIENT CORE FOR THIS JOB is printed, the user may reduce this value
(for example, /OPT BUF=6000).

Program source statements not to be listed. Thisisthe default for jobs run at the work-
station.

Program source statements to be printed on SY SPRINT. Thisis the default for jobs run
from batch.

No object module to be produced. Thisisthe default.
An object moduleisto be written on SY SPUNCH.
The compiler is not to do sequence checking on the source program statements.

The compiler isto do sequence checking on the source program statements. Thisisthe
default.

1. Multiple/OPT statements may be used if desired. For other parameters which may be used on the /OPT
statement, refer to the IBM COBOL Programmer's Guide publication.

2. [FILE statements with ddnames of COB.SY SIN, COB.SY SPRINT, and COB.SY SPUNCH can be
defined at the beginning of the job to inform the compiler where to read the input source program,
where to print the program listing and punch the object module respectively, instead of the default defi-

nitions.

372 COBOL Compiler - COBOL?2 - MUSIC/SP User's Reference Guide

Parameters. L oader Step

/3B [MAP][,NOGO [, LET][, NOPRI NT] [, DUVP] [, CDUMP] [, DEBUG
[FULMAP]

[, FILRFM [, NOSEARCH] [, | OTRACE[(O)]1]1[, SVCTRACE[(O) 1]

Parameters can be separated by one or more commas or blanks.

MAP

FULMAP

NOGO

LET

NOPRINT

DUMP

CDUMP

DEBUG

FILRFM

NOSEARCH

IOTRACE

SVCTRACE

Notes:

List a storage map of the loaded program.
List an extended storage map of the loaded program.
Do not load or execute the program.

Allow the program to be executed even if unresolved externa references (such as missing
subroutines) are found.

Informative and diagnostic messages are not to be produced.

Request a storage dump to be produced if the job abnormally terminates. Even when the
DUMP parameter is used, not all error conditions result in a dump.

Reguest a conversational trace and dump when an error occurs.
Load the DEBUG program into memory for debugging.
Supply the RECFM V if thefileisV/VC.

Do not search the subroutine library for unresolved routines.

Trace the I/O operations during the execution of the program. If IOTRACE(C) is specified,
the trace for the I/O operations during the compilation of the program is performed.

Trace the SV C instructions during the execution of the program. 1f SVCTRACE(C) is speci-
fied, the trace for the SV C instructions during the compilation of the program is performed.

1. Multiple/JOB statements may be used if desired.

2. TheDUMP, IOTRACE and SVCTRACE options are ignored when used with /LOAD ASMLG, /LOAD
COBLG, or /[LOAD PLILG. They can be used with/LOAD ASM, /LOAD COBOL, /LOAD PLI, and
the other OS-mode processors that do not invoke the OS-mode |oader directly.

Chapter 8. Processors - COBOL Compiler - COBOL2 373

Parameters. Go Step - COBOL 2

Parameters can be passed to the GO step by specifying a"/PARM xxx" statement at the beginning of the job.
XXX is the parameter desired.

SV C instructions and 1/0 operations can be traced during execution of the program. Thisis done by specify-
ing SVCTRACE and IOTRACE respectively on the /JOB statement. The DUMP option can be specified on
the /JOB statement to produce a storage dump, in some cases, if the job abnormally terminates. (Refer to the
description of /JOB statement above.)

TitleLines- COBOL?2

Block letter titles (maximum 2 lines) can be printed on separator pages preceding the program listing if the
jobisrunon batch. Thisisdone by specifying a"=TITLE xxx" statement (for thefirst title line) and a
"=TITLE2 xxx" statement (for the second title line) after the /LOAD statement. xxx isthetitlelineandis
from 1 to 10 charactersin length.

COBOL Il Interactive Debugger

COBTEST, the VS COBOL Il debug tool, is aflexible tool for monitoring the execution of the VS COBOL
Il program. With COBTEST you can suspend program execution, continue execution, skip sections of code,
correct errors, display and set variables, set up expected input, and display output.
After filling in the panel fields, the system will:

1. Compile the specified source program.

2. Create an executable program (load modul€)

3. Start the COBOL program, within the debug environment

In Figure 8.5 theinitial panel for COBTEST is displayed.

374 COBOL Compiler - COBOL2 - MUSIC/SP User's Reference Guide

——————————————————————— Cobol 11 Debug -------------"-----------------

Source | nput: Nanme of Cobol |l source file
Conpi | er Opti ons:

Subroutine Library: User Subroutine library
Addi tional bject: Addi tional object files used
during creation of execution
nodul e.

Executi on Regi on:
Executi on Paramneter:

(additional file statements, in the form/FILE XXXXXXXXXXX
Execution File Stms:

PF- Keys: 1-Help 3-Exit 10-Cl ear Fields ENTER- Pr ocess

Figure 8.5 - COBOL Il Debug

Source Input Specifies the name of the file containing the COBOL |1 Source statements that will
be compiled and executed under the COBOL |1 interactive debug environment. This
isarequired field.

Compiler Options Specify any COBOL |1 compiler options that you wish to use during the compile
phase. The default options are: Apost, Lib, Source, Deck, Res, Test.

Subroutine Library Specify the name of your subroutine library that you wish to use during the link edit
process.

Additional Object Specify the file names of any other files that will be used during the link edit
process. Thefiles must be object typefiles.

Execution Region Specify the size of the User region to be used during the execution of the program.
The default is 800 K.

Execution Parameters Specify any parameters that your program is expecting at program initiation. Y ou
may also specify run-time parameters for the COBOL |1 environment. The format
of thisfieldis. user parameters/ run-time parameters.

Execution File Statement
Specify any FILE statements that your program requires during program execution.
The complete FILE statement needs to be specified.

By default, information that iswritten to SY SDBOUT will be placed in the file @@DBOUT. Thiscan be

overridden by specifying a FILE statement in the Execution File Statement field.

Keys- COBOL2

3 Terminate the facility. No compilation or program execution will be done.

Chapter 8. Processors - COBOL Compiler - COBOL2 375

10 Clear al of the screen fields to the default. All fields are blank, except for execution region which is
800K.

Enter Process the information specified in the different fields and compile, link edit and execute the
program under the COBOL |1 Debug environment.

References- COBOL2

IBM VS COBOL for OSVS (GC26-3857).

OSVSCOBOL Compiler and Library Programmer's Guide (SC28-6483).

Examples- COBOL2

1. A COBOL job with compiler and loader options. /FILE statements for GO step (execution time)
ddnames are also defined.

/ FI LE GO. CARDI N RDR
/ FI LE GO. PRI NTOQUT PRT
/ LOAD COBOL2
/ OPT DECK
/JOB NVAP
COBOL Source Program
| OPT
COBOL Source Subprogram
/| DATA
Dat a

2. A sample COBOL program which scans afile.

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. SAMPLE.
AUTHOR. | BM PROGRAMVER.
| NSTALLATI ON. STL

DATE-WRI TTEN. MAY 25, 1987.
DATE- COVPI LED.

ENVI RONVENT DI VI SI ON.

CONFI GURATI ON SECTI ON.
SCURCE- COVWPUTER. | BM 370.
OBJECT- COWUTER. | BM 370.

I NPUT- QUTPUT SECTI ON.

FI LE- CONTROL.
SELECT | NVENTORY
ASS| GN I NVENT

FI LE STATUS | NVENT- STATUS.
DATA DI VI SI ON.
FI LE SECTI ON.
BLOCK CONTAI NS 0 RECORDS
RECORD 80 CHARACTERS
LABEL RECORDS STANDARD
DATA RECORD | NVENTORY- RECORD.
01 | NVENTORY- RECORD PI C X(80).

376 COBOL Compiler - COBOL2 - MUSIC/SP User's Reference Guide

WORKI NG- STORAGE SECTI ON.

77 E-O F-FLAG PIC X VALUE 'N .
88 INVENT-E-OF VALUE " A" .
77 | NVENT- STATUS Pl C XX

PRCCEDURE DI VI SI ON.
0000- MAI N- LI NE.
OPEN | NPUT | NVENTORY
I F 1 NVENT- STATUS NOT EQUAL ZERO
THEN DI SPLAY ' OPEN ERROR ON '
"FI LE I NVENTORY' UPON CONSCLE
GOBACK
END- | F
I NI TI ALI ZE | NVENTORY- RECORD
| NVENT- STATUS.
FD | NVENTORY
RECORDI NG MODE F
BLOCK CONTAINS 0 RECORDS
RECORD 80 CHARACTERS
LABEL RECCORDS STANDARD
DATA RECORD | NVENTORY- RECORD.

01 | NVENTORY- RECORD PI C X(80).

WORKI NG- STORAGE SECTI ON.

77 E-O F-FLAG PIC X VALUE'N.
88 | NVENT-E-OF VALUE ' A .

77 | NVENT- STATUS PI C XX.

PROCEDURE DI VI SI ON.
0000- MAI N- LI NE.
OPEN | NPUT | NVENTORY
I F 1 NVENT- STATUS NOT EQUAL ZERO
THEN DI SPLAY ' OPEN ERROR ON '
"FI LE I NVENTORY' UPON CONSCLE
GOBACK
END- | F
I NI TI ALI ZE | NVENTORY- RECORD
I NVENT- STATUS.
PERFORM TEST BEFORE
UNTIL | NVENT-E-O F
READ | NVENTORY
AT END
SET I NVENT-E-O F TO TRUE
END- READ
I F 1 NVENT- STATUS GREATER THAN 10
THEN DI SPLAY ' READ ERROR ON '
"FI LE | NVENTORY' UPON CONSCLE
SET I NVENT-E-O F TO TRUE
END- | F
DI SPLAY | NVENTORY- RECORD
END- PERFORM
CLOSE | NVENTORY
GOBACK.

Chapter 8. Processors - COBOL Compiler - COBOL2

377

COBOL Compiler - VSCOBOL

MUSIC supports the OS/VS COBOL (Program Product 5740-CB1). The COBOL processor invokes the
compiler, and then the loader (unless /JOB NOGO is specified). After loading, the program is automatically
executed with the OS/MUSIC interface.

Notes:

1. Since COBOL programs can invoke many of the facilities of the Operating System, some of which are
not available on MUSIC, it is possible to compile an COBOL program which will not execute on
MUSIC.

2. MUSIC supports fixed length sequential COBOL files. Programs using indexed, partitioned or direct
access techniques may be compiled but not run under MUSIC. Direct access using the relative record
technique is supported - see "Direct Access Support” below.

3. For information on the use of VSAM fileswith COBOL, refer to the topic "MUSIC/SP VSAM™ in
Chapter 4. File System and I/O Interface of this guide.

4. Sort facilities are provided as described under "Using COBOL's SORT Feature" in Chapter 10. Utilities
of this guide.

5. If the COBOL COPY or BASIS verbisused, a/FILE statement with a ddname of SY SLIB and parame-
ter PDS must be defined at the beginning of the job. (Consult the description of the /FILE statement for
files) The MUSIC /INCLUDE statement may also be used to perform a function similar to the COBOL
COPY verb.

6. Labeled (standard or nonstandard) magnetic tapes are not recognized as such on MUSIC. [f the labels
are present on tape, then they will appear as a separate file at the beginning of the tape.

7. Thelibrary management, debug and teleprocessing (TCAM) features are not supported.
| nput/Output - VSCOBOL

Sequential input/output operations using BSAM and QSAM are supported. These operations require the use
of the OS'MUSIC interface. Thisinterface is automatically loaded with the/LOAD COBOL procedure.
When object modules are used aone you should use the /LOAD COBL G procedure to load them.

Direct Access Support - VSCOBOL

For COBOL programs to be executed under MUSIC, MUSIC supports the relative file organization. Thisis
adirect access technique in which the records of the file are numbered 0,1,2,... This number is called the
nominal key. Records can be read (by the READ statement) and updated (by the REWRITE statement)
randomly by specifying the nominal key. A relativefile may also be read (READ statement) and written
(WRITE statement) sequentially; in fact, they are normally created using sequential writes.

This requires special care on MUSIC, because sequential access is done using the BSAM access method and

random access is done using the BDAM access method, and these two access methods store records differ-
ently on disk. BSAM and BDAM storage methods coincide only if the MUSIC record format is F and the

378 COBOL Compiler - VSCOBOL - MUSIC/SP User's Reference Guide

MUSIC record length is amultiple of 512.

For thisreason, the /FILE statement defining a COBOL relative record file which is being created sequen-
tially must specify RECFM(F) and LRECL (n), where n is the record length used in the COBOL program,
rounded up to amultiple of 512. For example, if the program uses arecord length of 100, then the MUSIC
file or UDSfile must be created as RECFM(F) LRECL (512).

System Names- VSCOBOL

In COBOL, the programmer establishes a correspondence between file names defined in the program and
external input/output devices by means of a SELECT clause in the FILE-CONTROL section. For example,
the COBOL statement:

SELECT CARD- FI LE ASSI GN TO UR- 2540R- S- SYSI N

assigns the file name CARD-FILE to the input stream. The 1/O description UR-2540R-S-SY SIN is called
the system name.

This system name is made up of four components, the Device Class (UR), the Device Number (2540R), the
File Organization (S), and the external Name (SY SIN). MUSIC supports the following subset of System
Name specifications:

Device Class UR, UT, or DA

Device Number 2540R, 2540P, 1403, 2400, 2314, or 3330

File Organization S

External Name SYSIN, SYSPUNCH, SYSPRINT, SYSTERM,

SYSOUT, CONSOLE (or a user-specified
name - see Note 1 below)

External Names-VSCOBOL

A standard set of external names (DDNAMES) is provided, complete with default values for logical record
length and blocksize.

EXTERNAL NAME LRECL MUSIC I/O

SYSIN 80 input stream (data following /DATA)

SYSPRINT 121 printed output

SYSPUNCH 80 output to holding file (workstation job)
punched output (batch job)

SYSTERM 121 printed output

SYSOUT 121 printed output

CONSOLE 80 conversational input (workstation jobs)

input stream (batch jobs)
Notes:

1. Additional external names can be defined by specifying /FILE statements with the corresponding exter-
nal names (ddnames) at the beginning of the job. (Consult the description of the /FILE statement.)

2. Thedefault values for LRECL and BLKSIZE are obtained by use of the RECORD CONTAINS and
BLOCK CONTAINS clauses. In other areas, the blocksize and the logical record length are defined by

Chapter 8. Processors - COBOL Compiler - VSCOBOL 379

the file description entry.

3. DISPLAY may be used alone or with the UPON CONSOLE or UPON SY SPRINT options. ACCEPT
may be used with FROM CONSOLE or FROM SY SIN. For batch jobs, ACCEPT FROM CONSOLE
isequivalent to ACCEPT FROM SY SIN.

4. When adisk output data set is closed, an end-of-file is written at the end of the dataset. A COBOL
CLOSE followed by an OPEN has the effect of rewinding the file. Data sets except for disk data sets,
should always be processed using the LABEL RECORDS ARE OMITTED clause.

5. End-of-file can be indicated on a conversational read by typing /EOF.

6. Tooveridethe default work files (SYSUT1 to SY SUT5) for providing more space, define a/FILE
statement as the following and place it before /LOAD COBOL.:

/ FI LE SYSUTn NAME(&&TEMP) RECFM V) NEW DELETE SPACE(sss)
wherenis 1,2,3,4, or 5 and sssisthe number of K-bytes wanted. The default is SPACE(100).

7. Theuse of the FIPS flagger option in VS COBOL requiresa SY SUT6 file. This may be defined by
placing a/FILE statement, such as the following, before /LOAD COBOL:

/ FI LE SYSUT6 NAME(&&TEMP) RECFM V) NEW DELETE
Usage- VSCOBOL

The COBOL compiler isinvoked by the use of a/LOAD COBOL statement. This statement can be followed
by a/OPT statement specifying options for the Assembler and by a/JOB statement specifying parameters for
the loading step. The COBOL compiler loads and executes the object code unless /JOB NOGO has been
specified.

/LOAD COBOL specifiesthat the lines following are an COBOL program (and optionally, object modules),
and are to be processed by the COBOL Program Product compiler and the resulting object program isto be
loaded and executed using the OS/MUSIC interface. /LOAD statements following this statement are
ignored. Previously compiled object modules may be included in the input stream.

Aninput stream consisting entirely of COBOL object modules (and optionally the VS Assembler object
modules) can be loaded more quickly for execution by specifying /LOAD COBLG or /[LOAD ASMLG to
invoke the OS-mode loader. Alternately the /LOAD LKED can be used to produce aload module from these
modules.

Multiple COBOL programs (for example, amain program and subprograms) may appear in asingle input
stream. Each source program must be separated by a/OPT statement.

Parameters. Compile Step - VSCOBOL

[OPT [parms...] (see bel ow for possible paraneters)

The specified parameters should be separated by commas, and the last parameter must be followed by a

380 COBOL Compiler - VSCOBOL - MUSIC/SP User's Reference Guide

blank. A partial list of parameters and their MUSIC defaultsis shown here. Additional parameters may be
found in the IBM COBOL Programmer's Guide. The following parameters cannot be used: SYMDMP,
RESIDENT, DYNAM, ENDJOB, TEST.

BUF=

NOSOURCE

SOURCE

NODECK
DECK

NOSEQ

SEQ

Notes:

The amount of main storage allocated to buffers. The default value is BUF=16000, which
will allow small and medium size source programs to be compiled relatively quickly. If the
message INSUFFICIENT CORE FOR THIS JOB is printed, the user may reduce this value
(for example, /OPT BUF=6000).

Program source statements not to be listed. Thisisthe default for jobs run at the work-
station.

Program source statements to be printed on SY SPRINT. Thisis the default for jobs run
from batch.

No object module to be produced. Thisisthe default.
An object moduleisto be written on SY SPUNCH.

The compiler is not to do sequence checking on the source program statements. Thisisthe
default.

The compiler isto do sequence checking on the source program statements.

1. Multiple/OPT statements may be used if desired. For other parameters which may be used on the /OPT
statement, refer to the IBM COBOL Programmer's Guide publication.

2. [FILE statements with ddnames of COB.SY SIN, COB.SY SPRINT, and COB.SY SPUNCH can be
defined at the beginning of the job to inform the compiler where to read the input source program,
where to print the program listing and punch the object module respectively, instead of the default defi-

nitions.

Parameters. L oader Step

/3B [MAP][, NOGO [, LET][, NOPRI NT] [, DUVP] [, CDUMP] [, DEBUG
[FULMAP]

[, FILRFM [, NOSEARCH] [, | OTRACE[(O) 1] [, SVCTRACE[(O) 1]

Parameters can be separated by one or more commas or blanks.

MAP
FULMAP
NOGO

LET

List a storage map of the loaded program.
List an extended storage map of the loaded program.
Do not load or execute the program.

Allow the program to be executed even if unresolved externa references (such as missing

Chapter 8. Processors - COBOL Compiler - VSCOBOL 381

subroutines) are found.

NOPRINT Informative and diagnostic messages are not to be produced.

DUMP Request a storage dump to be produced if the job abnormally terminates. Even when the
DUMP parameter is used, not all error conditions result in a dump.

CDUMP Reguest a conversational trace and dump when an error occurs.

DEBUG Load the DEBUG program into memory for debugging.

FILRFM Supply the RECFM V if thefileisV/VC.

NOSEARCH Do not search the subroutine library for unresolved routines.

IOTRACE Trace the I/O operations during the execution of the program. If IOTRACE(C) is specified,
the trace for the I/O operations during the compilation of the program is performed.

SVCTRACE Tracethe SV C instructions during the execution of the program. 1f SVCTRACE(C) is speci-
fied, the trace for the SV C instructions during the compilation of the program is performed.

Notes:
1. Multiple/JOB statements may be used if desired.
2. TheDUMP, IOTRACE and SVCTRACE options are ignored when used with /LOAD ASMLG, /LOAD

COBLG, or /[LOAD PLILG. They can be used with/LOAD ASM, /LOAD COBOL, /LOAD PLI, and
the other OS-mode processors that do not invoke the OS-mode |oader directly.

Parameters: Go Step - VSCOBOL

Parameters can be passed to the GO step by specifying a"/PARM xxx" statement at the beginning of the job.
XXX is the parameter desired.

SV C instructions and 1/0 operations can be traced during execution of the program. Thisis done by specify-
ing SVCTRACE and IOTRACE respectively on the /JOB statement. The DUMP option can be specified on
the /JOB statement to produce a storage dump, in some cases, if the job abnormally terminates. (Refer to the
description of /JOB statement above.)

TitleLines- VSCOBOL

Block letter titles (maximum 2 lines) can be printed on separator pages preceding the program listing if the
jobisrun on batch. Thisisdone by specifying a"=TITLE xxx" statement (for thefirst title line) and a
"=TITLE2 xxx" statement (for the second title line) after the /LOAD statement. xxx isthetitlelineandis
from 1 to 10 charactersin length.

382 COBOL Compiler - VSCOBOL - MUSIC/SP User's Reference Guide

References- VSCOBOL

IBM VS COBOL for OSVS (GC26-3857)

OS/VS COBOL Programmer's Guide (SC28-6483)

1. AnCOBOL job with compiler and loader options. /FILE statements for GO step (execution time)

Examples- VSCOBOL

ddnames are also defined.

/ FI LE GO. CARDI N RDR

/ FI LE GO PRI NTOUT PRT
/ LOAD COBOL

/ OPT DECK

/JOB NAP

/ OPT

/ DATA

2. An COBOL program which reads data from SY SIN (data following /DATA), writes them on

COBOL Source Program
COBOL Sour ce Subprogram

Dat a

SYSPRINT (printed output), SY SPUNCH (holding file), and FILEO1 (atemporary UDSfile). At end-
of-file on SY SIN, additional datais read conversationally from CONSOLE (workstation input) until the
user signals end-of-file on the workstation by typing /EOF. Then the disk data set FILEO1 is read back

inand listed.
/ FI LE FI LEO1 UDS(&&TEMP) NREC(100)
/ LOAD COBOL

I D DI VI SI ON.

PROGRAM: | D. COBOL- | O TEST.
ENVI RONVENT DI VI SI ON.

I NPUT- QUTPUT SECTI ON.

FI LE- CONTROL.

SELECT CARD- FI LE ASSI GN TO UR- S- SYSI N
SELECT DI SK- FI LE ASSI GN TO DA- S- FI LEO1.
SELECT CON-FI LE ASSI GN TO UT- S- CONSOLE.
SELECT PRI NT-FILE ASSI GN TO UR- S- SYSPRI NT.
SELECT PUNCH- FI LE ASSI GN TO UR- S- SYSPUNCH.

DATA DI VI SI ON.
FI LE SECTI ON.

FD

01

FD

01
FD

01
FD

DI SK- FI LE
LABEL RECORDS ARE STANDARD
RECORDI NG MODE | S F.

DI SK-REC PI C X(80).

CON- FI LE

LABEL RECORDS ARE OM TTED.
CON-REC PIC X(80).

CARD- FI LE

LABEL RECORDS ARE OM TTED.
CARD- REC PI C X(80).

PRI NT- FI LE

Chapter 8. Processors - COBOL Compiler - VSCOBOL

383

LABEL RECORDS ARE OM TTED.
01 PRI NT- REC.
05 CC PIC X
05 PRINT-LINE PIC X(132).
FD PUNCH FILE
LABEL RECORDS ARE OM TTED.
01 PUNCH REC PIC X(80).
WORKI NG- STORAGE SECTI ON.
77 HOLDL PIC 9(4) VALUE ZERO COWP-3.
PROCEDURE DI VI SI ON.

OPEN | NPUT CARD- FI LE QUTPUT PRI NT-FI LE, PUNCH FI LE

DI SK- FI LE.
START- HERE.
READ CARD- FI LE AT END GO TO ECF.
MOVE CARD- REC TO PRI NT- LI NE.
VRI TE PRI NT- REC AFTER POSI TI ONI NG 2 LI NES.
WRI TE PUNCH REC FROM CARD- REC.
VWRI TE DI SK- REC FROM CARD- REC.
GO TO START- HERE.

ECF. DISPLAY ' THIS IS THE END NOW TRY | NPUT FROM CONSOLE' .

CLOSE CARD- FI LE PRI NT- FI LE PUNCH- FI LE.
OPEN | NPUT CON- FI LE.
CON- SECT.
READ CON- FI LE AT END GO TO VERY- END.
DI SPLAY ' FROM CONSCLE ' CON- REC.
GO TO CON- SECT.
VERY- END.
CLOSE CON-FI LE DI SK- FI LE. DI SPLAY ' CONV END .
OPEN | NPUT DI SK- FI LE.

DI SPLAY ' THE FOLLOW NG RECORDS ARE FROM DI SK FI LE' .

DI SK- READ.
READ DI SK- FI LE AT END GO TO FI NAL- EXI T.
DI SPLAY ' RECORD FROM DI SK ' DI SK- REC.
GO TO DI SK- READ.
FI NAL- EXI T.
CLOSE DI SK-FI LE. DI SPLAY ' THATS ALL FOLKS..'.
STOP RUN.
/ DATA
FI RST DATA CARD
SECOND DATA CARD
THI RD DATA CARD
LAST DATA CARD

384 COBOL Compiler - VSCOBOL - MUSIC/SP User's Reference Guide

COBOL (Loader) - COBLG

COBLG (ANS COBOL Load and Go) is the name used to access the loader. The/LOAD COBLG statement
specifiesthat the lines following consist exclusively of object modules created by ANS COBOL and/or VS
Assembler. (This statement isfunctionally identical to the/LOAD ASMLG statement.)

Usage- COBOLG

This loader isinvoked by the use of the/LOAD COBLG or /[LOAD ASMLG statement. This statement can
be followed by a/OPT SY SIN statement specifying the input unit number and by a/JOB statement specify-
ing parameters for the loading step.

Parameters

/3B [MAP][,NOGO[,LET][, NOPRI NT] [, NOSEARCH] [, FI LRFM
[FULMAP]

Parameters can be separated by one or more commas or blanks.
MAP List a storage map of the loaded program.
FULMAP List an extended storage map of the loaded program.
NOGO Do not load or execute the program.

LET Allow the program to be executed even if unresolved externa references (such as missing
subroutines) are found.

NOPRINT Informative and diagnostic messages are not to be produced.

NOSEARCH Do not search the subroutine library for unresolved routines.

FILRFM SuppliesaRECFM V if thefileisV/VC.

Notes:

1. Multiple/JOB statements may be used if desired.

2. TheDEBUG, CDUMP, DUMP, IOTRACE and SVCTRACE parameters for OS-mode processors are
ignored when used with /LOAD ASMLG, /LOAD COBLG, or /[LOAD PLILG. They can be used with

/LOAD ASM, /LOAD COBOL, /LOAD PLI, and the other OS-mode processors that do not invoke the
OS-mode loader directly.

Chapter 8. Processors - COBOL (Loader) - COBLG 385

/ OPT [SYSI N=n]

SYSIN=n Specifies that input isto be taken from the MUSIC unit number n. A /FILE statement defin-
ing MUSIC 1/O unit n as the appropriate input file must appear at the beginning of the job.
When an end-of-file or a/DATA statement is encountered on thisinput data set, further
input is taken from the normal input stream.

386 COBOL (Loader) - COBLG - MUSIC/SP User's Reference Guide

FORTRAN Compiler - VSFORT

Programs written in the Fortran language can be compiled and run using the IBM V'S Fortran Compiler and
Library. VS Fortran supports both the Fortran 77 and Fortran 66 language standards. Fortran 77, the newer
standard, isthe default. To request Fortran 66, you must specify the compiler option LANGLVL(66).

MUSIC has atutorial for learning VS Fortran. Type"TUT" in * Go mode or select the "Tutorials" item for
the FSI main menu.

AvailableVersions- VSFORT

Each MUSIC/SP system provides either of two versions of V'S Fortran (but not both): (1) VS Fortran
Version 1 (Release 4) Compiler and Library, program number 5748-FO3, or (2) VS Fortran Version 2
Compiler, Library and Interactive Debug, program number 5668-806. Which version is present is an instal-
lation option and varies from site to site. Both versions are invoked by the /LOAD VSFORT control state-
ment.

To see which version is available on your system, run the following job and examine the first digit of the
level number in the heading line of the output:

/ LOAD VSFORT

/JOB NOEDI T
STOP
END

Version 2 is compatible with Version 1, in that it can run all object modules and load modules produced by
Version 1. Version 2 accepts Fortran source prepared for Version 1, but the reverse is not true.

V S Fortran Version 2 provides the following enhancements. 31-character variable names, language
keywords in mixed upper and lower case (it is not case sensitive), an Intercompilation Analyzer (ICA),
graphic relational operators (combinations of "<", ">" and "="), a source level Interactive Debug Facility
(IAD), and other features not present in Version 1.

| nter active Debug - VSFORT

With VS Fortran Version 2, MUSIC users can debug and test their programs at the source language level
using either IBM's Interactive Debug (IAD) in line mode or MUSIC's full-screen V'S Fortran Interactive
Debug (TESTF). TESTF isdescribed in the next section of this chapter. 1AD is described later in this
section. With VS Fortran Version 1, TESTF isavailable but IAD is not.

Control Statements- VSFORT

VS Fortran in invoked by the /[LOAD VSFORT statement. The VSFORT processor accepts source and/or
object modules as input, compiles the source, invokes the OS-mode L oader to load the object modules and
required library routinesinto memory, and executes the program. Both the compile and execution steps run
in MVS (OS) simulation mode.

Chapter 8. Processors - FORTRAN Compiler - VSFORT 387

The/LOAD VSFORT statement can be preceded by a/SY S statement specifying job region size, by a
/PARM statement specifying execution-time parameters (which may include the option FDEBUG to invoke
Interactive Debug - IAD), and by /FILE statements defining files for the program. The/LOAD VSFORT
statement can be followed by a/OPT statement specifying compiler options, and by a/JOB statement speci-
fying Loader and MV S simulator options.

Control statements are used as follows;

/ SYS REGQ ON=n <--- job region size in K
/ PARM XXXXX <--- run-tine paraneters
/[FILE nn NAME(fil enane) ... <--- 0 or nore /FILE statenents

/ FI LE ddnarme NAME(fil enane)
/ LOAD VSFORT

/JOB option,option,... <--- Loader and MS sinul ator options
/ OPT option, option,... <--- conpiler options

...source program and/ or object nopdules...

| DATA

...data records (Fortran unit 5)...

Fortran source, object modules, and data records can be specified by /INCLUDE statements pointing to other
files, or the source or data can be contained in the same file as/LOAD VSFORT.

Most compiles require aregion size of at least 512K (/SYS REGION=512). Large programs may require
1024K or more.

Defining Program Files- VSFORT

A fileis connected to a program by a unit number (also called a data set reference number), whichisa
number from 1 to 99, or by a ddname (data definition name), which isa 1 to 8-character name. The Fortran
convention for ddnames is FTnnFO01, where nn is a 2-digit number from 01 to 99. Fortran source statements
such as READ and WRITE refer to unit numbers. A Fortran OPEN statement can be used to associate a unit
number with addname. If no OPEN statement is used, unit number nn is automatically associated with
ddname FTnnFOO01.

Unit numbers and ddnames are defined on /FILE statements which precede the /LOAD statement:
/FILE nn NAVE(fil enane) options <--- unit nunber
/ FI LE ddnanme NAME(fil enane) options <--- ddnane

On a/FILE, ddname FTnnFOOL is equivalent to unit number nn. Think of unit number nn on a/FILE as
shorthand for ddname FTnnFOO1.

The following unit numbers and ddnames are automatically defined for VS Fortran jobs:

Ddname Unit Record Length Definition
FTO5F001 5 80 Input data following /DATA
FTO6F001 6 133 Output to the workstation (for
batch jobs: output to printer)
FTO9F001 9 80 Conversional input from the workstation

(for batch jobs: same as unit 5)

End of data can be indicated on conversational input from the workstation by typing /eof.

388 FORTRAN Compiler - VSFORT - MUSIC/SP User's Reference Guide

Compiler Optionson the/OPT Statement - VSFORT

Options for the VS Fortran compiler are specified on a/OPT statement. The options are separated by
commas. |f necessary, more than one /OPT can be used; their effect is cumulative.

The available options are described in the appropriate V'S Fortran Programming Guide publication. MUSIC
uses the standard IBM defaults. Some common compiler options are:

NOSOURCE
SOURCE Produces a source listing on ddname SY SPRINT (the workstation by default). Default is
NOSOURCE for workstation jobs and SOURCE for batch jobs.

NODECK

DECK Produces an object module on ddname SY SPUNCH. The default is NODECK.

FLAG(I)

FLAG(W)

FLAG(E)

FLAG(S) Specifieswhich level of compiler messages will be produced: al (1), warnings and above
(W), errors and above (E), or only severe errors (S). The default is FLAG(]).

OPT(n) Optimization level, 0to 3. OPT(0) is no optimization, which gives faster compiles but
produces less efficient code. OPT (1) is recommended for most production programs. The
default is OPT(0).

NOSDUMP

SDUMP Incorporates information on source variable names and statement numbers into the object

module. This makes the program bigger but enables symbolic dumps and debugging (IAD)
at execution time. The default is SDUMP.

CHARLEN(n) Maximum length of CHARACTER variables. The default is CHARLEN(500).
LANGLVL(66)

LANGLVL(77) The Fortran language level to be accepted. The default iSLANGLVL(77). If necessary,
specify LANGLVL(66) for compatibility with Fortran G1 source.

NOMAP

MAP Produces atable of variable names and statement labels. The default is NOMAP.

NOXREF

XREF Produces atable of variable names and statement labels, plus the statement numbers where
each isreferenced. The default is NOXREF.

NOLIST

LIST Shows the assembler instructions generated by the compiler. Thisis useful if you wish to

use the assembler-level Debug Facility to debug your program. The default isNOLIST.
L oader and MV S Simulator Optionson the/JOB Statement

Options for the MUSIC Loader and for the execution-time MV S simulator are specified on a/JOB statement.
The options are separated by commas or blanks. If necessary, more than one /JOB can be used; their effect is
cumulative. When using /LOAD XMON to execute aload module, the same options may be used on the
program name statement, after the load module ddname or N(filename) specification.

Chapter 8. Processors - FORTRAN Compiler - VSFORT 389

The available /JOB options are:

MAP
FULMAP
NOGO

LET

NOSEARCH

NOPRINT

SVCTRACE

IOTRACE

DUMP

CDUMP

DEBUG

NONRENT

NOEDIT

V(n)

FILRFM

Produces a L oader storage map.
Produces an extended L oader storage map.
Compile only. Do no load or execute the program.

Allows the program to execute even if unresolved external references (such as missing
subroutines) are found during the Loader step.

Tells the Loader not to search the Subroutine Library for unresolved external references
occurring in the program. With this option, the Loader does not load any subroutines from
the Subroutine Library.

Omit Loader information messages.
Traces SV C (supervisor call) instructions during program execution. Abbreviation: SVCTR
Traces input/output operations during program execution. Abbreviation: |0OTR

Produces a storage dump if the program ends abnormally or is terminated by an error
detected by the MV S simulator. Abbreviation: DU

Allow interactive display of storage if the program ends abnormally or is terminated by an
error detected by the MV S simulator. If used in combination with SYCTRACE or
IOTRACE, CDUMP stops the program after each SV C or 1/0 and alows you to display and
modify storage interactively. Abbreviation: CDU.

Invokes the MUSIC assembler-level Debug Facility at the start of program execution.

Forces re-entrant modulesin the Link Pack Area (LPA) to be loaded into the user region.
Thisisrequired if you wish to use the assembler-level Debug Facility to trace such modules
or set break pointsin them.

Suppresses editing of compiler output to the workstation. Normally MUSIC omits or short-
ens some headings and other information messages during compile. The NOEDIT option
allows the full output to appear.

This option, where n is arecord length value, causes the VS Fortran Library routinesto see
variable-length MUSIC files (record format V or VC) as fixed-length MV Sfiles (record
format F or FB), with arecord length equal to the larger of n and f, wheref isthe MUSIC
record length of thefile. This option applies only to ddnames FTnnFO01. For example,
/JOB V(300) causes VS Fortran to treat a RECFM (VC) file with MUSIC record length 200
as afixed format file with record length 300. This allows new output records to be up to 300
bytes long and avoids the 8 bytes of control information (MV S record and block descriptor
words) at the start of each record. The option does not affect the actual record format of the
resulting MUSIC file. Notethat anew V or VC file hasaMUSIC record length of O.

V(256) is automatically assumed for FTO6F001.

This option causes MUSIC record format V or VC files to be treated as variable length
(MV Srecord format VB) files by the VS Fortran Library routines. This option may be
required in order to produce the MV S record and block descriptor words at the start of each
logical record.

390 FORTRAN Compiler - VSFORT - MUSIC/SP User's Reference Guide

Execution-Time Parameters- VSFORT

Fortran run-time options, if required, are specified on a/PARM statement preceding the /LOAD VSFORT or
/LOAD XMON statement. All run-time options listed in the V'S Fortran Programming Guide can be speci-
fied, except that the DEBUG option must be entered as FDEBUG on MUSIC. Thus, the statement for invok-
ing Interactive Debug (IAD) at run timeis/PARM FDEBUG (not /PARM DEBUG).

Any options or parameters on /PARM are also accessible to the program viaacall to the system subroutines
PARM or PARMLC. PARMLC isthe same as PARM, except that the parameter string is not converted to
upper case.

Block Letter Titles- VSFORT

For acompile in abatch job, one or two lines of block letter titles can be printed preceding the source listing.
Each titlelineisfrom 1 to 10 characters. Thetitles are printed twice on consecutive pages, so that one will
always be face up after page tear off. Thetitlesareignored if thejob isrun at aworkstation. Thetitlesare
specified by control statements following the /LOAD statement:

=TI TLE XXXXXXXXXX <--- first block letter title
=TI TLE2 yyyyyyyyyy <--- second block letter title
For example:

/ LOAD VSFORT

/ OPT SOURCE

=TI TLE PROGS VERL

/1 NCLUDE PROGGE. S <--- programsource file

Using Object Modulesand L oad Modules- VSFORT

To create an object modulein file prog.obyj, use the compiler DECK option asin this example:

/ SYS REG ON=1024
/ FI LE SYSPUNCH NAME(pr og. obj) NEW <--- object output

/ LOAD VSFORT

/JOB NOGO

/ OPT DECK, OPT(1) <--- other options as desired
/1 NCLUDE prog. s <--- programsource file

The MUSIC convention is that source module file namesend in".S", object module file namesend in
".0OBJ", and load module file namesend in ".LMOD". Y ou may use adifferent convention if you wish.

Once you have object modules for all the routines making up your program, you can create aload modulein
file prog.Imod as in this example:

/ FI LE LMOD NAME(prog. | mrod) NEW SPACE(200)
/ LOAD LKED

/ JOB MAP, NOGO, MODE=CS, NAME=pr ogharne

. ORG 4A00

/1 NCLUDE pr og. obj

Chapter 8. Processors - FORTRAN Compiler - VSFORT 391

/1 NCLUDE subl. obj
/1 NCLUDE sub2. OBJ

To execute the program using the load module, use the following control statements:

/ SYS REGQ ON=n <--- desired region size

/FILE ... <--- /FILE statements as needed

/ LOAD XMON

progname N(prog.|lnod) option,option,... <--- sane opts as /JOB

...data records if any...

Using aload module to execute your program gives much faster job start up.
Usage Notes- VSFORT

1. Since VS Fortran programs can invoke features of the MV S operating system which are not supported
by MUSIC's MV S simulator, it is possible to compile Fortran programs which do not execute success-
fully on MUSIC.

2. MUSIC supports use of VSAM fileswith VS Fortran. Refer to the section on VSAM elsewherein this
manual .

3. Features of VS Fortran that depend on MV S dynamic file allocation are not supported on MUSIC.
However, the MUSIC subroutines OPNFIL and CLSFIL can be used to access MUSIC files dynami-
cally (without using a/FILE statement). Refer to the chapter on System Subroutines in this manual.

4. Filesfor VS Fortran direct access must be created as record format F (fixed length, uncompressed).
Each direct access record starts on a new 512-byte block on disk, and occupies one or more blocks.
This storage method is inefficient in terms of disk space when the record length is small (256 bytes or
less). Thefeature of VS Fortran that automatically formats a new direct accessfile is not available on
MUSIC. The OPEN statement must not specify STATUS='NEW'; omit the STATUS keyword or spec-
ify STATUS='OLD'. A new direct access file must be initialized using the ZERO.FILE utility (or
equivalent) before being used in aV S Fortran program, unless the program writes all the recordsin
order (1,2,3,...) totheend of thefile. Once the file has been initialized, it can be accessed randomly.
This example shows creating and initializing a direct accessfile:

/ FILE 1 NAVE(DA. SAMP) NEW RECFM F) LRECL(400) SPACE(100) NORLSE
/1 NC ZERO. FI LE

5. TheVSFortran INCLUDE statement can be used to incorporate source from an external file into the
program. The following format of INCLUDE must be used:

| NCLUDE (nenber) n

"member" isal to 8-character member name. "n" is an optional value which the compiler usesto
decide whether or not to include the source. By default, the contents of MUSIC file member.V SFORT
isincluded into the program. To use a different naming convention for included files, provide a/FILE
SYSLIB containing a PDS parameter. The default SYSLIB is/FILE SYSLIB PDS(*.VSFORT).
INCLUDE statements must not be nested; that is, the included file may not contain another INCLUDE
statement. The MUSIC /INCLUDE statement (which allows nesting) can be used as an alternative to
the VS Fortran INCLUDE statement.

392 FORTRAN Compiler - VSFORT - MUSIC/SP User's Reference Guide

I nter language Communication - VSFORT

It is sometimes desirable to invoke subprograms written in other programming languages. A VS FORTRAN
main program may call subroutines written in Assembler, PL/I, VS/IPASCAL, COBOL, and VS FORTRAN.

You may aso invoke VS FORTRAN subroutines from Assembler, COBOL, PL/I, and VS/PASCAL. When
caling VS FORTRAN subroutines from other languages (where the main program is NOT VS FORTRAN),
you must call asubroutine VSFINT before any callsto VS FORTRAN routines. Thisroutine (VSFINT)
performs library initialization for the VS FORTRAN environment.

The format of the VSFINT call is:;
VS/PASCAL

var
| : | NTEGER;
PROCEDURE VSFI NT(VAR | : | NTEGER);
FORTRAN;
begi n
VSFI NT(1);

VS/COBOL

I D DI VI SION

PROGRAM | D. COBCL- TEST.
ENVI RONVENT DI VI SI ON.
DATA DI VI SI ON.

WORKI NG- STORAGE SECTI ON.

77 AREAL USAGE | S COVPUTATI ONAL- 2.
PROCEDURE DI VI SI ON.
START- HERE.

CALL ' VSFI NT* USI NG AREAL.

PL/I

TOSQ PROC OPTI ONS(MAI N) ;
DCL SQUARE ENTRY EXTERNAL;
DCL VSFI NT ENTRY EXTERNAL;
| REAL=4;
CALL VSFI NT(| REAL);

Thereis an argument passed in the call to VSFINT. Thisargument is NOT used by the subroutine, and can
be of any value.

Chapter 8. Processors - FORTRAN Compiler - VSFORT 393

MUSIC Extensionsto NAMELIST Input

MUSIC allows a more convenient form of Fortran NAMELIST input dataif the object module MUSNL.OBJ
isincluded with the program. NAMELIST output is not affected. If MUSNL.OBJ s not present, the stan-
dard form of NAMELIST input, as described in the language manual, is used.

When /INCLUDE MUSNL.OBJis placed after the Fortran program, or in the Linkage Editor input when
creating aload module, the NAMELIST start (& name) and end (& END) indicators are not used in input data
records. Thefirst dataitem can start at or after column 1 and can extend to column 80. To continue a
record, end it with acomma. For alogica variable, for example SWITCH, specifying "SWITCH" is equiva
lent to "SWITCH=.TRUE." and "NOSWITCH" is equivalent to "SWITCH=.FALSE." When an character
string is specified for an array, the remaining elements of the array are set to blanks.

Subscripted array items, floating point exponents, REAL* 16 and complex values may not be used. A
method of assigning values to particular items of an array is, for example, A=10,3*,20, which sets A(1)=10
and A(5)=20 but does not change A(2) through A(4). The ERRSET routine cannot be used to get control of
conversion or other errors. For VS Fortran Version 2, variable names may be up to 31 characters long.

The sample program given below shows an example of MUSIC NAMELIST input.
VSFortran Interactive Debug (I1AD)

The IBM version of Interactive Debug (IAD) isinvoked by specifying the run-time option FDEBUG. Thisis
done by placing the statement /PARM FDEBUG before the /LOAD VSFORT or /[LOAD XMON statement.

IAD is provided only with VS Fortran Version 2. Since ISPF is not supported on MUSIC, only the line and
batch modes of IAD are available. Full screen mode is not available. If full screen mode debugging is
needed or you wish to debug with VS Fortran Version 1, use the MUSIC version of VS Fortran Interactive
Debug (TESTF).

The only requirement for using IAD is that the routines to be debugged must be compiled with the SDUMP
option (which isthe default). Also, the compiler option OPT(0) is recommended, to suppress optimization.
Some extra ddnames are required for |AD, and the job region size must be increased by at least 500K. To
simplify the control statements, file FDEBUG is provided, which contains/PARM FDEBUG, specifies a
region size of 1024K, and defines the AFF-- ddnames required for IAD. In most cases, it is sufficient to
place the statement /INCLUDE FDEBUG before the /[LOAD.

When |AD isrun on batch, the AFFIN file must not be empty. Do this by providing an overriding /FILE
AFFIN pointing to the file containing the IAD commands.

The IAD HELP command invokes the MUSIC Help Facility to display full screen help information. The
IAD SY SCMD command (abbreviation SY S) can be used to enter aMUSIC command while debugging.
For example, "sys edit prog.listing”. SY SCMD cannot be used within an IAD command list. To signal an
attention interrupt to IAD, pressthe BREAK key (PA1 on a 3270-type workstation) and enter ablank line
whilein MUSIC attention mode. For the lIAD TERMIO command to take effect, the desired unit numbers
must be specified by the DEBUNIT run-time option. For example:

/ PARM FDEBUG, DEBUNI T(5, 6, 9)
The following is a sample Interactive Debug session.
/1ist fdebug.sanmple

*In progress

394 FORTRAN Compiler - VSFORT - MUSIC/SP User's Reference Guide

/ | NCLUDE FDEBUG
/ LOAD VSFORT
READ(5, *) DI AM
CALL CALC(DI AM Cl RCUM AREA)
WRI TE(6, 10) DI AM Cl RCUM AREA
10 FORMAT(' DI AMETER=', F8. 3, Cl RCUVFERENCE=' , F10. 4,
* ! AREA=' | F10. 4)
STOP
END
SUBROUTI NE CALC(X, C, A)
DATA PI /3. 14159/
C=X*PI
A=(X/ 2)**2*P
RETURN
END
/ DATA
3.51
*End
*CGo

f debug. sanpl e
*In progress

MAI N * END OF COVPI LATION 1 ****

CALC END OF COVPI LATION 2 *****x*

004F50 BYTES USED

EXECUTI ON BEGQ NS

VS FORTRAN VERSI ON 2 RELEASE 4 | NTERACTI VE DEBUG

5668- 806 (C) COPYRI GHT | BM CORP. 1985, 1989

LI CENSED MATERI ALS- PROPERTY OF | BM

VWHERE: MAIN. 1

FORTI AD

?

I i stsubs

PROGRAM UNI T COWVPI LER OoPT HOOKED TI M NG
MAI' N VSF 2.4.0 0 YES OFF
CALC VSF 2.4.0 0 YES OFF
FORTI AD

?

at calc.4

FORTI AD
?

go

AT: CALC 4

FORTI AD

?

list (calc.x,calc.c,calc.a)

CALC. X 3.51000023
CALC. C 11. 0269814
CALC. A 0. 000000000E+00

FORTI AD
?

go
DIAVETER= 3.510 CI RCUMFERENCE= 11.0270 AREA= 9.6762
PROGRAM HAS TERM NATED, RC (0)

Chapter 8. Processors - FORTRAN Compiler - VSFORT 395

FORTI AD

?

listfreq

STATEMENT FREQUENCY
MAI N. ENTRY NO HOOK
MAIN. EXI'T NO HOOK

Separation Tool - VSFORT

The VS Fortran Separation Tool utility program is used to create the re-entrant and non-reentrant parts of a
V'S Fortran program compiled with the RENT option. Refer to the VS Fortran Programming Guide. The
re-entrant part of a program could be put into MUSIC's Link Pack Areato provide better performance for
high use programs.

Control statements for running the Separation Tool are:

/ PARM nane <--- for "assigned nanme" formonly
/ FI LE SYSUT1 NAME(nonrent.obj) NEW

[/ FI LE SYSUT2 NAME(rent.obj) NEW

/1 NCLUDE VSFORT. SEPTOOL

/1 NCLUDE pr og. obj <--- object fromconpile with RENT
/1 NCLUDE subl. obj

AlternateMath Library (Version 1 Only)

To use the Alternate Math Subroutine Library supplied with VS Fortran Version 1, insert the following state-
ment after your Fortran source (or after your object modules when creating aload module):

/1 NCLUDE MATH. ALTLI B
Sample Program - VSFORT

list vsfort.sanple

*In progress

/ SYS REG ON=512

/ LOAD VSFORT

C VS FORTRAN SAMPLE PROGRAM

C CALCULATES RADI US, Cl RCUMFERENCE, AND AREA COF A Cl RCLE,
C G VEN THE DI AVETER

396 FORTRAN Compiler - VSFORT - MUSIC/SP User's Reference Guide

C ANSWERS CAN BE REQUESTED I N H GH OR LOW PRECI SI ON.
C INPUT IS BY MUSI C NAMELI ST.
REAL*8 DI AM RADI US, Cl RCUM AREA
LOG CAL LOW HI CGH
NAMEL| ST / DATAIN DI AM LOW HI GH
100 WRITE(6,*) 'Enter: DI AMrFval ue, LON OR Dl AM-val ue, H GH
LOWE. FALSE.
H GH=. FALSE.
READ(9, DATAI N, END=200)
| F(. NOT. (LOWOR H GH)) LOW. TRUE
CALL CALC(DI AM RADI US, Cl RCUM AREA)
| F(LOW WRI TE(6, 10) DI AM RADI US, Cl RCUM AREA

10 FORMAT(' DI AVETER= ', F9. 4, 3X, ' RADI US= ' F9. 4/
* ' Cl ROUMFERENCE=', F9. 4, 3X, ' AREA= 'L F9. 4)
| F(HI GH) WRI TE(6, 20) DI AM RADI US, Cl RCUM AREA
20 FORMAT(' DI AVETER= ', F12. 6, 3X, ' RADI US= ' F12.6/
* ' Cl ROUMFERENCE=' , F12. 6, 3X, ' AREA= ' F12.6)
GO TO 100
200 STOP
END

SUBROUTI NE CALC(X, R, C, A)
REAL*8 X, R C, A Pl /3.14159265/

R=X/ 2
C=X*PI
A=R**2* Pl
RETURN
END
/ I NCLUDE MJSNL. OBJ
*End
*CGo

vsfort.sanpl e
*In progress

MAI N * END OF COWPI LATION 1 ****

CALC END OF COVPI LATI ON 2 ***x**

006010 BYTES USED

EXECUTI ON BEGQ NS

Enter: DI AM=eval ue, LOW OR DI AMeval ue, H GH

?

di am=3. 51, | ow

DI AVMETER= 3.5100 RADI US= 1. 7550
Cl RCUMFERENCE= 11. 0270 AREA= 9.6762
Enter: DI AMeval ue, LOW OR DI AMeval ue, H GH

?

di an¥3. 51, hi gh

DI AVMETER= 3.510000 RADI US= 1. 755000
Cl RCUMFERENCE= 11. 026991 AREA= 9.676185
Enter: DI AMeval ue, LOW OR DI AMeval ue, H GH

?

/ eof

*End

* @0

Chapter 8. Processors - FORTRAN Compiler - VSFORT 397

References- VSFORT

Manualsfor VS Fortran Version 1
VSFortran Language and Library Reference, SC26-4119.

VS Fortran Programming Guide, SC26-4118.

Manualsfor VS Fortran Version 2

VSFortran Version 2 Language and Library Reference, SC26-4221.
VSFortran Version 2 Programming Guide, SC26-4222.

VSFortran Version 2 Interactive Debug Guide and Reference, SC26-4223.
VSFortran Version 2 Master Index and Glossary, SC26-4603.

VSFortran Version 2 Reference Summary, SX26-3751 (booklet).

398 FORTRAN Compiler - VSFORT - MUSIC/SP User's Reference Guide

MUSIC/SP VSIFORTRAN Debugger - TESTF

TESTF, the VS/FORTRAN Full Screen Debugger, enables you to control your VS/IFORTRAN program
completely during the test and debugging stages of program development. Y ou can set break-points, inspect
and alter variable values, scan the source for text, generate atrace listing (which includes actual source state-
ments), re-start execution at another instruction (within the current module), cause execution to cease at entry
and/or exit of routines, and manipulate arrays. Aswell, TESTF isintegrated with DEBUG, the machine
level debugger. This enables you to view and execute the actual machine instructions that implement your
VS/FORTRAN instructions. Of course, MUSIC commands can be issued from TESTF.

Invoking TESTF (VS Fortran Debugger)

The easiest way of invoking TESTF isto use the TESTF REXX exec. A simple example: in order to test
your VS/IFORTRAN program, called ASSIGN1, enter the following:

testf assignl

- VS/ FORTRAN I nteractive Debug ---- Were: MAIN @1 SN: 6 Line: 7

Conmmand ==>
Dat a W ndow Di spl ayed
-l SN L 2. 3o 4......... 5., 6......... 7..

2 | NTEGER* 2 12(2,2,2,2)

3 REAL X(4,4)

4 INTEGER 11, 1112,1111,J,K L

5 LOG CAL A B,C

C

6 10 A = . TRUE.

7 B = (.NOT. A

8 C = . FALSE.

C
9 11 =10
10 11 = 100

Modul e- - - Vari abl e- Addr ess- Type---- - Len- Atr--Hex Val ue--Value by Type ----------
MAI N 1 004990 | NTEGER4 4 00000000 0
MAI N [004994 | NTEGER4 4 00000000 0
MAI N CHRVAR 005800 CHAR 50 A E3C8C9E240 THIS IS THE (1,1) ELEME
1:Help 2: Run Pgm 5:Single Step 7: Page Up 4: Arrays 10: Debug
3: End 11: Animate Pgm 9: Break Point 8: Page Down 6: Data 12: Retrieve

Figure 8.6 - Example of MUSI C's VSFORTRAN Debugger Display

Thefollowing is amore detailed description of the TESTF exec.
The complete format for invoking TESTF is as follows:

TESTF source OBJECT(...) PARMS(...) REGON(...) FILES(...) LINK
LI STI N nane) DATA(nane)

where the above parameters have the following interpretation:

Chapter 8. Processors - MUSIC/SP VS/IFORTRAN Debugger - TESTF 399

source-name name of source file to compile and test; if omitted then the exec assumes that you wish to
run from object modules (using the OBJECT parameter)

OBJECT(...) name of object file to beincluded at run or link edit time; can contain /INCLUDE state-
ments

LINK reguests that aload module be generated and that it subsequently be executed

FILES(...) name of amodel file containing /FILE statements that will be used when the programis
executed.

LISTING(...) name of alisting file if no source file was provided. The file specified will be used for the
listing if a source file was specified.

REGION(...) specifies the region size to be used for al jobs
PARMS(...) application parameters for your VS/FORTRAN program

DATA(name) specifies the name of a datafile that will be accessible via READs on unit 5. Note that
thisfile should aready exist; otherwise, an error will result.

If you are not using the TESTF exec, then you should be aware of the following. Modules to be debugged
MUST be compiled with the TEST and SDUMP compiler options. Y ou must request a source listing, to be
saved in afilewith LRECL 133. In order to use the Debugger, set up JCL asin one of the following 3 exam-
ples (compile and go, load-and-go, and exec from load module€).

Note that the VS/IFORTRAN Debugger first looks for a DDname DBGLIST for the source listing, and then
(if not found) searches for SYSPRINT. So if thereisaconflict with using SY SPRINT, then utilize
DBGLIST instead.

Also, note that in the case of alarge application, not all of the application need be debugged. Y ou can elect
to debug only certain modules; the Debugger will "wake up" within these modules. However, you must
ensure that the VSFORTRAN environment has been established; this requires that you have aMAIN
program or at least call the VSFORTRAN initialization routines. Refer to the VS/FORTRAN Programmer's
Guide for more information on how to call VS/IFORTRAN initiaization routines, if you do not have a
VS/FORTRAN main program.

Compile-and-go

/ SYS REG=1500

/ FI LE SUBLI B PDS(*DBG, *CS, * MJS)

/ FI LE SYSPRI NT N(nodul e. LST) LR(133) NEW REPL)
/ LOAD VSFORT

/ OPT SOURCE, SDUWP, TEST

/1 NCLUDE nodul e. S

L oad-and-Go

/ SYS REG=1500

/ FI LE SUBLI B PDS(*DBG, *CS, * MJS)

/ FI LE SYSPRI NT NAVE(nodul e. LST) SHR
/ LOAD ASM.G

/1 NCLUDE nodul e. S

400 MUSIC/SPVS/FORTRAN Debugger - TESTF - MUSIC/SP User's Reference Guide

Load Module Exec

1) Linking

/ FI LE LMOD NAMVE(nodul e. LMOD) NEW REPL) LR(128) RECFM F)
/ FI LE SUBLI BOS PDS(* DBG, * OS, * MUS)

/ LOAD LKED

/ JOB NOGO, MODE=0S, NAME=npdul e
/1 NCLUDE nodul e. obj

2) Execution

/ SYS REG=1500
/ FI LE SYSPRI NT NAME(npdul e. LST) SHR
/ FI LE LMOD NAME(nodul e. LMOD) SHR

/ LOAD XMON

nodul e

F1 Help

F2 Run

F3 Exit

F4 Arrays

F5 Single Step

VSFortran Debugger Function Keys

Accesses the help text.

This key/command causes your program to resume executing, without returning
control to the Debugger unless a breakpoint is encountered, an error occurs, or your
program ends. Any breakpoints that have been set will be honoured, as will Entry
and Exit stops (set viathe Halt command). When the program terminates a message
to this effect is placed in the message area.

If you have enabled tracing with the TRACE command, then atrace listing will be
produced as execution proceeds.

This key/command causes an immediate exit from both your program and the
Debugger.

Pressing this key presents the Array display. The Array display allows you to
display and modify values of an array. Placing the cursor on an array in the data
display causesthat array to be displayed.

In the Array display, you can modify the index values that appear on the same line
asthe array name, in order to display that array element asthe first line. Asyou
scroll up and down through the array, the index values are altered in order to display
the index value for the top-most array element in the Array display. (Keepinmind
that first index value changes the fastest, and so on; index values are in the same
order as would be used in your program.)

Control is advanced to the next debuggable statement. Normally, this meansthat a
single statement is executed, but when aroutine is called that has not been compiled
with the TEST option, the Debugger cannot step into the routine; thus the whole
routine is executed. Any variables that have changed are updated on the screen.

If you place the cursor on aline and press F5 (STEP), then atemporary breakpoint is
placed on that line, instead of the next instruction, and execution resumes, until that
temporary breakpoint is encountered. In other words, your program will be
executed up until that line.

Chapter 8. Processors - MUSIC/SP VS/IFORTRAN Debugger - TESTF 401

F6 Data

F7 Up
F8 Down

A typical use of thisfeatureisto step past a DO loop without having to set a break-
point, then issuing the RUN command, and then resetting the breakpoint. Note that
when using this feature, there is no guarantee that control will actually be returned to
you at that statement. If the logic of your program is such that control never arrives
at that statement, then the use of thisfeature is equivalent to aRUN command. |f
you have no other breakpoints, then your program will run to termination.

Pressing this key presents the Data display. The Data display alows you to display
and modify values of variables known to the Debugger. Usethe FIND VARIABLE
(FV) command in order to locate a variable, and use the SHOW and HIDE
commands in order to control which variables are displayed. Use optionsin the SET
command as well in order to control how and when the variable list is modified.

In the Data display, you can modify avariable in both hexadecimal and "natural”
type. In other words, if the variable is of character type, you can either type in hexa-
decimal codes for the characters, or the characters themselves.

Causes the either the Source Window or the data window to scroll up or down by
one page. The DataWindow is either the Data, Array, or Watch display. The
Source Window contains the source lines being debugged. The window that is
scrolled depends upon where the cursor is located. If the cursor isin the Source
Window, then the Source Window is scrolled (note: the command line is considered
part of the source window). If the cursor isin the Data Window, then the Data
Window is scrolled.

If the cursor isin the Source Window on a source line, pressing F7 or F8 causes that
line to be positioned at the bottom or top of the Source Window Display, respec-
tively. The cursor is placed into the command area. This alows you to "fine tune"
your position in the source listing, without having to use the LINE command.

F9 Set/Reset Break Points

F10 Debug

Placing the cursor on asource line with an ISN (Internal Sequence Number) sets a
break point at that line, indicated by the characters 'l SN' being replaced by 'Brk'.
Repeating this caused the break point to be reset.

This places you into Debug (machine level), all set up to Debug the machine
language instructions for the current VS/FORTRAN instruction. To return to the
VS/FORTRAN Debugger, press F2 (RUN) or F3.

The machine level Debug isintegrated with the VS/FORTRAN Debugger, in that it
understands the VS/IFORTRAN TEST environment. The machine level debugger
displays the current VS/FORTRAN instruction being executed in the message area.
Pressing F3 returns to the VS/IFORTRAN Debugger without executing the instruc-
tion, whereas F2 executes the machine instructions for that statement, and then
returnsto the VS/FORTRAN debugger.

Be careful not to alter 'Set System Mask (SSM)' instructions, asthey provide ISN
information to the Debugger. When you reach a BAL instruction in front of one of
these, press F5 (Step). Thiswill position you at the next instruction to be executed
(The corresponding VS/FORTRAN statement will be updated, as well).

F11 Animated Execution

This key causes the Debugger to go into animated execution mode. Approximately
once per second (default value - "Set Delay” can dter this), aninstruction is
executed and the screen is updated. The effect is that of continuously single-stepping

402 MUSIC/SP VS/FORTRAN Debugger - TESTF - MUSIC/SP User's Reference Guide

your program. In order to exit this mode, press Enter and animation will cease.

F12 Retrieve This key retrieves previously entered commands into the command field. This
allows you to re-issue commands after (possibly) correcting them, for example.

VSFortran Debugger Commands

Although only the full form of the command name is given here, all commands can be specified with the
minimum number of characters necessary to unambiguously identify the command.

Some commands refer to the 'current modul€e'. This means the module of your program that is currently
executing. You can determine what thisis by looking on the first line of the screen; the name after the label
WHERE is the name of the 'current modul€'.

Find
The Find command has a number of variants. Although the actual syntax is:
find search-type arg

where 'search-type' is the function being requested, you can specify each variant of the FIND command by 2
characters, given below.

Find String (FS) This command locates a string in the source listing, starting from the current line. 1f
the string is not found, then the search is re-started from the top. Thusthe effect is
that the string is found, no matter where it isin the source; the search "wraps
around", so to speak.

Syntax:

find string text or fs text
where 'text' is the string to be located. the current line.

Find Variable (FV) The FIND VARIABLE command locates a variable in the variable list, starting from
the first variable displayed. Aswith the string search, the search "wraps around" if
the variableis not found between the current line and the bottom of thelist. If a
variable ishidden, it is made visibleif it isfound.

Note that by default, the search is restricted only to the current module. In order to
search the entire variable list, use the *' option for the module name.

Syntax:
find var nane or fv nane
find var * name or fv * nane
find var nod nane or fv nmod nane

where 'name' is the name of the variable to be located, ‘mod' is the module name to
which the search should be restricted, and *' means locate a variable with the speci-
fied name, regardless of which moduleitisin.

Find Module (FM) This command searches for the named module. In addition to subroutines which

Chapter 8. Processors - MUSIC/SP VS/FORTRAN Debugger - TESTF 403

Find Breakpoint (FB)

Find Label (FL)

Find ISN (FI)

Line

have explicit names, the name MAIN is recognized as the name of the main
program, even though it does not appear in the source. Thisis because the command
operates on the results of an analysis of the source input. By the same token, any
module not in the source listing cannot be found.

Syntax:
find nodul e nod or fm nod
where 'mod' is the name of the module to be located.
This command finds the next breakpoint in the source listing. If abreakpoint is not

found between the current line and the end, then the search "wraps around" from the
start of the source listing.

Syntax:
find break or fb

This command locates the statement label specified. Unless modified by a module
name, the search is restricted to the current module.

Syntax:
find | abel # or fl #
find | abel * # or fl = #
find | abel nod # or fl nod #

where '# is the statement label, 'mod' is the name of a module, and *' means all
modules.

This command locates the Internal Sequence Number (1SN) specified. (AnISNis
the number assigned to all FORTRAN statements, except comments, and appears to
the left of the FORTRAN statement in the listing.) Unless modified by a module
name, the search is restricted to the current module.

Syntax:
find isn # or fi #
find isn * # or fi * #
find isn nod # or fi nod #

where '# isthe ISN, 'mod' is the name of a module, and '*' means all modules.

This command allows you to specify exactly which line to display. Although the line numbers are NOT
displayed on the screen, the line number of the top line of the current display islocated in the upper right-
hand corner of the screen. Thiscommand is intended as a convenience in moving quickly to a particular area

of the source listing.

404 MUSIC/SPVS/FORTRAN Debugger - TESTF - MUSIC/SP User's Reference Guide

Top/Bottom

"TOP' moves the source window to the top of the sourcelisting. 'BOTTOM' moves the source window to the
end of the source listing.

Trace

This command controls whether tracing information is produced when your application program is running.
Initially, tracing information is not produced. When TRACE is entered, it causes trace messages to be
produced when you issue a RUN command or a STEP command (over more than 1 statement); this mode has
been "enabled". (You can save these messages by issuing the MUSIC command /REC NEW before running
TESTF, and issuing /REC OFF after you exit from TESTF. The trace messages will bein afile called
@REC.000) Entering TRACE again causes this to be cancelled, or "disabled”. The messages produced by
this command tell you whether TRACE mode has been "enabled" (activated) or "disabled" (deactivated).

Note: Enabling TRACE, then entering the machine Debugger and tracing instructions there, causes the
FORTRAN and machine trace outputs to be merged.

Halt

This command allows you to run without breakpoints and to interrupt the execution of your program at the
entry or exit from subroutines.

no parameter Entering HALT without a parameter displays the status of the HALT conditions,
both ENTRY and EXIT (see below).

ENTRY 'HALT ENTRY' causes the Debugger to interrupt your program whenever control
enters a subroutine. In other words, you receive control in the Debugger at the
beginning of every subroutine.

EXIT 'HALT EXIT' causes the Debugger to interrupt your program whenever control exits
asubroutine. In other words, you receive control in the Debugger at the end of
every subroutine.

OFF 'HALT OFF resets both Halt conditions to inactive.
Syntax:

hal t

halt entry

halt exit

halt entry exit

halt off
SET

This command allows you to tailor how the Debugger operates. Typicaly, these options control default
actions of the Debugger.

Set Aut oShow
Aut oH de
Bel |
Count

Chapter 8. Processors - MUSIC/SP VS/FORTRAN Debugger - TESTF 405

Del ay
AutoShow 'SET AUTOSHOW' alows you to alternate between two modes of presenting variables.

The default mode is that only variables in the current module are displayed. When you call
another module, thelist of variablesis cleared and only the variablesin that module are
displayed. This guaranteesthat the valuein the variable'l’, for example, that you see refers
to the variable | in the module currently being executed.

The other operating mode does NOT reset the variable list every time a subroutineis called.
This allows you by default to retain all variablesin thelist of variables. Normally, thisis not
necessary or desirable.

AutoHide This option affects how the SHOW command (see below) operates. By default, when a
SHOW command isissued, thelist of variablesisfirst cleared. 'SET AUTOHIDE' aternates
between this mode of operation and the other mode whereby the list of variablesis not
cleared by default (you can do thisviathe HIDE *.* command, see below).

Thusto view only 2 or 3 variables constantly, issue the 'SET AUTOHIDE' command. Then
issue 'HIDE *.*', and finally, issue your SHOW command (for example, SHOW | JK). This
will fix 1, J, and K in the variable window. If you wish these to be preserved across subrou-
tine calls, then issue the 'SET AUTOSHOW' command as well.

Bell This option switches between never sounding the alarm and sounding the alarm when an
error or unusual condition occurs.

Count This aters the maximum statement count (default 5000). When you run your program, the
debugger counts the number of instructions executed. When this number is exceeded, the
debugger interrupts your program and places a message on the display.

Thisfeature allows you to run your program without fear that you will "lose control" and be
caught in an loop. Likewise, if your program is looping, this feature allows you to discover
whereit is doing this.

The value specified with COUNT should be a positive number. To disable counting, specify
alarge positive number (i.e. 999999).

Delay This option alters the default delay time of 1 second between statements when using
Animated Execution (see ANIMATE command). Specify the number of seconds to pause
between VS/FORTRAN instructions; it must be a whole number bigger than O.

SHOW

This command allows you to control the variables displayed in the Variable window. (Seealso SET
AUTOSHOW and SET AUTOHIDE.) You can specify alist of individual variables and/or templates. The
*' used as a variable or module name means all variables or all modules. If used as part of a name (for
example, 1*) it means all variables or modules starting with 'Il".

Entering SHOW without parameters causes the Debugger to report the number of variables shown, and the
total number of variables known.

406 MUSIC/SPVS/FORTRAN Debugger - TESTF - MUSIC/SP User's Reference Guide

+-- var-nane di spl ays variable in current nodul e

| nodul e. var-nane displays variable in indicated nodul e
Show | * . var - nane di splays indicated variable in all nodul es

| nodul e. * di splays all variables in indicated nodul e

4o ¥ di splays all variables, all nodul es

HIDE

HIDE accepts the same format of parameters as does SHOW. However, variables that match the template
are hidden from view, and not displayed.

Entering HIDE without parameters causes the Debugger to report the number of variables hidden, and the
total number of variables known.

GO

This command allows you to ater the next instruction to be executed. Normally, FORTRAN programs
execute instructions sequentially, unless the flow of control is modified by aloop, GO TO, or

IF-THEN-EL SE construction. Within the Debugger, however, for testing purposes it is sometimes useful to
re-do a number of statements (perhaps when erroneous input is recognized and corrected). The GO
command allows you to execute any instruction within the CURRENTLY EXECUTING module ONLY .
Thus you cannot suddenly execute a statement in some subroutine that is not active.

Note: GO does not cause execution to commence. Use the RUN command for this. This gives you a chance
to verify that the statement to be executed next isin fact the one you wanted to be executed.

Syntax:
go #

where '# isthe ISN (Internal Sequence Number, given to the left of the statement in the source listing).

External Command

In order to execute aMUSIC command (say to Edit or View afile), preface the command in the command
linewith aleading /. Thus, to Edit your file called '"ASSIGN1', enter the following in the command line;

/edit assignl

When you have finished your Edit session, you will be returned to the Debugger.

Chapter 8. Processors - MUSIC/SP VS/IFORTRAN Debugger - TESTF 407

General Purpose Simulation System - GPSS

Genera Purpose Simulation System (GPSS V Program Product 5734-XS2) isadigital simulation program
for conducting evaluations and experiments of systems, methods, processors and designs. The program
provides many facilities to simplify simulation programming and to produce output reports. The program is
amodification and adaptation of GPSS V available on the 360-370 Operating System.

Restrictions- GPSS

The following special features of GPSS may give problems under MUSIC, and their use should be avoided if
possible:

Update
Read/Save
Jobtape

Run Length
Auxiliary Storage
Load

HELP routines

Usage - GPSS

GPSSisinvoked by using the /[LOAD GPSS statement in the input stream. The /LOAD isfollowed by an
optional /OPT statement specifying the main storage option (A, B, or C) to be used, then by the GPSS
program statements. If /OPT is omitted, storage option A is used.

/ LOAD GPSS

[/ OPT x (where x is A B, or O

...CGPSS program statenents. ..
The ddnames which are automatically predefined by the MUSIC/GPSS interface are: DINPUTL1 (input state-
ments), DOUTPUT (printed output), and the temporary work files DINTERO, DSYMTAB, DINTWORK,
DREPTGEN, and DXREFDS. Other ddnames, if needed, must be defined by /FILE statements. If the
default space is not enough for atemporary work file, supply an overriding /FILE statement of the form:

/ FI LE ddname NAME(&&TEMP) NEW RECFM V) SPACE(n)
Reference - GPSS

General Purpose Smulation System V User's Manual, (GH20-0851)

408 Genera Purpose Simulation System - GPSS - MUSIC/SP User's Reference Guide

Example- GPSS

/ LOAD GPSS

* GPSS HARBOUR S| MULATI ON PROBLEM
Sl MULATE
GENERATE 2,1
QUEUE 1
ENTER 11
DEPART 1
QUEUE 2
ENTER 12
DEPART 2
ADVANCE 15, 6
LEAVE 12
TRANSFER .9,,LVE
ADVANCE 2,1

LVE LEAVE 11
TABULATE 10
TERM NATE 1

11 STORACE 6

12 STORACE 5

10 TABLE ML, O, 10, 20
START 100
END

Chapter 8. Processors - General Purpose Simulation System - GPSS 409

Graphical Data Display Manager - GDDM

MUSIC supports the GDDM series of programs, providing presentation services in host computers. It drives
displays, printers, plotters, and scanners, and includes several easy to use utilities for end-users. These utili-
ties can be accessed via a full-screen menu.

Aswell, GDDM has a powerful and versatile programming interface. This means that from your high level
language program (VS FORTRAN, PL/1, VS PASCAL, etc.) you can call GDDM subroutines and perform

graphics function upon your workstation. Using PCLK, you can generate graphics on MUSIC/SP that can be
displayed on your PC (when dialed into the MUSIC/SP host running on a 9370).

Command - GDDM

To start any of the GDDM functions (Presentation Graphics, View Utility) issue the command: GDDM.
From the panel screen, select the option and press enter. In order to use the System Programming Interface
of GDDM, refer to the GDDM reference manual for the subroutine calling sequences. Y ou must use the
appropriate subroutine library as described below.

Y ou should specify a 3 megabyte user region when using GDDM.
Usage Notes- GDDM

If you are coding your own applications to use GDDM's System Programming Interface, then you will need
to use the correct subroutine library when Linkediting the program.

If the program is using the GDDM reentrant interface, use the following subroutine library search order:
(*GDDMRLIB, xxx, *GDDM, *OS, *MUS).

If your program is using the non-reentrant interface (thisis usualy the case), then use the following for the
subroutine library search order: (*GDDMNLIB, xxx, *GDDM, *OS, *MUS)

In both of the above cases, replace "xxx" by * PGF, *IMD, *1VU when using the Presentation Graphics
Facility, the Interactive Map Definition utility, or the Interactive View Utility, respectively.

For example, suppose that you are using the non-reentrant version of the System Programming Interface, in
conjunction with the Presentation Graphics Facility. In generating aload module using the Linkage Editor,
the required SUBLIBOS file statement would be:

/ FI LE SUBLI BOS PDS(* GDDWNLI B, * PG, * GDDM * OS, *MJS) SHR
placed prior to the/LOAD LKED statement.

Accessto GDDM on MUSIC/SP viaFTTERM V2, viathe 9370 ASCI| subsystem is supported. Consult the
FTTERM documentation for further information.

410 Graphical Data Display Manager - GDDM - MUSIC/SP User's Reference Guide

Restrictions

1. You cannot usethe MUSIC Loader with any GDDM applications. The MUSIC Linkage Editor must be
utilized. This means that you must specify /JOB NOGO,DECK for the assembly or compilation step,
and run a second job that performs the linkedit. (Refer to the Usage Notes above to see how to specify
the GDDM subroutine libraries.)

2. If you are using the System Programming Interface of GDDM, then you MUST add the following call
BEFORE attempting to call any GDDM facilities.

CALL GDDMSB
This call sets up the MUSIC-GDDM interface and then returns to the caller.

3. Thesample User Tasking application requires alarge amount of storage. Based on the order that you
select the start-up, you can receive the MUSIC message about Insufficient Main Storage.

4. Depending on the type of workstation that you are using, the MUSIC multi-session facility may function
alittle differently. When you press the PA2 key, you MAY get a"X PROG752" message at the bottom
of your workstation. Thisis caused by the fact that GDDM has set the workstation in 16 bit addressing
mode. Multi-session is STILL available. You will NOT receive the message "Press function key to go
to next session”. To use multi-session, you must:

1. Press RESET on the workstation.
2. Press the function key for the multi-session function you wish to
perform.

Full-Screen Menu - GDDM

The following menu is presented when you issue the GDDM command from the * Go mode. This front-end
menu allows you to start up the various GDDM utilities without having to remember the actual utility name.

Chapter 8. Processors - Graphical Data Display Manager - GDDM 411

Sel ect Option ===>

Interactive Synmbol Editor
Interactive Vector Synbol Editor
Interactive Chart Utility
Interactive Map Definition
Interactive View Wility
Creat e Conposite Docunent
Chart: Format | ' GDF': 38xx: Y (YIN)

OOk WNER

7 Browse Conposite Docunent Fi | enane:

(following require PL/I)

8 Sanple Program 3
9 Sanple Program 4
10 Sanple Task Manager

PF3- End

Figure 8.7 - Menu for GDDM

Two symbol editors (the Image Symbol Editor and the Vector Symbol Editor) allow you produce or modify
symbols for annotating graphical output.

The Interactive Chart Utility helps you to draw chartsin asimple manner for display on a screen or for
printing. No programming knowledge is required in order to run the Interactive Chart Utility.

The Image Map Definition utility allows you to define the layout of the data that your application program
presents on adisplay or output device. Basicaly, it allows you to define screens for your programs using
GDDM.

The Interactive View Utility is an interactive program which allows users to create images by scanning
documents, save images on disk, display them on screens, edit them in various ways, and create image
output filesfor printers.

A composite document is afile containing text, images, and graphics. Option 6 on the GDDM menu

allows you to create these documents and save them in MUSIC files. Option 7 enables you to view these
documents on aworkstation or a PC (using PCLK).

References- GDDM

There are alarge number of manuals available for GDDM. Refer to the General Information Manual below
for more information on the manuals that you should reference. A selection of some other GDDM manuals
has also been included below.

GDDM General Information Manual, (GC33-0319).

412 Graphical Data Display Manager - GDDM - MUSIC/SP User's Reference Guide

GDDM Image View Utility, (SC33-0479).

GDDM Interactive Map Definition, (SC33-0338).
GDDM-PGF Interactive Chart Utility, (SC33-0328).
GDDM Image Symbol Editor, (SC33-0329).
GDDM-PGF Vector Symbol Editor, (SC33-0330).
GDDM Application Programming Guide, (SC33-0337).
GDDM-PGF Programming Reference, (SC33-0333).

GDDM PCLK Guide Version 1.1, (part number 6242915).

Examples- GDDM

The following samples show the MUSIC control statements needed to compile, linkedit and execute a
GDDM sample program.

1. CompilingaGDDM Sample Program

/ SYS REG=1000

/ EI LE SYSPUNCH NAVE(PLI 4. SAMPLE. OBJ) NEW REPL)
/ FILE SYSLIB PDS($GDM *. M SHR

/ LOAD PLI

/ JOB NOGO

/ OPT | NCLUDE, MARGI NS(2, 72, 0) , DECK

/1 NC $GDM ADMUSP4. S

2. Link-Editing a GDDM Sample Program

/ EI LE LMOD NAME(PLI 4. SAMPLE. LMOD) NEW REPL) LR(128) RECFM F)
/ FI LE SUBLI BOS PDS(* S, * GDDMN\LI B, * GDDM *MJS) SHR

/ LOAD LKED

/ JOB NOGO, MODE=CS, MAP

/1 NC PLI 4. SAMPLE. OBJ

3. ExecutingaGDDM Sample Program

/ SYS REG=3000

/ FI LE ADVMSYMBL PDS(*.SYM $GDM *. SYM SHR

/ FI LE ADVDEFS N(GODM ADVDEFS) SHR

/ FI LE ADMGDF PDS(*. GDF) SHR

/COMif you have PC-Link then you need the next statenent
/ FI LE ADMPC PDS($PLK: *. SYM) SHR

/FILE 3 UDS($GDMEDDM) VOL(MUSI C1) SHR

/ FI LE LMOD NAME(PLI 4. SAMPLE. LMOD)

/ LOAD XMPLI

TEMPNAMVE LMOD

Chapter 8. Processors - Graphical Data Display Manager - GDDM

413

Linkage Editor - LKED

The MUSIC Linkage Editor is aloader which is capable of creating aload module with an overlay structure,
similar to the IBM Operating System Linkage Editor. (The load modules, though, are not interchangeable
with OS.) If an appropriate /FILE statement for aUDS or fileis provided, the load module will be written on
it. Load module data sets should be alocated with arecord size of 128 bytes, and record format F should be
used for files. When loading is complete, the job is executed (unless /JOB NOGO is specified). The Link-
age Editor overlay supervisor is part of the user program during execution and requires about 2000 bytes of
main storage.

Since load modules in some cases contain system-dependent coding, users should be prepared to recreate
them if required because of system modifications.

Notes:

1. TheALIAS, INCLUDE and LIBRARY Operating System Linkage Editor control statements are not
supported.

2. Theuser should note that if an overlay segment isto be used more than once, it must be serially reusa
ble. Serially reusable means that an overlayed subroutine does not assume that variables will still
contain values set by some previous execution of that subroutine.

3. If aprogram to be overlaid uses VS FORTRAN direct access input/output, all DEFINE FILE statements
must be in the root segment of the overlay.

Link-editing COBOL, VS Assembler and PL/I Programs

VS FORTRAN, COBOL, VS Assembler, and PL/I programs which perform input/output through BSAM or
QSAM macro instructions must be link-edited with MODE=0S and NOGO specified on the /JOB statement.
To run these programs from aload module, the user must use the /LOAD XMON statement (for COBOL,
VS FORTRAN, and VS Assembler) or the/LOAD XMPLI statement (for PL/I) in place of the/LOAD
EXEC statement.

Usage- LKED

The Linkage Editor isinvoked by a/LOAD LKED statement. This statement may be followed by abject
modules and overlay control lines or by a/OPT SY SIN=n pointing to a data set containing object modules
and overlay control statements.
Thefile to contain the load module is defined by a/FILE statement specifying ddname LMOD. This/FILE
statement precedes the /LOAD LKED statement. Unit number 3 may be used instead of ddname LMOD.
Either afile or aUDS may be used, asin the following examples:

/ FILE LMOD NAME(fil ename) NEW LRECL(128) RECFM F) SPACE(40)

/ FI LE LMOD UDS(dsname) VOL(MJSI C1) NEW LRECL(128) NREC(500)
To distinguish load module files from other files, it is agood ideato use a suffix such as.LMOD at the end
of the file name.

414 Linkage Editor - LKED - MUSIC/SP User's Reference Guide

Parameters- LKED

The/LOAD LKED statement may be followed by a/JOB line indicating optional parameters.

/JOB [NOVAP] [, NOCALL] [, NONCPRI NT] [, NOGO| [, SEQUENCE] [, TRACE]
[MAP J[,CALL]J[,NOPRINT][,G0]

[,PRINT]

[, NAME=pr gnnj [, MODE=OS] [, LET] [, STATS] [, MAXGAP=nN]

NOMAP

MAP

NOCALL

CALL

NONOPRINT
NOPRINT
NOLIST
PRINT

LIST

NOGO

GO

LET

SEQUENCE

TRACE

MAXGAP=n

No module map to be produced. Thisisthe default for workstation jobs.

A module map showing each csect and entry point with its assigned relative addressisto be
printed. Thisisthe default for batch jobs. Absolute addresses can be found by adding hexa-
decimal 4A00 to the relative addresses.

Do not search the system subroutine library for required modules not present in the input
stream. The parameter NOSEARCH is equivalent to NOCALL.

Search the system subroutine library for required modules not present in the input stream.
Thisisthe default. The parameter SEARCH is equivalent to CALL.

Suppress printing of al control statements and error messages.

Suppress printing of al control statements. Thisisthe default for workstation jobs.
Same as NOPRINT.

Print al control statements and error messages. Thisisthe default for batch jobs.
Same as PRINT.

Do not execute the load modul e produced.

Execute the load module only if no errors were detected during Linkage Editing.

Execute the load module even if errors were detected during Linkage Editing. Thisisthe
default.

Check segquence numbersin columns 77-80 of all input object modulesto detect any missing
or out-of-sequence lines. Blank sequence numbers are ignored.

Display a message identifying each csect asit isread by the Linkage Editor.

Specifies that any uninitialized storage areas of length greater than n bytes are to be repre-
sented as agap in the load module text on disk. The defaultis MAXGAP=8192.

The following parameters are only meaningful if the load module is being created on afile that is to be kept

for later use.

NAME=prgnm Specifiesthe name of the load module, and is required. prgnm can be up to 8 charactersin

length and must be a phanumeric with no specia characters. The Linkage Editor control

Chapter 8. Processors - Linkage Editor - LKED 415

statement NAME will override thisoption. If not specified, NAME=TEMPNAME is
assumed.

STATS Specifies that the Linkage Editor isto display a message showing the total number of blocks
in the load module data set, and the number of blocks used for thisload module. A blockis
a512 byte piece of thefile. Thusthefile statement "/FILE LMOD UDS(& & TEMP)
NREC(400) RSIZ(128)" contains 100 blocks.

MODE=0OS Specified if link-editing COBOL, PL/I or VS Assembler programs as described above. The
NOGO option must also be specified.

Notes:

1. If a/JOB statement is used, it should appear immediately after the /LOAD LKED statement. More than
one /JOB line may be used if necessary, but each parameter must be wholly contained on one /JOB line.

2. For avery large program, the Linkage Editor may stop with an error message such as t oo nmany RLDs
or too much text. Inthat case, try the Linkage Editor job again in alarger user region, e.g. /SYS
REGION=1024. A larger work file may also be needed (see note 3 below).

3. TheLinkage Editor uses atemporary UDS with a DDNAME of LKEDWORK asawork file. This
UDS has a default size of 8000 128-byte records. If needed, the user can increase this size by specify-
ing a permanent UDS (which is deleted at the end of the job) by using the appropriate /FILE statement.
For example:

/ FI LE LKEDWORK UDS(dsnane) NREC(20000)
/ ETC LRECL(128) VOL(MJSICl) NEW DELETE

4. Thefollowing statement is needed when you use /LOAD LKED to execute a COBOL 2 load module:

/ FI LE SUBLI BOS PDS(*COBCL2, * MUS, * CS, * EXT)

Control Statements- LKED

The Linkage Editor control statements normally begin at or after column 2. These statements should be
preceded by all object modules (or /INCLUDE statements pointing to object module files).

Note that some Linkage Editor control statements have names which are similar to MUSIC's statements
though they are NOT the same. (The MUSIC Linkage Editor takes its control statement names from those of
the OS Linkage Editor.)

The following Operating System Linkage Editor control statements are supported on the MUSIC Linkage
Editor:

OVERLAY
INSERT
ENTRY
NAME
REPLACE
CHANGE

416 Linkage Editor - LKED - MUSIC/SP User's Reference Guide

The following control statements are not supported:

ALIAS
INCLUDE
LIBRARY

The/OPT SY SIN=n control statement may be used to read the input from MUSIC unit number n. Normally
this control statement is used when you want to read object modules from aUDS file. When end-of-file or a
/IDATA statement is reached on the data set the Linkage Editor switches back to the normal input stream for
further input.

Linkage Editor Return Codes

The following job exit codes (return codes) are set by the Linkage Editor:

0 Noerrorsor warnings.

4 Some warning messages were issued. For example, there were some unresolved external references.
8 Some error messages were issued.

16 The Linkage Editor job was aborted because of a serious error.

>16 Some other system error.

If more than one load module member is created in the job, i.e. more than one NAME statement was used,
the exit code is the highest code encountered for all the members.

If /JOB NOGO is not used, and the user's program is executed as part of the Linkage Editor job, the exit code
is as set by the user program, rather than as above.

Reference- LKED
IBM 360/370 Operating System Linkage Editor and Loader (GC28-6538)

Example- LKED

/ FI LE LMOD NAME(PROG2. LMOD) NEW LRECL(128) RECFM F)
/ LOAD LKED
/ JOB MAP, NAVE=TEST2
/ 1 NCLUDE MAI N (FI LE CONTAI NI NG THE MAI N PROGRAM)
/1 NCLUDE SUBS (FI LE CONTAI NI NG THE THREE SUBROUTI NES)
OVERLAY A
| NSERT SUBL
OVERLAY A
| NSERT SUB2
OVERLAY A
| NSERT SUB3
/ DATA
- USER DATA -

Please refer to the example in the description of "EXEC - LOAD MODULE EXECUTOR" in this chapter for
the control statements used to execute the load modul e created above.

Chapter 8. Processors - Linkage Editor - LKED 417

L oad M odule Executor - EXEC

The Load Module Executor is used to load and execute a program which has previously been stored in afile
by the MUSIC Linkage Editor. The executor isapart of the user program during execution, and requires
about 2000 bytes of main storage. Thisloading process can be considerably faster than the use of the stan-
dard loader.

Since load modules in some cases contain system-dependent coding, users should be prepared to recreate
them if required because of system modifications.

COBOL, ASM and PL/I Load Modules

The /LOAD EXEC processor automatically bringsin the FORTRAN G interface. Y ou must use the/LOAD
XMON procedure if the load module is produced by an object module from some other compiler. For aload
module produced by an object module from aPL/l program, use the /LOAD XMPLI procedure. The
OS/MUSIC interface will be loaded in these cases.

Usage- EXEC
The Load Module Executor isinvoked by a/LOAD EXEC statement. /LOAD EXEC specifiesthat aload

module contained in afileisto be executed. /LOAD statements must not be used following this statement.

The/LOAD EXEC statement must be preceded by a/FILE statement specifying the file which contains the
program, normally with a ddname of LMOD.

Control Line- EXEC

The Load Module Executor requires a single control line, which must be placed immediately after the
/LOAD EXEC statement. Thislineisfollowed immediately by any user datarequired. (The/DATA state-
ment is not used).

The format of the control lineis as follows:
membername ddname
or

unit number

The member name must start in column 1, and is the name specified in the NAME=xxx option or on the
NAME control statement when the load module was created by /LOAD LKED.

The second item is the ddname or unit number used on the load module /FILE statement in the /LOAD

EXEC job. Thedefault is ddname LMOD. It is separated from the membername by 1 or more blanks or
commeas.

418 Load Module Executor - EXEC - MUSIC/SP User's Reference Guide

Example- EXEC

Please refer to the example in the description of "LKED - LINKAGE EDITOR" in this chapter for the
control statements used to create the load module referred in the following example. The load module was
created in the file PROG2.LMOD, with module member name TEST2.

The following example shows how to cause this load module to be executed.

/ FI LE LMOD NAME(PROG2. LMOD) (1 oad nodul e)

/ LOAD EXEC
TEST2 (rmenber nane of | oad nodul e)
/1 NCLUDE DATAl (user's data)

Note: A /DATA statement does not precede user data.

Chapter 8. Processors - Load Module Executor - EXEC 419

L oad M odule Executor - XM ON

The/LOAD XMON processor allows programs to be executed from load modules. Thisusually resultsin
faster loading (compared with /LOAD ASMLG or /[LOAD COBLG) and allows overlay structures to be
used. Theload moduleis created from the program object modules in the usual way, using the MUSIC
Linkage Editor, except that the parameters MODE=0S and NOGO should be specified on the Linkage Editor
/JOB statement. The load module is executed using /[LOAD XMON, in much the same way as/LOAD
EXECisused. For /LOAD XMON, the user'sload moduleisloaded at address 4A00 (hexadecimal).

Usage- XMON

/ LOAD XMON
XMON isused asfollows:
/| FILE statenents as required
/FILE LMOD NAME(fil enanme) or /FILE LMOD UDS(dsnane) VOL(vol une)
/ LOAD XMON
paraneter statenent (see bel ow)
...user data if any...
The parameter statement (immediately following /LOAD XMON) has the following format:
membername ddname options
or
unit number

The member name must start in column 1, and is the name specified in the NAME= option or on the NAME
control statement when the load module was created by /LOAD LKED.

The second item is the ddname or unit number used on the /FILE statement for the load module file. The
default isddname LMOD. Thisitem must be specified if any additional options follow.

The following additional options, separated by blanks or commas, can be used:
SVCTRACE to trace supervisor cal instructions in the program.

IOTRACE to trace input/output operations.

DUMP to produce a storage dump, in some cases, if the job abnormally terminates.
CDUMP conversational dump.
DEBUG invoke full-screen debugger.

NONRENT load anon-reentrant copy of OSTRAP into the user region. This enables you to test
OSTRAP with DEBUG (requires that the debugged module reside in the user region).

420 Load Module Executor - XMON - MUSIC/SP User's Reference Guide

L OADER - System L oader

The MUSIC loader may be used to load all programs except overlays and those programs requiring the
OS/MUSIC interface. Aninput stream which consists entirely of object modules produced by VS Assembler
will be processed more efficiently if the loader processor isinvoked directly. After loading is complete, the
program is executed (unless /JOB NOGO is specified).

Notes:

1. Object modules from high level language compilers and VS Assembler programs using BSAM or
QSAM macro instructions cannot be executed using this loader. They require either /LOAD COBLG,
/LOAD PLILG, or /[LOAD ASMLG.

2. Theloader can handle a maximum of 255 control section names and entry point names. If the combined
total of CSECT names and entry names exceeds 255, use the linkage editor.

Usage- LOADER

The loader isinvoked by the use of a/LOAD LOADER statement.
/LOAD LOADER specifies that the lines following consist exclusively of object modulesto be loaded and

executed by the MUSIC loader. Utilization of processing unit time is optimized if this statement is used
instead of /LOAD BASIC or FORTGL1. /LOAD statements following this statement are ignored.

Parameters: Loader Step - LOADER

/JOB [GO][,MAP][, XESD=sss][, XRLD=rrr][, NOPRI NT]
[NOGQ [, NOVAP]

GO The program is to be loaded and executed. Thisisthe default.

NOGO The program isto be compiled only. (This option is often used when the DECK option on
the /OPT statement is used from a workstation.)

MAP A storage map showing where the user's programs and subprograms are loaded into main
storage isto be produced.

NOMAP No storage map is to be produced.

XESD=sss The number of extra external symbol dictionary entries required (indicated when the loader
is unable to load the program).

XRLD=rrr The number of extrarelocation dictionary entries required (indicated when the loader is
unable to load the program).

NOPRINT All loader messages, except error messages, are to be suppressed.

Chapter 8. Processors - LOADER - System Loader 421

Note: If a/JOB statement is followed by another /JOB statement, only the last one is processed.

/ OPT [SYSI N=n]

SYSIN=n Specifies that input is to be taken from MUSIC unit number n (1 through 15). A /FILE state-
ment defining MUSIC I/O unit n as the appropriate file must appear at the beginning of the
job. When an end-of-file or a/DATA statement is encountered on thisinput data set, further
input is taken from the normal input stream. |f another /OPT SY SIN=nisfound in the input
stream, it will be processed in the same manner.

Example- LOADER

In the following example an object module was saved in afile caled SAMPLE.OBJ. Edit thefile
SAMPLE.OBJ, and add the Job Control statement /LOAD LOADER asthefirst line. Then file the object
module.

The example below shows the object module being executed.

*@0

sanpl e. obj

*In progress
003638 BYTES USED
EXECUTI ON BEGQ NS
?

25.

THE ROOT OF 25.00 IS 5.00
?

/ cancel

*Ter m nat ed

*@0

422 LOADER - System Loader - MUSIC/SP User's Reference Guide

PASCAL Compiler - VSPASCAL

Programs written in the PASCAL language can be compiled and run using the IBM VS PASCAL compiler
(Program Product 5668-767). Y our installation may choose not to have this compiler available for your use.

VS PASCAL programs are normally compiled and executed using the OS/MUSIC interface. TheVS
PASCAL processor invokes the compiler, and then the loader (unless /JOB NOGO is specified). After load-
ing, the program is automatically executed.

Notes:

1

Since VS PASCAL programs can invoke many of the facilities of the Operating System, some of which
are not available on MUSIC, it is possible to compile aVS PASCAL program which will not execute on
MUSIC.

MUSIC supports fixed length sequential files. Thisincludes VS PASCAL TEXT and RECORD file
formats. VS PASCAL programs using the procedures PDSOUT and UPDATE (for sequential files)
may be compiled but not run on MUSIC. Variable length records are supported only on output, and
must not be blocked.

VS PASCAL direct access files using the SEEK procedure and fixed-length records are supported,
provided that RESET or UPDATE procedure is used when opening the file. The REWRITE procedure
must not be used for direct accessfiles. For reading, open thefile using the RESET procedure. For
writing, use the UPDATE procedure. A new direct access file must beinitialized in VS PASCAL by
writing recordsin order (0,1,2,...) to the end of the dataset. Internally, each direct access record starts
on a512-byte block and occupies one or more blocks. To initialize adirect accessfile, usethe
REWRITE procedure to create a sequential file, writing valid or blank recordsin order to the file. Once
the file has been created, it can be accessed as a direct accessfile.

If the VS PASCAL %INCLUDE statement is used, a/FILE statement with a ddname of SY SLIB and
parameter PDS must be defined at the beginning of thejob. (Consult the description of the /FILE state-
ment for files.) By default, the system provides a SY SLIB file statement pointing to the 'standard' VS
PASCAL ‘include library. If you wish to provide your own library and still have access to the 'standard'
list, you must use the following SY SLIB statement.

[/ FILE SYSLIB PDS(' your library specifications', $VP2:*. M SHR

VS PASCAL supports two different forms of the %INCLUDE statement. Under MUSIC, only the
following form is supported.

% NCLUDE nenber - nanme

The MUSIC /INCLUDE statement may also be used to perform afunction similar to the %INCLUDE
statement.

Usage - VSPASCAL

The VS PASCAL compiler isinvoked by the use of a/LOAD VSPASCAL statement. /LOAD VSPASCAL
specifies that the lines following consist of source statements to be processed by the IBM VS PASCAL
compiler. Object modules may also be present. No other /LOAD statements should follow this one.

Chapter 8. Processors - PASCAL Compiler - VSPASCAL 423

Main Storage Requirements- VSPASCAL

If the compiler isnot in MUSIC's Link Pack Area, aregion of at least 512K isrequired. If the compilerisin
the Link Pack Area, a 256K region islarge enough for small programs.

| nterlanguage Communication - VSPASCAL

It is sometimes desirable to invoke subprograms written in other programming languages. A VS PASCAL
procedure may call subroutines written in Assembler and FORTRAN. Subroutine written in COBOL or PL/I
may not be called.

You may also invoke VS PASCAL procedures as subprograms from Assembler, COBOL and PL/l. When

calling VS PASCAL subroutines from other languages, do not call the VS PASCAL procedure PSCLHX to
cleanup the environment as documented. This procedure is not needed when running under MUSIC.

External File Names- VSPASCAL

A standard set of external file names (ddnames) is provided, along with default values for logical record
length (LRECL).

DDNAME LRECL MUSIC I/O

INPUT 80 input stream (data following /DATA)
SYSPRINT 133 printed output

OUTPUT 133 printed output

SYSIN 80 conversational input (workstation job)

input stream (batch jobs)

Additional ddnames can be defined by specifying /FILE statements with the corresponding ddnames at the
beginning of the job. (Consult the description of the /FILE statement.)

For any file, the LRECL and BLKSIZE may be specified in the VS PASCAL program by the LRECL and
BLKSIZE options of the RESET, REWRITE and UPDATE procedures.

End-of-file can be indicated on a conversational read (of a TEXT file) by typing /EOF.
Parameters. Compiler Step - VSPASCAL

Compiler options may be specified on a/OPT statement preceding the VS PASCAL source. The options
should be separated by commas, and the last option must be followed by ablank. A /OPT statement may
also be used to indicate the start of a new procedure. If more than one /OPT statement is used, the effect is
cumulative, that is, each option remainsin effect for the rest of the job until reset by alater /OPT statement.

The default compiler options are listed below. Refer to the VS PASCAL Programmer's Guide for a descrip-
tion of the options and their abbreviations.

424 PASCAL Compiler - VSPASCAL - MUSIC/SP User's Reference Guide

Batch Defaults
Workstation Defaults: (if different):

CHECK

NODEBUG

GOSTMT

LANGLVL(EXTENDED)

LINECOUNT(61)

NOLIST

MARGINS(1,72)

OPTIMIZE

PAGEWIDTH(128)

PXREF

SEQUENCE(73,80)

NOSOURCE SOURCE
NOXREF XREF(SHORT)
DDNAME(COMPAT)

HEADER

CONDPARM()

NOGRAPHIC

STDFLAG(E)

/FILE statements with ddnames of COMP.SY SIN, COMP.SY SPRINT and COMP.SY SLIN can be defined
at the beginning of the job to inform the compiler where to read the input source program, where to print the
program listing and punch the object module respectively, instead of the default definitions.

Creating Object Modules

If you wish to compile aVS PASCAL procedure and save the object module for later execution, the follow-
ing procedure should be followed.

1. Specify viathe /FILE statement with ddname SY SLIN the name of the file to contain the object module.

2. Include the /JOB NOGO statement following the /[LOAD statement. Thiswill invokethe VS PASCAL
compiler but will not executed the program after compilation.

VS PASCAL object modules can be executed using the OS-MODE loader, ASMLG. If aload module was
created, then you must use the XMON procedure to execute the load module.

Parameters. Loader Step - VSPASCAL

/3B [MAP][, NOGO [, LET][, NOPRI NT] [, DUVP] [, CDUMP] [, DEBUG
[FULMAP]

[, FILRFM [, NOSEARCH] [, | OTRACE[(C) 1] [, SVCTRACE[(O) 1]

Parameters can be separated by one or more commas or blanks.

MAP List a storage map of the loaded program.

Chapter 8. Processors - PASCAL Compiler - VSPASCAL 425

FULMAP List an extended storage map of the loaded program.
NOGO Do not load or execute the program.

LET Allow the program to be executed even if unresolved externa references (such as missing
subroutines) are found.

NOPRINT Informative and diagnostic messages are not to be produced.

DUMP Request a storage dump to be produced if the job abnormally terminates. Even when the
DUMP parameter is used, not all error conditions result in a dump.

CDUMP Request a conversational trace and dump when an error occurs.

DEBUG Load the DEBUG program into memory for debugging.

FILRFM Supply the RECFM V if thefileisV/VC.

NOSEARCH Do not search the subroutine library for unresolved routines.

IOTRACE Trace the I/O operations during the execution of the program. If IOTRACE(C) is specified,
the trace for the I/O operations during the compilation of the program is performed.

SVCTRACE Tracethe SV C instructions during the execution of the program. 1f SVCTRACE(C) is speci-
fied, the trace for the SV C instructions during the compilation of the program is performed.

Notes:
1. Multiple/JOB statements may be used if desired.

2. TheDUMP, IOTRACE and SVCTRACE options are ignored when used with /LOAD ASMLG, /LOAD
COBLG, or /[LOAD PLILG. They can be used with/LOAD ASM, /LOAD COBOL, /LOAD PLI, and
the other OS-mode processors that do not invoke the OS-mode |oader directly.

Parameters: Go Step - VSPASCAL

Run time options can be specified on the "/PARM xxx" statement at the beginning of the job, where xxx is
the option string. To distinguish run time options from the parameter string intended to be processed by the
program, the options must proceed the parameter string (if any) and be terminated with aslash ("/").

SVC instructions and 1/0O operations can be traced at execution time. Thisis done by specifying
SVCTRACE and IOTRACE respectively on the /JOB statement. The DUMP option can be specified on the
/JOB statement to produce a storage dump, in some cases, if the job abnormally terminates. (Refer to the
/JOB Control statement above for a description of the syntax.)

TitleLines- VSPASCAL

Block letter titles (maximum 2 lines) can be printed on separator pages preceding the program listing if the
jobisrunon batch. Thisisdone by specifyinga"TITLE xxx" statement (for thefirst title line) and a
"=TITLE2 xxx" statement (for the second title line) after the /LOAD statement. xxx isthetitlelineandis
from 1 to 10 charactersin length.

426 PASCAL Compiler - VSPASCAL - MUSIC/SP User's Reference Guide

VSPASCAL Interactive Debugger

The VS PASCAL interactive debugger is available under the MUSIC system. In order to use the debugger,
you must follow the following steps:

1

Compile the modul e to be debugged with the DEBUG option. Modules that have been compiled with
the DEBUG option can be |oaded with modules that have not been compiled with the DEBUG option.

Specify on the/PARM statement, the DEBUG run-time option. After the modules have been loaded,
the debug environment will be active and you will be immediately prompted for debugger commands.

The ATTN or BREAK keys on the workstation can be used to signal the debug environment that you
want to gain control. On a 3270 workstation, after you press PA1 the message ** ATTN** will be
displayed in the lower right corner of the workstation. Pressthe ENTER key to signal the interrupt to
the debug environment.

Usethe VS PASCAL interactive debugger after creating aload module viathe linkage Editor.

Use of the debugger environment will add about 70K to the User Region needed to execute the program.

References- VSPASCAL

VSPASCAL Application Programming Guide, (SC26-4319).

VS PASCAL Language Reference, (SC26-4320).

VS PASCAL Reference Summary, (SX26-3760).

1

Examples- VSPASCAL

The following sample program uses READ and WRITE statements on record files.

/ LOAD VSPASCAL
program Sanpl e;

type
REC = record
NAME : STRI NG 25);

AGE : 0..99;
SEX : (MALE, FEMALE)
end;
var
I NFI LE,
QUTFI LE:
file of REC,
BUFFER : REC,
begi n

RESET(| NFI LE) ;

REWRI TE(OUTFI LE) ;

whil e not EOCF(I NFILE) do
begi n

Chapter 8. Processors - PASCAL Compiler - VSPASCAL 427

READ(| NFI LE, BUFFER) ;
WRI TE(OUTFI LE, BUFFER)
end
end.

2. Thefollowing VS PASCAL program will be compiled and the interactive debug environment will be
entered once the program has been loaded. Refer to the "Debug Terminal Session” in the VS PASCAL
Programmer's Guide for an example of a debug session.

/ SYS REG=340

/ PARM DEBUG

/ LOAD VSPASCAL

/ OPT DEBUG

program Debuggi ng;
var A, B : REAL;

begi n
A= 1;
B := 2;
Witeln ("A = LA
Witeln (‘A + B =", A+B);
end.

Note: The/OPT statement specifiesthe DEBUG compiler option. The/PARM statement specifies the
DEBUG routine option. Both are required for DEBUG to be entered. Inthe/PARM statement, the

trailing "/" servesto delimit VS PASCAL routine options from parameters that you might want to
pass to your PASCAL program.

428 PASCAL Compiler - VSPASCAL - MUSIC/SP User's Reference Guide

PL/l Version 2 Optimizing Compiler - PLI

Programs written in the PL/I language can be compiled and run using the IBM OS PL/I Version 2 Optimiz-
ing compiler (Program Product 5668-909). This compiler is compatible with previous releases of Version 2
and Version 1 (existing programs will work with this release).

The PL/I processor invokes the compiler, and then the loader (unless /JOB NOGO is specified). After load-
ing, the program is automatically executed.

Usage Notes- PL |

Since PL/I programs can invoke many of the facilities of the MV S operating system, some of which are not
available on MUSIC, it is possible to compile a PL/l program which will not execute on MUSIC.

1

MUSIC supports fixed length sequential files. Thisincludes PL/I GET and PUT statements, and READ
and WRITE statements for sequentia files. The UPDATE and SEQUENTIAL attributes must not be
used together. Variable length records are supported only on output, and must not be blocked.

Direct access files using REGIONAL (1) and fixed-length records are supported, provided that the
UPDATE or INPUT attribute is used on the file declaration statement. The OUTPUT attribute must not
be used. For reading, use the READ FILE statement. For writing, use the WRITE FILE or REWRITE
FILE statement. A new direct access file should be initialized in PL/I by writing recordsin order
(0,1,2,...) to the end of the data set. Internally, each direct access record starts a new 512-byte block,
and occupies one or more blocks.

Sequential (ESDS), direct (RRDS), and indexed (KSDS) file access are available through MUSIC's
VSAM support. For information on creating and using VSAM fileswith PL/I, refer to the topic
"MUSIC/SP VSAM" in Chapter 4. File System and 1/O Interface

ISAM is not supported.

If the PL/1 %INCLUDE statement is used, a/FILE statement with a ddname of SY SLIB and parameter
PDS must be defined at the beginning of thejob. (Consult the description of the /FILE statement for
files.) The compiler option MACRO or INCLUDE must also be specified on the /OPT statement. The
MUSIC /INCLUDE statement may also be used to perform afunction similar to the %INCLUDE state-
ment.

PL/I sort facilities are supported as described below. Extended precision arithmetic (up to 32 significant
decimal digits) is supported.

The following are not supported:

Multi-tasking.

Teleprocessing (TRANSIENT file attribute).
Execution-time COUNT, FLOW and REPORT options.
Unbuffered attribute for RECORD files.

Regional (2) and Regional (3) files

Chapter 8. Processors - PL/I Version 2 Optimizing Compiler - PLI 429

Usage- PLI

The OS PL/I Optimizing Compiler isinvoked by the use of a/LOAD PLI statement. This processor invokes
the PL/I Optimizing Compiler, and then the loader. After loading, the program is automatically executed
using the OS/MUSIC interface (unless /JOB NOGO is used or the compiler return code is 12 or more). The
/OPT and /JOB control statements may be used with this processor. PL/I object modules can optionally be
produced and saved, intermixed with source. The object modules are identical with those produced on OS.

Available Unit Numbersand Buffer Space- PLI

Any tape blocksize up to 32760 may be used, provided the user region size (specified on /SYS
REGION=nnn) is large enough.

The user can use 3 UDSfiles. MUSIC 1/0O unit 4 cannot be defined in /FILE statements since it is used for
the compiler modules.

External File Names- PLI

A standard set of external file names (ddnames) is provided, along with default values for logical record
length (LRECL).

DDNAME LRECL MUSIC I/O

SYSIN 80 input stream (data following /DATA)

SYSPRINT 121 printed output

SYSPUNCH 80 output to holding file (workstation jobs)
punched output (batch jobs)

SYSTERM 121 printed output

CONSOLE 80 conversational input (workstation jobs)

input stream (batch jobs)

Additional ddnames can be defined by specifying /FILE statements with the corresponding ddnames at the
beginning of the job. (Consult the description of the /FILE statement.)

For any file, the LRECL and BLKSIZE may be specified in the PL/I program by the RECSIZE and
BLKSIZE options of the ENVIRONMENT attribute.

File names within PL/I should not exceed 7 characters. However, the TITLE option on the OPEN statement
may be used to associate a ddname with an internal file name. For example:

OPEN FI LE(SYSPUN) TI TLE(' SYSPUNCH) OUTPUT;
When doing a conversational input on aworkstation, always use PUT SKIP to force the output in the output
buffer to be displayed on the workstation before the conversational read is performed. Otherwise, the
prompts, if any, will not be synchronized with the conversational reads.

End-of-file can be indicated on a conversational read by typing /EOF.

430 PL/I Version 2 Optimizing Compiler - PLI1 - MUSIC/SP User's Reference Guide

Parameters. Compiler Step - PLI

Compiler options may be specified on a/OPT statement preceding the PL/I source. The options should be
separated by commas, and the last option must be followed by ablank. A /OPT statement may also be used
to indicate the start of a new external procedure. 1f more than one /OPT statement is used, the effect is
cumulative, that is, each option remainsin effect for the rest of the job until reset by alater /OPT statement.

The PL/I statement * PROCESS may be used in place of a/OPT statement. On a* PROCESS statement,
options are separated by commas or blanks and the last option is followed by a semicolon. Options on
* PROCESS statements are not cumulative.

The default compiler options are listed below. Refer to the PL/I Optimizing Compiler Programmer's Guide
(SC33-0006-5) for a description of the options and their abbreviations.

Workstation Defaults: Batch Defaults (if different):

GOSTMT

GRAPHIC NOGRAPHIC
LMESSAGE

OBJECT

STMT

NOAGGREGATE
NOATTRIBUTES

NOCOUNT

NODECK

NOESD

NOFLOW

NOGONUMBER
NOIMPRECISE

NOINCLUDE

NOINTERRUPT

NOINSOURCE INSOURCE
NOLIST

NOMACRO

NOMAP

NOMARGINI

NOMDECK

NONEST

NONUMBER

NOOFFSET

NOOPTIMIZE

NOOPTIONS OPTIONS
NOSEQUENCE

NOSOURCE SOURCE
NOSTORAGE

NOTEST

NOXREF

NOCOMPILE(S)

CMPAT(V2)

FLAG(W) FLAG(])
LINECOUNT (55)
MARGINS(1,80,0)

SIZE(MAX)

NOSYNTAX(S)

SYSTEM(MVS)

Chapter 8. Processors - PL/I Version 2 Optimizing Compiler - PLI 431

TERMINAL

/FILE statements with ddnames of PLI.SY SIN, PLI.SY SPRINT, and PLI.SY SPUNCH can be defined at the
beginning of the job to inform the compiler where to read the input source program, where to print the
program listing and punch the object module respectively, instead of the default definitions. To provide
more space to the default compiler work file SYSUT1 (default space is 300K) for very large programs,
supply the following /FILE statement before /LOAD PLI:

/ FI LE SYSUT1 NAMVE(&&TEMP) RECFM F) LRECL(4096) SPACE(550) NEW DELETE

Parameters: Loader Step - PL |

/3B [MAP][,NOGO [, LET][, NOPRI NT] [, DUVP] [, CDUMP] [, DEBUG
[FULMAP]

[, FILRFM [, NOSEARCH] [, | OTRACE[(O) 1] [, SVCTRACE[(O) 1]

Parameters can be separated by one or more commas or blanks.
MAP List a storage map of the loaded program.
FULMAP List an extended storage map of the loaded program.
NOGO Do not load or execute the program.

LET Allow the program to be executed even if unresolved externa references (such as missing
subroutines) are found.

NOPRINT Informative and diagnostic messages are not to be produced.

DUMP Request a storage dump to be produced if the job abnormally terminates. Even when the
DUMP parameter is used, not all error conditions result in a dump.

CDUMP Reguest a conversational trace and dump when an error occurs.

DEBUG Load the DEBUG program into memory for debugging.

FILRFM Supply the RECFM V if thefileisV/VC.

NOSEARCH Do not search the subroutine library for unresolved routines.

IOTRACE Trace the I/O operations during the execution of the program. If IOTRACE(C) is specified,
the trace for the I/O operations during the compilation of the program is performed.

SVCTRACE Tracethe SV C instructions during the execution of the program. 1f SVCTRACE(C) is speci-
fied, the trace for the SV C instructions during the compilation of the program is performed.

Notes:

1. Multiple/JOB statements may be used if desired.

432 PL/I Version 2 Optimizing Compiler - PLI - MUSIC/SP User's Reference Guide

2. TheDUMP, IOTRACE and SVCTRACE options are ignored when used with /LOAD ASMLG, /LOAD
COBLG, or /[LOAD PLILG. other OS-mode processors that do not invoke the OS-mode loader directly.

Parameters: Go Step - PLI

Execution-time options can be specified by defining a PLIXOPT character string in the source program, or
by specifying a"/PARM xxx" statement at the beginning of the job, where xxx is the option desired. The
default execution-time options are:

HEAP(4K ,4K)
ISAINC(0,0)

ISASIZE(X) where x=(region size - program size)/2
LANGUAGE(UENGLISH)
NOCOUNT

NOFLOW

NOREPORT

NOTEST

STAE

SPIE

TASKHEAP(4K ,4K)

SVC instructions and 1/0O operations can be traced at execution time. Thisis done by specifying
SVCTRACE and IOTRACE respectively on the /JOB statement The DUMP option can be specified on the
/JOB statement to produce a storage dump, in some cases, if the job abnormally terminates. (Refer to the
/JOB statement for a description of the syntax.)

TitleLines- PLI

Block letter titles (maximum 2 lines) can be printed on separator pages preceding the program listing if the
jobisrun on batch. Thisisdone by specifying a"=TITLE xxx" statement (for thefirst title line) and a
"=TITLE2 xxx" statement (for the second title line) after the /LOAD statement. xxx isthetitlelineandis
from 1 to 10 charactersin length.

PL/I Sort

A PL/I program can perform sorting operations by calling any of the sort interface subroutines PLISRTA,
PLISRTB, PLISRTC and PLISRTD, as described in the PL/I Optimizing Compiler Programmer's Guide.

On MUSIC the sort is performed by aversion of DSORT, the generalized sort routine described in Chapter
10. Utilities of thismanual. The restrictions which apply to DSORT aso apply to PL/I sorting. In particular,
variable length records may not be sorted, sort control fields must begin on a byte boundary and be awhole
number of bytes long, they may not overlap, and the maximum number of control fieldsis 20.

The argument specifying the amount of main storage for the sort must be at least 2048, and defaults to 32000
if not specified.

The following ddnames may be used. These ddnames, if required, must be defined using /FILE statements

as described above in the section External File Names. An optional argument in the call to the sort interface
routine may be used to change the first four characters SORT of the ddnames.

Chapter 8. Processors - PL/I Version 2 Optimizing Compiler - PLI 433

SORTIN Sort input if no E15 exit routine is defined.
SORTOUT Sort output if no E35 exit routine is defined.
SORTWKO1 DSORT work file (optional).

SORTWKO02 Second DSORT work file (optional). 1f SORTWKO2 is not used, then SORTWKOL1 (if used)
must be aUDSfile, not afile.

If neither SORTWKO01 nor SORTWKO2 is defined by a/FILE statement, the sort must be small enough to be
done entirely in main storage.

References- PL |

IBM OSPL/I Version 2 Programming Guide, Release 2, (SC26-4307).

IBM OSPL/I Version 2 Programming: Language Reference, Release 2, (SC26-4308).
IBM OSPL/I Version 2 Programming: Messages and Codes, Release 2, (SC26-4309).
IBM OSPL/I Version 2 Programming: Using PLITEST, Release 2, (SC26-4310).

IBM OSPL/I Version 2 Problem Determination, Release 2, (LY 27-9528).
Example- PLI

This program reads numbers conversationally from the workstation and writes them to the data set FILEOL.
The end isindicated by typing /EOF. The object module iswritten to the file COPY .OBJ.

/ EI LE SYSPUNCH NAME(COPY. OBJ) NEW REPLACE)
/ FI LE FI LEO1 UDS(USERFI LE) VOL(MJSI C2) OLD
/ LOAD PLI
/ OPT DECK
COPY: PROC OPTI ONS(MAI N) ;
ON ENDFI LE(CONSOLE) GO TO FI NI SH;
LOOP: GET FI LE(CONSOLE) LIST(X):
PUT FI LE(FILEO1) LIST(X):
GO TO LOOP;
FI NI SH: CLOSE FI LE(FI LEO1);
END COPY;

PLITEST

PLITEST isaflexible and efficient tool for examining, monitoring, and controlling program execution. You
can use PLITEST interactively or in batch mode.

PLITEST iseasy to learn and use. Y ou can begin testing with PLITEST after learning just afew concepts:
how to invoke PLITEST, and how to set, display, and remove breakpoints. PLITEST commands are similar
to PL/I statements, so you know most of the commands aready. And, online help is available at your finger-
tips when using PLITEST in an interactive mode.

434 PL/lI Version 2 Optimizing Compiler - PLI1 - MUSIC/SP User's Reference Guide

The IBM publication OSPL/I Version 2 Programming: Using PLITEST, (SC26-4310-1) describes the how to
use PLITEST. It tellsyou how to select the various testing options that are available, how to set breakpoints,
how to inspect and modify variables, and is a complete reference for PLITEST commands. The information
below pertains to the specific usage of PLITEST on MUSIC.

On MUSIC only "Line Mode" operation is supported. To use PLITEST you must compile the program with
the TEST Compiler Option. Y ou specify this on the /OPT or * PROCESS statement. This option causes the
compiler to include the appropriate "hooks" in the generated code to allow subsequent testing of the program.
A number of subparameters can be specified on the TEST option that specify what type of testing is to be
performed.

The TEST Run-Time Option should also be specified on the /PARM statement when you want to actually
test the program. This also allows you to specify afile that contains the PLITEST commands. If noneis
specified the commands are read from the workstation.

PLITEST keepsalog file of the test session in the file pointed to by the ddname PLILOG. A file statement
for thismust be included in the test job, even if it isonly adummy file. Thelog file can be used asinput to
subsequent test runs. For example, suppose after along interactive testing session you discover a problem
and have to go back to fix it in the source. Y ou can use the commands in the log file to quickly bring you
back to where you were before and proceed to debug from that point.

To get online help while in interactive mode, type HEL P when prompted for a PLITEST command.

Sample PLITEST session

Thefollowing isalisting of the file used in the sample PLITEST session.

/ SYS REG=1024
/ FI LE PLI LOG DUMWY
/ PARM LANGUAGE(EN) , TEST
/ LOAD PLI
/ OPT SOURCE, TEST(ALL)
/* PLI TEST PROGRAM */
TESTP: PROCEDURE OPTI ONS(MAI N) ;
ON ENDFI LE(CONSOLE) GO TO FI NI SH;

PUT SKIP LIST (' TH S PROGRAM CALCULATES THE SQUARES OF NUMBERS');

/* LOOP TO READ | NPUT */
LOOP: PUT SKIP LI ST (' ENTER A NUMBER) ;

PUT SKI P;

GET FI LE(CONSOLE) LI ST(X):

Y=X**2;

PUT SKIP LIST(X,' SQUARED IS ', Y);
GO TO LOOP;

/* ALL DONE */
FI' NI SH PUT SKIP LI ST(' ALL DONE');
END;

Chapter 8. Processors - PL/I Version 2 Optimizing Compiler - PLI 435

In the following sample PLITEST session the commands typed in by the user are preceded by the ">" char-
acter.

>pli.test
5668-910 | BM OS PL/1 OPTIM ZI NG COWPI LER V2. R2. ML 11 DEC 89 12: 04
SCURCE, TEST(ALL);
SOURCE LI STI NG
STMT
/* PL/l TEST PROGRAM */
1 TESTP: PROCEDURE OPTI ONS(MAIN) ;
ON ENDFI LE(CONSOLE) GO TO FI NI SH;
PUT SKIP LIST (' TH S PROGRAM CALCULATES THE SQUARES OF NUMBER
/* LOOP TO READ | NPUT */

w N

4 LOOP: PUT SKIP LIST (' ENTER A NUMBER)
5 PUT SKI P

6 GET FI LE(CONSOLE) LI ST(X):

7 Y=X**2;

8 PUT SKIP LIST(X,' SQUARED IS ', Y);
9 GO TO LOOP;

/* ALL DONE */
10 FINISH: PUT SKIP LI ST(' ALL DONE');
11 END;
END OF COWPI LATI ON OF TESTP
00B130 BYTES USED
EXECUTI ON BEG NS
TEST:
>QUERY PROGRAM
The conpile-tine data for program TESTP is
The statenent table has the STMI fornmat.
The programwas conpiled with the foll ow ng options:
TEST(ALL, SYM

NOOPTI M ZE
NOGRAPHI C
NO NTERRUPT
CMPAT(V2)
SYSTEM WVS)
Thi s program has no subbl ocks.
TEST:
>AT 9
TEST:
>G0

TH S PROGRAM CALCULATES THE SQUARES OF NUVBERS
ENTER A NUMBER

>5

TEST (TESTP: 9):

>LI ST(X, Y)
5. 00000E+00
2. 50000E+01

TEST:

>G0
5. 00000E+00 SQUARED | S 2. 50000E+01
ENTER A NUMBER

>8

TEST (TESTP: 9):

>LI ST(X, Y)
8. 00000E+00

436 PL/I Version 2 Optimizing Compiler - PLI - MUSIC/SP User's Reference Guide

6. 40000E+01

TEST:

>0
8. 00000E+00 SQUARED | S 6. 40000E+01
ENTER A NUVBER

>/ EOF

You have been pronpted because the ENDFILE (CONSCOLE) condition
has been raised in your program

The current location is TESTP : 6.

TEST:

>0

You have been pronpted because the FIN SH condition has been raised in
has been raised in your program

The current location is TESTP : 11

TEST:

>0

ALL DONE

Chapter 8. Processors - PL/I Version 2 Optimizing Compiler - PLI 437

PL/l OS-ModelLoader - PLILG

Aninput stream that consists entirely of object modules produced by the PL/I Optimizing Compiler will be
processed more efficiently if the/LOAD PLILG statement is used to inform the system that thisis the case.

Usage- PLILG

This loader isinvoked by the use of a/LOAD PLILG statement. It loads and executes a PL/l program in
object module form. It is more efficient to use this processor than /LOAD PLI when the input consists solely
of object modules. The/JOB control statement may be used with this processor to specify LOADER
options.

The statement is used a follows:
/| FILE statenents as required

/ LOAD PLI LG
...0bject nmodul es produced by the PL/I Optim zing Conpiler

Available Unit Numbersand Buffer Spaces- PLILG

The user can use 3 UDSfiles. MUSIC I/O unit 4 cannot be defined in /FILE statements sinceit is used for
the PL/I transient library modules, which are loaded dynamically during execution.

Parameters- PLILG

/3B [MAP][, NOGO[,LET][, NOPRI NT] [, NOSEARCH] [, FI LRFM
[FULMAP]

Parameters can be separated by one or more commas or blanks.
MAP List a storage map of the loaded program.
FULMAP List an extended storage map of the loaded program.
NOGO Do not load or execute the program.

LET Allow the program to be executed even if unresolved externa references (such as missing
subroutines) are found.

NOPRINT Informative and diagnostic messages are not to be produced.

NOSEARCH Do not search the subroutine library for unresolved routines.

438 PL/I OS-Mode Loader - PLILG - MUSIC/SP User's Reference Guide

FILRFM SuppliesaRECFM V if thefileisV/VC.

Notes:

1. Multiple/JOB statements may be used if desired.

2. TheDEBUG, CDUMP, DUMP, IOTRACE and SVCTRACE parameters for OS-mode processors are
ignored when used with /LOAD ASMLG, /LOAD COBLG, or /[LOAD PLILG. They can be used with

/LOAD ASM, /LOAD COBOL, /LOAD PLI, and the other OS-mode processors that do not invoke the
OS-mode loader directly.

/ OPT [SYSI N=n]

SYSIN=n Specifies that input isto be taken from the MUSIC unit number n. A /FILE statement defin-
ing MUSIC 1/O unit n as the appropriate input file must appear at the beginning of the job.
When an end-of-file or a/DATA statement is encountered on thisinput data set, further
input is taken from the normal input stream.

Chapter 8. Processors - PL/I OS-Mode Loader - PLILG 439

PL/lI Load Module Executor - XM PLI

The/LOAD XMPLI statement is used to load and execute a PL/I load module which has previously been
stored on aUser Data Set (UDS) file or file by the MUSIC Linkage Editor. Thisissimilar to /LOAD
XMON. It resultsin faster loading (compared with /LOAD PLILG) and allows overlay structures to be used.

Usage- XM PLI

This executor isinvoked by the use of a/LOAD XMPLI statement. Usageisthe same asfor /LOAD XMON
except that the load module data set must not be on 1/0 unit number 4.

Available Unit Numbersand Buffer Space- XM PL|

The user can use amaximum of 3 UDSfiles, one of which may be the data set containing the PL/I 1oad
module. MUSIC I/O unit 4 cannot be defined in /FILE statements sinceit is used for the PL/I transient
library.

440 PL/I Load Module Executor - XMPLI - MUSIC/SP User's Reference Guide

Restructured Extended Executor - REXX

REXX (Restructured Extended Executor) is ahigh level language which allows the execution of MUSIC
commands and programs from directly within the REXX program itself, and thus, enables the user to chain
together sequences of MUSIC commands under program control. The language constructs offered by REXX
lend themselves well to structured programming and the powerful functions for command parsing, character
handling, and data conversion, make it an excellent tool in the interactive environment. The languageis
described in the IBM publications VM/SP System Product Interpreter User's Guide (SC24-5238) and VM/SP
System Product Interpreter Reference (SC24-5239). The sections of these publications that describe the
usage of REXX in the CM S environment do not generally apply under MUSIC.

MUSIC has atutorial for learning REXX. Type"TUT" in*Go mode or select the "Tutorials' item for the
FSI main menu.

The following describes the usage of REXX in the MUSIC environment.
| nvoking REXX

Thefile containing a REXX program should contain the following control statements.
/1 NCLUDE REXX
REXX program st at ement s
The program can be executed from MUSIC command mode by typing the name of the file containing the
program followed by an optional parameter string. For example, if a REXX program was contained in the
file REX1, typing:
REX1 ABCD

would execute the program. The parameter string ABCD would be available to the program viathe PARSE
ARG ingtruction or the ARG function.

If you find it necessary to use alarger region size for a Rexx program, you must create a private file called
REXX, containing:

/ SYS NOPRI NT, REG ON=nnnn
/ LOAD REXX

For example, alarger region would be needed for FSI file management if avery large number of filesis
involved. The default (and minimum) region size for /LOAD REXX is 1024K.

Executing MUSIC Commands- REXX

MUSIC commands can be executed by simply stating them as character strings, or expressions that result in
character strings, at the appropriate location in the program. When the command is completed, control is
returned to the REXX program at the statement after the one invoking the command. The variable RC is set
to the value of the return code as set by the execution of the command.

Chapter 8. Processors - Restructured Extended Executor - REXX 441

Examples:
1. Using a character string.
"EDI T FILETY

The Editor will be invoked to edit the file called FILEL. When the edit session is finished,
control is returned to REXX.

2. Using an expression.

nane=' FI LE1'
cmd='ED T
cnd nane

when the line cmd name is evaluated, the result will be the character string 'EDIT FILEL' which is passed to
MUSIC asacommand. This gives the same result as example 1.

Note: Commandsthat are processed directly by MUSIC's workstation command scanner are currently not
supported by REXX. These are/COMPRESS, /CTL, /DISCON, /EXEC, /NS, /PAUSE, /PROMPT,
/REQUEST, /RUN, /STATUS, /TIME, /TEXT, /ITABIN, /TTABOUT, /JUSERS, /WINDOW.

Communicating with theworkstation - REXX

The SAY instruction is used to write datato the workstation. If the first character of the output string isa
valid workstation carriage control character, it is treated as such. Input from the workstation can be
requested viathe PULL or the PARSE EXTERNAL instruction. PULL (or PARSE PULL) first looks for
datafrom the STACK. If thisisempty, the dataisread from the workstation. (The STACK is described
later on.) The PARSE EXTERNAL instruction always reads from the workstation. The following complete
REXX program illustrates the use of SAY and PULL.

/I NC REXX

/* programto ask the user's nane */
/* and says hello */

say ' H there, what is your nane.'
pul | nane
say ' hello ' nane

Accessingthe STACK - REXX

REXX maintains an internal stack which is accessed by the PUSH, QUEUE and PULL instructions. All
REXX programsin a particular program chain have access to the same stack so data can be passed from one
REXX program to another viathe stack. 1t should also be noted that since any REXX program in the chain
has access to the stack, they can also changeit. This does not present a problem when all the programsin the
chain have been designed to work together, but the execution of a command may invoke some REXX
program, not planned for in the original design, which modifies the stack, causing errors when it returns.
Thus, if aREXX program is to be callable from any other REXX program, care must be taken to preserve the
contents of the stack. The MUSIO command can be used to transfer the contents of al or part of the stack to
or from the MUSIC Save Library. The following summarizes commands and instructions for accessing the
stack.

442 Restructured Extended Executor - REXX - MUSIC/SP User's Reference Guide

PULL - get item from top of stack.
PUSH - put an item at top of stack.
QUEUE - put an item at bottom of stack.

QUEUED() - function: returns number of itemsin stack.

MUSIO - command: transfers stack to and from MUSIC's Save Library.
MUSIO Command - REXX

The MUSIO command provides the interface between REXX and the MUSIC file system. A specified
number of records are transferred from the Save Library to the stack or vice versa. The variable RC is set to
the MUSIC file system return code. The format of the MUSIO command is asfollows....

MJSI O option fil ename num
option READ, WRITE, APPEND, CLOSE.

READ If required, thefileis opened. The requested number of records are read
from the file and placed at the end of the stack. If the records are longer
than 255 bytes, they are truncated. Subsequent reads will continue at the
next record in thefile. If an end of fileis encountered, RCissetto 1. In
this case, the QUEUED function can be used to determine the number of
recordsread. If an error occursin either the open or reading of thefile, the
return code (RC) will be non-zero. Since the stack is kept in main storage,
reading alarge filein one MUSI O request could cause the REXX program
to run out of storage.

WRITE If required, thefileisopened. If thefile does not exist, anew fileis created.
The requested number of records are PUL Led from the stack and written to
thefile. Subsequent writeswill continue after the last record written. If the
record in the stack islonger than the record length of thefile, therecord is
truncated. If errors occur opening or writing to the file, the return code (RC)
will be non-zero.

APPEND Similar to WRITE except it causes the file to be opened for append only
access.
CLOSE Thefileisclosed. This can also be used to rewind afile for subsequent
processing.
filename The name of the file to access.
num The number of recordsto transfer. The string ALL indicates that all records should be trans-

ferred. The default is 1.

The following program, which lists afile, shows the use of MUSIO, PULL, and the QUEUED function.

Chapter 8. Processors - Restructured Extended Executor - REXX 443

/I NC REXX

/* list file XXXXX at the workstation */

" MUSI O READ XXXXX ALL' /* read the file */

nrec=queued() /* get nunber of records read */
doi =1to nrec /* loop to print stack */

pull rec

say rec
end

EXEC Command - REXX

Not all programs on MUSIC are executed by one-line commands. Moretypically, asmall fileis created
containing control statements such as/FILE, /[LOAD, and /INCLUDE. Thiscan easily be accomplished
from a REXX program. The appropriate control statements are QUEUED on the stack, MUSIO writes the
stack to afile, and thefileis executed by specifying the file name as a command.

/I NC REXX
/* put job in file X1 and execute it */

queue '/ FILE 10 N(PROG OBJ) NEW REPL)'
gueue '/ LOAD VSFORT'

gqueue '/ OPT DECK

gueue '/ NC PROG S

"MUSI O WRITE X1 ALL'

' X1 /* execute programin X1 */

When writing REXX programs to be used by others, the programmer cannot simply choose an arbitrary file
name such as X1 to contain the program, since the user might actually have afile called X1. In order to
avoid this problem the EXEC command is provided to execute whatever program isin the stack. The stack
is written to the the reserved file @EXEC.tcb (tcb- terminal id number) and the program in thisfile isthen
executed.

/I NC REXX
/* use EXEC command to execute a programfromthe stack */

queue '/ FILE 10 N(PROG OBJ) NEW REPL)'

gueue '/ LOAD VSFORT'

gqueue '/ OPT DECK

gueue '/ NC PROG S

' EXEC /* execute what is in the stack */

REXLIB Command - REXX

The REXLIB command provides a direct interface to the MUSIC LIBRARY command, avoiding the over-
head of scheduling LIBRARY as a separate job. In addition the output from REXLIB can go directly into
the REXX stack. Output is never written to the workstation. The parameters are the same as for the standard
LIBRARY command with the addition of the "Q" parameter which indicates that any output should be
gueued in the stack. If you want REXLIB to operate like the DIR command rather than the LIBRARY

444 Restructured Extended Executor - REXX - MUSIC/SP User's Reference Guide

command, use the DIR option, for example:
REXLIB * Q DIR
REXLIB sets the following return codes.

0 - no errors
1 - not enough memory
4 - invalid file name specification
8 - invalid character in file name
12 - error in user id
16 - not authorized to look at this library
20 - invalid character in user id
24 - invalid parameter
28 - conflicting parameters
32 - parameter specified twice
36 - invalid filename in save parameter
40 - unable to open file for save
44 - error accessing index
48 - error scanning index
52 - not enough memory to sort the file names
56 - not enough memory to send output to the REXX stack
900 - memory work areaistoo small

The following example displays alist of ausersfiles.
/1 NC REXX

"REXLIB * Q@
nfil es=queued()
say 'You have the following files
doi =1to nfiles
pull filenane
say fil enane
end

Program Chaining - REXX

When REXX isfirst invoked, it establishesitself as an always program. This meansthat it will always be
given back control on the termination of any program or command it schedules. It isthistechnique of alow-
ing program and command chaining that makes REXX so powerful. However, this chain can be broken by a
/CAN ALL command or if one of the scheduled programs replaces REXX as the always program. The
REXX always program is contained in thefile called REXX. By default thereisa public file on the system
called REX X, which contains the default control statements defining the region size an time limits. If these
defaults are not sufficient, they can be overridden by creating a private file called REXX with the appropriate
parameters on the /SY S statement. Note that the /SY S statement for the initial REXX program is NOT
carried over between scheduled commands. In addition since all REXX programs that are chained together
should use the SAME region size, it is recommended that anyone writing a REXX program for general use,
start the program with /INC REXX (not /[LOAD REXX), so that the /SY S statement from the user's or
system REXX file is used throughoui.

Chapter 8. Processors - Restructured Extended Executor - REXX 445

| nter face with the PANEL subsystem - REXX

An interface to the PANEL facility is available through a special PANEL command in REXX. The screens
are created as usual viathe PANEL facility and stored as object filesin the Save Library. When REXX
encounters a PANEL command it dynamically loads the appropriate object files for the screen images.
Modifiable fields are then filled from the specified REXX variables and the panel service routine isinvoked
to perform the I/O. When thisis complete, the datafrom any modified fieldsis then returned via the REXX
variables.

For more information on this interface, refer to Chapter 10. Utilities under PANEL.
CallableMUSIC System Functions- REXX

The following MUSIC system subroutines are callable from REXX. Each parameter should be quoted,
otherwise unexpected results may occur. For example,

CALL TSUSER ' 2',' USERI D

returns the user id in variable 'USERID'.

NXTCMD CLRIN GETRET
TSTIME NOECHO EOQJ
TSUSER ECHOIN PARM
FILMSG NOSHOW

DELAY NOTRIN

KEEPIN TRIN

Editor Macro Facility - REXX

Editor macros can be written in the REXX language. The macros can issue Editor commands, extract infor-
mation from the Editor using the EXTRACT command, call other macros, and use the MUSIO and PANEL
commands. The macros cannot issue MUSIC commands.

For more information on this facility, refer the topic "Editor Macro Facility in REXX" in Chapter 7. Using
the Editor.

446 Restructured Extended Executor - REXX - MUSIC/SP User's Reference Guide

Sample REXX programs

Example 1:
This program prompts the user for commands and executes them.
/1 NC REXX

/* ask for the user's nane */
say " Welcone to REXX, what's your nanme?"

pul | nane
say ' ' nanme ', when asked to enter a conmand, type in a MJSIC
say " command of your choice and I'Il see it gets done. If you"

say ' have trouble with the syntax of a particular conmand j ust
say ' enter "HELP cnd" where cnd is the comand nane.'

/* main pronpt |oop */

do forever
say ' Go ahead' nane
pul I cnd /*get conmand*/
cmd /*execute it */
end

Example 2:

Calculate factorial. Note the recursive nature of the REXX language.
/1 NC REXX
/* calculate factorial */

parse arg num rest
if datatype(num'w) =1 then do

say 'l can only calculate the factorial of whole nunbers.'
exit

end

say 'The factorial of' num'is' fact(num

exit

fact: procedure
arg num
if num=1 then return 1
tenp = fact(num1)
return num?* tenp

Chapter 8. Processors - Restructured Extended Executor - REXX 447

RPG Il - RPG

OS RPG Il (Program Product 5740-RG1) is an enhanced version of RPG, providing users with an efficient
technique for developing programs to:

1. obtain datarecords from input files
2. perform calculations

3. writereports

4. usetablelook up

5. maintainfiles

6. generate complete RPG Il source programs from simplified specifications, and standard RPG I source
specifications

7. sortinput records
Control Statements- RPG

A complete list of the RPG |1 and the Auto Report control statements is available in the two guides listed
below.

Usage - RPG

The following is a description of the/LOAD statements for RPG Il on MUSIC:
Statement Description

/LOAD RPGAUTO Autoreport execution and resulting RPG |1 program compilation and execution.

/LOAD RPG RPG |1 source program compilation and execution.

/LOAD RPGLG Execution of an RPG |1 program from object modules produced by the RPG 11
compiler.

/ILOAD XMRPG Execution of an RPG |1 program from load modules produced by the MUSIC link-

age editor. (Similar to/LOAD XMON.)

Chapter 8. Processors- RPG Il - RPG 453

Example:

[FILE ... (if required)
/ LOAD RPGAUTO
/JOB ... (loader options, if required)

/OPT ... (conpiler options, if required)

(Aut oreport source program

/ DATA

(data, if required)

The following options are available for the /OPT statement in RPGAUTO or RPG jobs:

Option Description

LIST Produces an Autoreport and/or compiler listing on SY SPRINT (default).
NOLIST Suppresses the list option.

DECK Produces an object module from the compiled program on SY SLIN (default).

NODECK Suppresses the DECK option.

Thefollowing isalist of DDNAMES used by the various steps. These names are automatically provided by
MUSIC, so a/FILE statement is not required for them. However, an overriding /FILE statement may be used
if desired (for example, to direct SY SLIN output to afile).

Step ddname

RPGAUTO SYSIN
SYSPRINT
SY SPUNCH
SYSLIN

SYSLIB

RPG SYSIN
SYSPRINT
SYSLIN
SYSUT1

SYSUT2

Description

Source program input.

Program listing output.

Output for the RPG Il compiler.

Output object code if SORT/SELECT is specified.

Copy library containing the source code referenced by the Autoreport
/COPY statement.

Source program input.
Program listing output.
Object code output.
Compiler work file.

Compiler work file.

Other DDNAMES used by the program must be defined by separate /FILE statements, placed before any

/LOAD statement.

454 RPG I - RPG - MUSIC/SP User's Reference Guide

If RPG printed output (ie. output to a PRINTER device) is to be directed to aMUSIC file, a/FILE statement
must be included in the job specifying a record length of 133 (LRECL (133)) and arecord format of either
fixed or fixed compressed (RECFM(F) or RECFM(FC)). For example:

/ FI LE REPORT NAME(REPORT. FI LE) LRECL(133) RECFM F)

Keyed or indexed files, using VSAM, are supported. Direct access by the chain and record-address file tech-
niques, is not supported on MUSIC.

The/COPY Statement of Autoreport - RPG

The '/COPY' statement of Autoreport is supported on MUSIC by the use of a PDS (partitioned data set),
whereby members of this PDS are actually individual filesin the user's library or listed in the common file
index. A /FILE statement with the DDNAME SY SLIB specifying PDS name * .RPGCOPY" is automatically
supplied by MUSIC. Inthisway, any name specified by an Autoreport /COPY statement will have the suffix
" RPGCOPY' added to it and the system will search the appropriate Save Library for the resulting file. For
example, with the /COPY statement:

/ COPY R, ABC

the MUSIC file ABC.RPGCOPY will be copied into the Autoreport program.
Sample Programs- RPG

The following two RPG Il programs are provided with the system. They are:
RPG.TEST1 - RPG Il program using Autoreport.

RPG.TEST2 - RPG Il program.
Reference Manuals- RPG

DOSVSRPG Il Auto Report, IBM Form No. SC33-6034.

OSVSRPG Il Addendumto DOSVSRPG Il, Auto Report, IBM Form No. SC33-6128.
DOSVSRPG Il Language, IBM Form No. SC33-6031.

OSVSRPG Il Addendumto DOS'VSRPG Il Language, IBM Form No. SC33-6129.
DOSVSRPG Il Messages, IBM Form No. SC33-6033.

OSVSRPG Il Addendumto DOSVSRPG Il Messages, IBM No. SC33-6130.

Chapter 8. Processors- RPG Il - RPG 455

SAA RPG/370

SAA RPG/370 Program Product 5688-127, implements the high-level programming language defined by the
SAA RPG Common Programming Interface (CPI). SAA RPG/370 may be used for writing afull range of
batch and interactive programs that:

1. obtain datarecords from input files

2. perform calculations

3. writereports

4. usetablelook up

5. maintainfiles

6. generate complete SAA RPG/370 source programs from simplified specifications, and standard SAA
RPG/370 source specifications

7. sortinput records
Control Statements- RPG370
A complete list of the SAA RPG/370 control statementsis available in the two guides listed below.

Usage - RPG370

Thefollowing is a description of the/LOAD statements for SAA RPG/370 on MUSIC:
/LOAD RPG370 SAA RPG/370 source program compilation and execution.

/LOAD XMRPG370 Execution of an SAA RPG/370 program from load modules produced by the
MUSIC linkage editor. (Similar to/LOAD XMON.)

Example- RPG370

[FILE ... (if required)
/ LOAD RPG370
/JOB ... (loader options, if required)

/OPT ... (conpiler options, if required)

(RPGE 370 source program

The following options are available for the /OPT statement:

SOURCE Produces a compiler listing on SY SCPRT. (Default on batch).

456 SAA RPG/370 - MUSIC/SP User's Reference Guide

NOSOURCE Suppresses the compiler listing option. (Default on a workstation).

TEXT Produces an object module from the compiled program on SY SLIN (default).

NOTEXT Suppresses the TEXT option.

LIST Produce an pseudo assembler listing of the program.

NOLIST No pseudo assembler listing created (default).

SAAFLAG Specifies whether the compiler flags specifications not supported by SAA RPG.
NOSAAFLAG No SAA RPG specification checking is performed (default).

XREF A cross-reference list for the source program is produced.

NOXREF No cross-reference is produced (default).

Thefollowing isalist of DDNAMES used by the various steps. These names are automatically provided by

MUSIC, so a/FILE statement is not required for them. However, an overriding /FILE statement may be used
if desired (for example, to direct SY SLIN output to afile).

Step DDNAME LRECL Description

RPG370 SYSIN 80 Source program inpuit.
SYSCPRT 133 Program listing output.
SYSLIN 80 Object code output.
SYSUT1 80 Compiler work file.
SYSUT4 80 Compiler work file.
SYSUT7 3200 Compiler work file.
SYSUTS8 3200 Compiler work file.
SYSUT9 80 Compiler work file.
SYSIT 4096 Compiler work file.
SYSTERM 133 Compiler error messages
SYSPRINT 133 Compiler work file.
DUMPRPG 133 Formatted RPG dump file
SYSMSG 150 Compiler message files
SYSMSG1 3200 Compiler/Runtime message file
SYSMSG2 3200 Compiler/Runtime message file

Other DDNAMES used by the program must be defined by separate /FILE statements, placed before any
/LOAD statement.

When SAA RPG output to a PRINTER device, the following options MUST be specified on the /FILE state-
ment. The options are;

OSRECFM FBA) OSLRECL(xxx) OSBLK(xxx)
where xxx is the length of the output line, normally 132.
For example, to have the output display at the workstation specify:
/ FI LE REPORT PRT OSRECFM FBA) OSLRECL(132)

To direct the output to afile, specify:

Chapter 8. Processors - SAA RPG/370 457

/ FI LE REPORT NAVE(REPORT. OUT) NEW REPL) LR(132)
/ ETC OSRECFM FBA) OSLRECL(132) OSBLK(132)

Keyed or indexed files, using VSAM, are supported.
References- RPG370

SAA RPG/370 Programming Guide, Form No. SC09-1335. SAA RPG Reference Summary, Form No.
SX09-1164. SAA RPG/370 General Information, Form No. GC09-1336. SAA RPG Reference, Form No.
SC09-1286.

458 SAA RPG/370 - MUSIC/SP User's Reference Guide

Chapter 8. Processors - SAA RPG/370 459

