MUSIC/SP Administrator's Reference

Part V - Chapter 18 - 23 (AR_P5.cm PS)

Part V. MUSIC/SP Internals

Part V. MUSIC/SP Internadls 359

Chapter 18. System Internals

MUSIC/SP'sMain Storage

Figure 18.1 shows the relationship between MUSIC/SP's real storage and virtual storage layouts.

Virtual View Real View
FLPA
BPOCOL
RCBs
PAGE
TCBs POOL (2)
NUCLEUS
FLPA
8VvB
BPOCOL
RCBs
TCBs
U R NUCLEUS
PAGE
POOL (1)
PAGE O --->
0
<--- PAGE O
0

Figure 18.1 - Main Sorage Layout of MUSIC
MUSIC/SP uses virtual storage. Page and segment tables are used to map the real storage layout to the

360 MUSIC/SP Administrator's Reference - Part V

virtual storage layout. When MUSIC/SP is running the virtual storage layout is used by the majority of the

system. Thereal storage layout isonly of concern to those components of the system handling the page
tables and low level 1/0 operations.

In the virtual view, the first 8 megabytes are taken up by an area called the User Region. Only asingle user

task can occupy this area at any given instant. The nucleus starts at address 8 megabytes and is followed by
control blocks, buffers, and the Link Pack Area.

In the real view, the nucleus starts at address 30000 (hex). Thus any virtual addresses in the nucleus can be
converted to area address by subtracting 7D0000 (hex). The User Region component for each user is
provided from the two page pool areas. At any instant only the pages for one user task are mapped to the
virtual User Region area. If thereis not enough space in these page pools to store the User Region pages for
all user tasks, inactive tasks are paged or swapped to disk. The nucleus, contral blocks, buffersand LPA are
never paged or swapped.

Nucleus: contains the MUSI C/SP operating system supervisor program.

TCBs: contains the Terminal Control Blocks. Thereisone TCB for every terminal 1/O device
defined to MUSIC/SP.

RCBs: contains the Region Control Blocks. Thereisone RCB for every possible user job that is
in the user region area.

BPOOL.: contains the Buffer Pool (buffer pool) used to transfer information between the user
regions and the terminals.

Fixed Link Pack Area;

contains high usage programs used by users. The use of this optional FLPA can improve
MUSIC/SP's performance as you will see soon.

TheUser Region

The User Region itself has different sections asisillustrated in figure 18.2.

Chapter 18. System Internals 361

8
U. R SERVI CE AREA
7
PLPA
3
rrrr
rrr
rrrr
0
USER region
/ AREA si ze
/

0
xXio000 1 -------
X c00' PAGE 0O

(4K)

Figure 18.2 - User Region

User Program: Thisiswhere the users program isloaded. The maximum size of thisareais 3 mega
bytes.

PLPA: The Pageable Link Pack area contains re-entrant modules that are called from programs
in the user program area. This area extends from addresses 3 to 7 megabytes. The
modules that can be loaded in this area have been preloaded on the systems page datasets
during system initialization. This greatly reduces the loading overhead. Typically the
PLPA contains compilers and system utilities that are commonly used.

Service Area: The User Region Service Areais used by the system supervisor in handling service
reguests from user tasks. It contains 1/0O buffers, save areas and stacks. One megabyte
has been reserved for this area.

As mentioned above, not all users pages can be kept in memory at the same time. In addition, only one users

pages can be mapped to the user region at any giventime. A major goa of the system isto make sure that all

the users get afair share of the user region. There are three processes that work together to achieve this goal.

» Thescheduler whosejob it isto prioritize the requests for the user regions. The priority is based on two
factors, one what kind of request it is and how long has the request been waiting. A job's priority is
automatically set and readjusted by the system as the characteristics of the job changes.

» The paging process that attempts to keep only the most active pages of ajob in main storage.

» The swapping process that can block page all the active pages of ajob to auxiliary storage should the
system determine that the storage can be better used by a higher priority job.

362 MUSIC/SP Administrator's Reference - Part V

Nucleus Gener ation

The NUCGEN Utility is used to create the tape or punch file that when loaded writes MUSIC/SP's nucleus to
disk. The output of the program is a sequential data set in card image format. The data set consists of the
object decks for the MUSIC system and device configuration cards that define the physical 1/0 unit
addresses for the terminals, disks, etc. These card images are preceded by a stand-alone loader utility.

The SY SGENL1 utility can be used to write the nucleus directly to disk while MUSIC is running. The follow-
ing describes the process when this utility is not used.

The nucleus generation isinitiated by an IPL from either the tape or the punch file produced by the
NUCGEN utility. The IPL loads a small stand-alone loader utility. Thisloader then loads the object deck
for the MUSIC system module SY GEN1 into main storage. SYGEN1 is amore powerful loader that uses
disk work areas on the MUSIC IPL volume. SYGEN1 readsin and relocates the remaining MUSIC system
modules. (Do not confuse this module SY GEN1 with the SY SGENL utility.)

Once the loading is complete, SY GEN1 moves a copy of the module storage map to the module HEL L O.
(Thismap is used by the main storage dump utilities.)

The module SY GEN2 gains control once the loading is complete. It reads the device configuration cards and
builds device tables which will be used by HELLO when MUSIC itself isinitialized.

SY GEN2 calls the module WMON to format and write the IPL information on the MUSIC SY SRES disk.
Then WMON writes the nucleus in core-image format to the dataset SY SLMUSIC.NUCLEUS on the
MUSIC SYSRES disk. Control isthen returned to SY GEN1 which writes a completion message to the
console and enters the wait state. The new nucleus can now be used by 1PLing from the SY SRES disk.

System I nitialization

When the hardware LOAD function is performed, the MUSIC IPL text isread into main storage. This|PL
text islocated on track 0. It was written to disk by the module WMON during the nucleus generation proce-
dure.

The module MFETCH reads in the MUSIC resident system from CKD disks and transfersto theinitialization
module HELLO which residesin what will become the user region. On FBA devices, the IPL text written on
block 0 performs the function of MFETCH.

The following functions are among those performed. Main storage size and processing unit type are deter-
mined. Time and date are set. Free storage is zeroed and protection keys are set. Region Control Blocks
(RCBS), Free page storage pool, 1/0 device Unit Control Blocks (UCBs) and Terminal Control Blocks
(TCBs) are created. HEL L O prints informative messages to the system operator concerning time, date and
disk drive utilization. If any unusual conditions are found, appropriate error messages are issued and initiali-
zation is halted.

HELLO callsthe module DINIT to process the information in the system catalog. Its mgjor functions are:
Locate and read the system catalog, and allow the operator to modify it. Scan all ready disk packs, locate
necessary system data sets and construct the Data Extent Blocks (DEBS), Pseudo Device Blocks and Statis-
tics Blocks, positions the accounting dataset, load required modulesinto the Fixed Link Pack Area, and issue
any VM commands found in the catal og.

When initialization is complete, the modules MFETCH, HELL O and DSINIT are no longer required and the

Chapter 18. System Internals 363

areathey occupy is added to page pool 1. Control isthen passed to the system schedul er/dispatcher module
URMON to initialize servicing of user jobs. Thefirst thing it doesis run the module JOBONE. job.

JOBONE first scans the Save Library index and deletes any temporary files left around from the last time the
system was run. JOBONE then loads the required modules from the load library into the PLPA (Pageable
Link Pack Area). It loads each member into the virtual address specified on the RESPGM catalog entry
whichwasread at IPL time. These addresses will be in the range X'300000' to X'6FFFFF'. Once loaded,
each member iswritten out to the page data set. Users are not allowed to sign on to the system till JOBONE
completes.

I nterrupt Processing

The System/370 architecture defines five interrupt classes:

Supervisor Cal (SVC)
Input/Output (1/0)
Externa (EXT)

Program Interrupts (PI)
Machine Checks (MCK)

Supervisor Calls (SVC)

SVCinterrupts are only caused by the SVC instruction. SV Cs can be thought of asjust acal to aroutine.
The caller need not be concerned with location of the routine in storage. SV C routines always start in the
hardware Supervisor State with no 1/0 or External interrupts allowed.

When the hardware performs a SV C instruction it stores the current psw at storage location 20 (hex) and then
loads anew psw from storage location 60 (hex). It will store aword at location 88 (hex) that contains the
SV C number as the second half word.

When an SV C isissued control is transferred to the module TRACE which records the event in the system
tracetable. (Thistracetableis printed by the PRDUMP storage dump utility.) TRACE then branchesto the
module SYSSVC.

SY SSV C checks system status bits to determine if the SVC wasissued in SYNC or ASYNC mode. If the
SVC isissued by a system interrupt handler, it isin ASYNC mode. If the SVC isissued by a user program
or by the system on behalf of a user program, it is said to bein SYNC mode. If in SYNC mode, transfer is
made to the module USRSVC where the SV C is decoded and the appropriate service routines called to handle
the request on behalf of the current user region. The user region service area (USRSVA) is used for buffers,
save areas and the stack. Storage in the user region is directly addressable by the SV C service routines.

If in ASYNC mode, then SY SSVC handlesthe SVC itself. These are system requests and do not pertain to
any particular user region, in fact the user region may not even be addressable at thetime. Only a subset of
the SVCs are valid in this mode.

Appendix C lists the SV Cs that are allowed in sync and async modes.

SVC Handlingin Trap Mode

There is another layer possible in the handling of SV Cs. An user program can request control whenever an
SVCisissued. Thisisknown as TRAP mode. Thismode isintended primarily for OS-Simulation, but is

364 MUSIC/SP Administrator's Reference - Part V

also available for other applications. If an application isrunning in TRAP mode, then SVCswill cause
control to be passed to an SV C processing routine that is part of the application. This SV C processor has no
specia supervisor powers as the system switches back to problem state with interrupts enabled before trans-
ferring control. The SV C is decoded and the appropriate action is taken to perform the required task.

For example, when a COBOL program is running, the COBOL object code issues OS SVCs. USRSV C will
recognize that the program is running in trap mode and branch to the SVC handler OSTRAP which isin the
user region. OSTRAP then may wish to issue an equivalent MUSIC SV C to perform the required function.

Most MUSIC SYNC mode SV C numbers are in the range of 126 and higher and the supported OS SVCs are
from 0 to 125. Thisfact isused by the fast reflect SVC trap option. Thisfast reflect option isusually onin
OSTRAP and so only the SV C numbers O through 125 return to OSTRAP for processing. So OSTRAP get
control on OS style SV Cs (0-125) but MUSIC's native SV Cs (126-256) are handled directly by USRSVC.

[/O Interrupts

I/O interrupts are asynchronous interrupts. That is, they can occur at any time if the system mask in the
current psw is enabled for 1/0 interrupts. Thisisthe case when running user programs. 1/0 interrupts are not
allowed while the system is processing SV Cs on behalf of user programs except for those in OSTRAP.

When the hardware accepts an 1/0 interrupt it stores the current psw at storage location 38 (hex) and then
loads a new psw from storage location 78 (hex). Location BA (hex) will contain the I/O address associated
with the interrupt. The new 1/0 psw will cause the processing unit to transfer to the module TRACE which
will record the event in the system trace table. (Thistrace tableis printed by the PRDUMP storage dump
utility.)

TRACE will check if the WAIT bit was on at the time of the interrupt and if so it will turn it off and update
the wait statistical counters. (See the discussion under topic "Wait State" in this chapter for further details.)

TRACE will then branch to the module DIOEX that will check to seeif the interrupt isfor adisk or tape
device. If so, it will update its queues and start more disk/tape I/0. (See the discussion under topic "Disk
and Tape I/0O" in this chapter for further details.)

If theinterrupt is not for disk or tape it will branch to the module MIOX. MIOX checksif the interrupt is for
aunit record device. Such devices are the card reader, card punch, batch line printer and the main system
console. If so, it will process the interrupt.

If theinterrupt is not for aunit record device, MIOX will branch to the module TCS. TCS handles the inter-
rupts for the terminals. (See the discussion under topic "Terminal Handler" in this chapter for further
details.)

External Interrupts (EXT)

MUSIC uses the external interrupts for the interval timer, the clock comparator and the CPU timer. Inter-
facesto VM services such as lUCV, VMCF, and Logical Device also use externa interrupts. Interval timer
interrupts are used only at system initialization time.

External interrupts are asynchronous interrupts. That is, they can occur at any time if the system mask in the
current psw is enabled for external interrupts. These interrupts are enabled when the system is running user
code.

When the hardware accepts an external interrupt it stores the current psw at storage location 18 (hex) and

then loads a new psw from storage location 58 (hex). The halfword at 86 (hex) contains a code that identifies
the kind of external interrupt. The new external psw will cause the processing unit to transfer to the module

Chapter 18. System Internals 365

TRACE which will record the event in the system trace table. (Thistracetableis printed by the PRDUMP
storage dump utility.)

TRACE will check if the WAIT bit was on at the time of the interrupt and if so it will turn it off and update
the wait statistical counters. (See the discussion under topic "Wait State" in this chapter for further details.)

TRACE will then branch to the module URMON.

Clock comparator interrupts are used only by the dispatcher. The clock comparator is set if the dispatcher
found nothing to do at some point. When this interrupt comes through, the dispatcher will check its queues
again. Outstanding clock comparator interrupts are not cleared if the dispatcher is entered for other reasons.
Thus, it is possible to get these interrupts at a later time. Should this happen, they will be ignored.

CPU timer interrupts mean that atime slice has come to the end. URMON will then go to USRSV C to
handleit. Thetransfer to USRSV C ishandled asif an SV C 256 had occurred at the location pointed to by
the external old psw.

When USRSV C processes the SV C 256, it will check to seeif the job has used too much time. If so, then a
bit will be set. The dispatcher isthen called, in all cases, to end the current time slice.

When the job is dispatched again, and when it returns to problem state, it will check the bit to seeif the job
time has been exceeded. If so, amessage will be printed and the job will be terminated.

Program Interrupts (PI)

Program interrupts (PIs) occur when the processing unit cannot perform an instruction because of (@) it
cannot access one of the required storage pages or (b) it found bad data (such as division by 0) or (c) by the
attempt to execute an instruction that is undefined or invalid.

Case (a) isknown as a page exception. The PSW in this case will point to the actual instruction that caused

the reference -- not the one following it asis the case with most other program interrupts. The hardware will
store the virtual address of the page that could not be found at location 90 (hex). The low order 3 hex digits
of this value cannot be counted on to be exact.

When the hardware detects a Program Interrupt it stores the current psw at storage location 28 (hex) and then
loads a new psw from storage location 68 (hex). Location 8E (hex) containsthe Pl code.

This new program interrupt PSW will cause the processing unit to transfer to the module PAGER. This
module checks to seeif it was a paging exception. |If so, then this module will resolve the paging exception
if it can. Reference to a data page outside of the user region will cause the system to pass back a protection
check interrupt. Thiswill appear as Pl code 4. Reference to an instruction on an odd address boundary that
is outside of the region will be treated as specification error. Thiswill appear as Pl code 6.

If the PI was not be resolved as a paging exception then control is given to the module PITRAP. The action
PITRAP takes depends on whether the PI occurred in Supervisor or Problem state. 1t determines this from
the Problem State bit in the psw.

Supervisor State: PITRAP will issue a console message and stop the system by entering a wait state
with all interrupt masks off. A re-IPL of MUSIC isrequired to recover from this
condition.

Problem State: PITRAP enters the routine XERMON contained within PITRAP.

XERMON contains routines to fix up the floating-point registers for program checks
due to floating-point underflows or overflows.

366 MUSIC/SP Administrator's Reference - Part V

If the user program has defined a program interrupt exit, then XERMON will branch
toit. Otherwise the user program may terminate depending on the degree of severity
of the error.

Machine Check Interrupt

Machine checks occur when the processing unit detects an error in its hardware. Examples include the detec-
tion of an unrecoverable parity error in storage. Channel checks may or may not cause a machine check
interrupt, depending on the processing unit model. Channel checks that are not presented as machine checks
are represented by certain bits on in the CSW presented with /O interrupts. The module DIOEX checks for
the presence of these channel check bits. If found, DIOEX will branch to the module MCHINT.

When the hardware detects a machine check condition, it stores the current psw at storage location 30 (hex)
and then loads a new psw from storage location 70 (hex). This psw will cause the processing unit to transfer
to the module MCHINT.

MCHINT logsthe error. The action taken depends on the type of error:

Soft Machine Check: The system is allowed to continue if the error counts have not been exceeded.

Hard Machine Check: If the error can be localized to a specific user'sjob, then only that job is terminated.
Otherwise, the system is shut down.

WAIT State

MUSIC enters await state when there is no processing unit work to do. (The wait stateisindicated by the
Wait bit on in the current PSW.) The following are the three main reasons for wait states on MUSIC.

* All available user region work has been performed. Thisisknown asthe MUSIC idle wait state. The
last bytes of the wait psw will be FFFFFF in this case.

* All user regionsare al in wait state. This usually means that each one has some 1/O to do. Thelast
bytes of the wait psw will be FFOOFF in this case.

» Some system function cannot proceed until some 1/0O is completed. The last bytes of the wait psw will
point to the virtual location of the wait request.

MUSIC provides atechnique of recording how much timeis spent in wait state and for what reason. A task
that wishes to enter the wait state issues the MUSIC wait SV C followed by a 2 byte statistical counter
number. (The system macro LOOP generates the required sequence of instructions.)

The module SYSSVC processes this SVC request. It forms a psw with an instruction address set to retest the
completion of the event. The psw aso has the wait bit on. This psw isthen |oaded and the system enters the
wait state.

Upon either an I/O or External interrupt, the old psw is inspected in the module TRACE to see if the wait bit
ison. If on, the bit isturned off and the time that the system was in wait state is recorded for statistical
purposes.

After the system processes the interrupt, it will reload the old psw and thus resume what it was previously

doing. If it wasin wait state before, the old psw now has the wait bit off which will causeit to retest the
completion of the event. If the event is now complete, the task will continue, otherwise the wait SV C will be

Chapter 18. System Internals 367

redone.

The WAITS utility program can be used to print the time information gathered by this process.

Job Dispatching and Scheduling

Scheduler

Requests for user region service are processed by the scheduler which islocated in the module URMON. For
example, when aterminal user entersa/ID command, TCSissues a $QUEIT SVC which is processed by
URMON. Depending on the type of request, URMON then places the request into one of some 9 queues.
These $QUEIT requests can come in at any time and do not have any immediate effect on the job currently
running in any region.

The items within each queue are serviced in afirst in, first out (FIFO) basis. That is, they will be taken in the
order they requested service. The only exception to thisis the futures queue which is ordered by the time the
user wants service. The futures queueis entered by acall to the DELAY subroutine, etc.

Each queue has a bias number which determines the relative priority between queues. Take for example the
following case. Suppose the conversational read queue has a bias of 10 and the full time slice queue has a
bias of 200. The system would attempt to give response timesin that ratio if reads were getting 0.01 second,
then full time slice ones would get 0.2 seconds.

Installations can change the bias numbers by changing the table in URMON. These numbers can also be
changed dynamically.
Dispatcher

The module URMON contains the MUSIC dispatcher. Itsjob isto keep the user regions busy. It does that
by managing chains of Region Control Blocks (RCBS).

At IPL time the system builds a number of RCBs and chains them all into the free chain. Also at IPL time,
the system establishes the maximum multiprocessing level (MAXMPL). ThisMAXMPL isthe maximum
number of RCBs that can be simultaneoudly in the active chain.

If any queue has some work that can be done, the system will try to add another RCB to the active chain if
the MAXMPL has not been exceeded.

An RCB will stay in the active until one of the following happens to the job represented by the RCB:

* Thejob exceedsits processing unit time slice. Thistime diceisdetermined at IPL time. It is approxi-
mately one second divided by the MAXMPL number. Note that thistime is pure processing unit time
not elapsed time. The RCB isthen placed in the dormant chain. The scheduler is called to add the job
to the full time slice queue.

* Thejob exceedsits1/O timedice. Thismeansthat the job has performed more than 50 /O operations
inthistime dlice. The I/O count includes paging 1/0. The RCB isthen placed in the dormant chain.
The scheduler is called to add the job to the full time slice queue.

* Thejob hasended. The RCB isthen added to the free chain.

* Thejob regquestsinput from the terminal. The RCB is then placed in the dormant chain. (TCSwill call

368 MUSIC/SP Administrator's Reference - Part V

the scheduler when thisjob is to be activated again.)

» Thejob hasissued atape rewind or other similar condition that specifically called the dispatcher to
dispatch someone else. The RCB is then placed in the dormant chain.

Swapping and Paging

Region Control Blocks

The region control blocks (RCBs) contain information about the user regions that are currently in main stor-
age. In addition to status information the RCBs contain I/O control areas and the page and segment tables.
Associated with the page tables are the page frames that are mapped to the user region. An RCB can be
active or dormant.

Active RCBs are those that are currently being given atime slice. The dispatcher manages the competition
between these tasks for CPU and 1/0 service. The maximum number of active RCBs that you can have at
onetimeislimited by the "Maximum Multi-Programming Level" (MAXMPL). This number is set during
system initialization based on the amount of free storage. It is normally between 3 and 10.

When the time slice ends the RCB becomes dormant. The dormant RCB and any pages associated with it
remain in main storage until the system needs pages to satisfy the requests of an active RCB. At thistimethe
module SWAPER will be called to free up some pages. SWAPER will call URMON to scan through the list
of dormant RCBs and select the one that it thinks will not be needed for awhile. SWAPER will then write
al the main storage resident pages associated with that job to the swap data set(s). It will write a copy of the
contents of the RCB as part of the swap data. After the swap out operation is completed then the RCB can

be added to the free chain and the pages added to the free page list.

When the scheduler decides to continue ajob, it will check to seeif its RCB isin the dormant chain. If so, it
can be reactivated by simply adding the RCB to the active queue again. If the RCB cannot be found then it
must have been swapped to the swap data set(s). In this case, the system must find afree RCB and sufficient
free pages to hold the job again. This may require calling the SWAPER module to swap someone else out.

Maximum Real Region Size (MAXRRYS)

The MAXRRS parameter limits the real storage available to auser task. The default valueis 272K, but this
can be overridden in the NUCGEN job. The value of MAXRRS can have alarge effect on performance. If
the storage requirements of a program are larger than MAXRRS, MUSIC/SP provides the required virtual
storage using both demand and block paging techniques. The larger MAXRRS, the less paging is required.
It isnot agood ideato make MAXRRS too large however, since it can increase the swap load. Theideal
choice for MAXRRS depends on the job mix, the available main storage and the disk and channel facilities.

Swapping

The swap data set is formatted into 4K blocks. It is suballocated in terms of multiples of 10 blocks. Each of
these 40K areasis known as a Svap Set. By default the MAXRRS valueis 272K. Adding the 8K for the
RCB gives amaximum of 280K that must be swapped. Thiswill take 7 swap sets. SWAPER will attempt to
distribute them over the defined swap data sets. (SY S1.MUSIC.SWAPX). Since multiple swap data sets are
usually on separate channels, thiswill allow for overlapping of the time to do one swap set on one channel
with the time to do one on another.

Chapter 18. System Internals 369

Paging

Paging does not directly get involved in job scheduling or swapping operations. No matter how big the
user's virtual storage size may be, the real storage allocated will never exceed MAXRRS. Oncethe
MAXRRS limit is reached the task will page. The paging algorithm is designed so that atask will only page
against itself and never take storage away from other competing tasks. This control has the following
benefits:

* A jobwith large virtual storage demands will not overwhelm the system.
* It limitsthe amount of swap I/O that has to be done even for large jobs.

» |ttendsto smooth all user's response times by not being so dependent on the number or characteristics
of other ssmultaneously running jobs.

At job start time, no pages are assigned. The job control information including the page tablesis stored in
the RCB. Pageswill be assighed as page exceptions occur. The pages will be obtained from the system-
wide page pool. Upto MAXRRS of pages can be obtained per job from this pool.

After the MAXRRS limit has been exceeded, the PAGER module will scan the assigned pages to decide
which ones have not been used for awhile. The state of the inactive page determines what to do next. The
choices are:

* Theinactive pageisentirely filled with binary zeros so it will beimmediately added to the free page
pool.

» A copy of theinactive page is aso on the paging data set and thus it does not have to be written to disk.
This allows the system to be able to immediately add it to the free page pool.

» Theinactive page cannot be reused until a copy of its contents are written to disk. It isremoved from
the active page mapping and is added to the list of pages that must be written to disk on behalf of this
user but is not added to the free page pool. If the list has grown to 8 pages then write all 8in one 1/O
operation and when done add all 8 pages to the free page pool.

The blocking of page-out operationsis called block paging and is a significant performance benefit over
performing a separate I/O operation for each.

Page-in operations are not blocked. Thisresultsin a better usage of the available main storage page frames.

PLPA members are loaded by simply updating the page tablesin the RCB. When a specific PLPA pageis
referenced, then the system will use thisinformation to read in that page from the page data set.

The paging system gets informed of specific MUSIC requests to zero storage. Thisincludes deleting PLPA
members and releasing storage at the end of processing phases such as compilers and loaders. Pages that get
zeroed in these ways are immediately added to the free page pool.

Notice that users page against themselves and not against each other. This resultsin a more consistent

response pattern. Also note that no paging is doneif the user jobs never exceeds MAXRRS. The MUSIC
editor only needs about 80K to run and so it does not normally page.

370 MUSIC/SP Administrator's Reference - Part V

Terminal Handler

The module TCSsupervises al terminal 1/0 in MUSIC. When no program is running (* Go mode) TCS
reads a command from the terminal. With the exception of trivial tasks, executing the command usually
involves running a program in the user region. TCS schedules the user region program and waits for termi-
nal output or requests for input from the program. When the job has finished and all the output has been
processed the user is again prompted for a command.

MUSIC uses data spooling techniques to reduce overhead in communicating with terminals. For example,
when a program writes to aterminal, the datais ssmply moved into a buffer and the program allowed to
continue asif the 1/0 had taken place. The module SIOCS is responsible for placing the data into these spool
buffers. The terminal handler (TCS) fetches data from this spool and performs the physical 1/0 at whatever
rate the terminal can accept. Automatic synchronization is performed when input is required and at end of
job. The system informs TCS that datais pending on the spool by calling the routine WAKEUP. TCS then
fetches the data from the spool, one record at atime, and processes it according to it'stype. There are three
basic types of spool records. The most common type contains output data which is sent to the termina with
the appropriate control characters. The second type of spool record is used to set various termina options
flags. These records are usually the result of callsto the $SSETOPT SVC. The third type of spool record is
used to initiate aread from the terminal.

TCSisentered on aterminal 1/0 interrupt (IOTRAP) or from a user region request (WAKEUP). If TCSis
busy processing another terminal, the request is queued.

TCS calls several modulesto perform part of the terminal support. The modules are:

TERMIO to perform device dependent functions such as CCW construction and /O interrupt handling
for 2741, 1050 and TTY terminals.

TM3270 to perform device dependent functions such as CCW construction and 1/0 interrupt handling
for 3270s.

TRMCTL contains control blocks specifying many parameters which control the way in which the

system communi cates with remote terminals. Many parameters, such as line length, carriage
return rate, tab and backspace characters can be specified for many terminal types.

TCSrefersto the information in this module by an index stored in the TCB. Thisindex is
set up by the SIGNON phase at /ID time based on the trmcls specification either given on the
command or extracted from the user's userid code profile or the default one for the terminal

type.

COMAND Processes the control commands entered by the terminal users.

CHKPFK iscalled by TM3270 to perform operations associated with program function keys such as
multi-session requests, the retrieve function, and user defined operations.

DEFPFK processes the /DEFINE command.

NEWTCB manages the control block poal for multi-session support and provides the logic to add,

delete, or move to anew session.

DSPOOL provides access to the input and output spool and the buffer pool.
FSIO serves as the interface between the terminal handler and the user region for full screen 1/0
requests.

Chapter 18. System Internals 371

TRANTB contains al terminal translate tables except those used for 3270 APL.
APLTRN contains the trand ate tables used for the 3270 APL support.

TABSET inserts tab characters and idle charactersin lines to be sent to aterminal. It uses the termi-
nal's current tabs to ensure that the time needed to print program output is minimized.

TABCMD processes /TABIN and /TTABOUT commands entered from terminals. It translates the values
on the commands into internal form and places them into the appropriate TCB.

Terminal Buffer Pool

During system initialization, an area of storage is allocated as the terminal buffer pool based on the BPOOL
parameter specified in the NUCGEN. Each buffer in this pool has a 512 byte data area and a 4 byte pointer
used in buffer chaining. With the exception of asmall input area associated with each terminal, all terminal
buffers space is acquired dynamically from this pool. The module DSPOOL and its entry points provide two
levels of access to this pool.

The DSPUT and DSGET routines allow the caller to create and access chains of logical recordsin these buff-
ers. (In-core spool files). Two such chains are provided for each terminal, the input and output chains.
Terminal output, spooled input, and full screen /O, transfer data between TCS and the user region using this
type of access.

The GETBUF and FREEBUF routines allow the caller free access to the buffer pool without imposing the
logical record format. The 3270 screen manager, conversational read, and the /DEFINE command use this
type of access. The FREEBUF routineis also used to free entire buffer chains when ajob is cancelled or
abnormally terminates.

Since the buffer pool is alimited resource, users are limited as to the number of buffers they can own at one
time. When a user exceeds this limit, the user'sjob is temporarily stopped until more buffers become avail-
able. Thislimitisdynamically adjusted so that it is reduced as the number of available buffersisreduced. It
is possible for the system to run out of buffers. When this happens system performance will be effected
since all operations that require the buffer pool will have to wait for buffers to become available and almost
all terminal 1/0 requires the buffer pool.

Allocate at least four buffers for each active terminal. The COUNTS and BPOOL utilities can be used to
monitor buffer pool usage. If the total number of buffers used consistently approaches the number all ocated
it is recommended that more buffers be allocated. |If the total number used is consistently much less than you
have allocated the storage is being wasted. As noted above, it is normal for the user limit exceeded count to
be non-zero.

Disk and Tapel/O

The module DIOEX supervises the MUSIC disk and tape 1/0. DIOEX handles the actual 1/0 execution on
the selector channel(s). It will handle tape and disk, read and write requests, and specia purpose functions.

DIOEX isentered by an SV C when a disk/tape |/O operation isrequired. It will validate the UCB number
giveninthe caler'sargument list. 1f the UCB number is greater than the highest disk/tape UCB, DIOEX
will check if it corresponds to avalid Data Extent Block (DEB) number. (Most DIOEX requests use these
DEB numbers.) (The DEB's are created at MUSIC IPL time by DSINIT with the exception of those used to

372 MUSIC/SP Administrator's Reference - Part V

access User Data Set files. UDS DEB's are contained in the XFCB module and are initialized when the user
job starts.)

Once the request has been validated, DIOEX adds the request to the channel queue depending on what physi-
cal channel the disk/tapeison. If the channel isfree, DIOEX will seeif it needs to construct a channel
program. Most requests require that disk channel programs be constructed using information from the
caller's request block and the appropriate Unit Control Block (UCB) and DEB. When the channel program is
constructed, DIOEX will start the 1/O.

DIOEX also performsthe 1/0 interrupt handling for selector channels, including error detection, correction
and logging. If the I/O request signals that the I/O is complete, DIOEX will update the channel queue and
process the next request in the queue.

If an I/O error isindicated, aretry operation will be attempted.

The module UIO preprocesses all disk and tape I/0 coming from user regions. It performs many of the func-
tions that DIOEX does such as looking up DEBs. The CCWs prepared by this module use indirect address-
ing to access the real storage pagesinvolved in the 1/O. It might have to call the PAGER module to page-in
part of abuffer. When the CCWs are prepared, URIO will call DIOEX to schedule the 1/0. It will then call
the dispatcher to run another user until the 1/0 is complete. When the I/O is complete, the original task will
be redispatched and will then return to URIO so it can check the ending conditions and unlock the pages
involved in the /0.

User Region I/O

Most user region 1/O requests result in an SV C that is handled by the module MFIO. Full details of the
MFIO SVC interface can be found in Chapter 20 - File System. Thissingle SVC providesthe interfaceto
the file system, the UDS file system, terminal input and output, tape, printers, punches and card readers.
There are two basic ways that an application can access files and 1/O devices.

Applications can access files dynamically. When the open request isissued, MFIO returns an Internal Unit
Number that the application uses on all subsequent 1/O requests. Some devices have unit numbers pre-de-
fined and need not be specifically opened.

The /FILE statement is used to define afile or 1/O device for the duration of ajob. In this case, the module
CTL opensthefile and saves the internal unit number in one of two tables in page zero of the user region.
The application specifies either a DDNAME or Logical Unit Number when accessing thefile. The system
tranglates this to an internal unit number using the tables set up by CTL.

I/0 requests can specify either the internal unit number (1-255) or the logical unit number (1 - 15). Sincethe
logical unit number corresponds to a/FILE statement, the actual physical device can be changed by changing
the definition on the /FILE statement. Thus a program that reads from the terminal keyboard using logical
unit 9 can be changed to read from atape by adding a/FILE statement that defines unit 9 asatape. A
program using internal unit 9 will always read from the keyboard.

Unit numbers less than 16 are assigned to specific 1/0 devices or files. Unit number greater than 16 are
assigned when files are opened by MFIO dynamically. The following describes the handling of internal unit
numbers. Numbers 1 through 10 also correspond to the default logical unit numbers.

Units 1,2,3,4 These unit numbers are used to access the User Data Sets and tapes. MFIO calls the module
FIOCSto process this request. FIOCS uses the control blocks in the module XFCB to buffer
and control these four units. ($CTL, the execution start phase, processes the user /FILE
cards and initializes fields in the XFCBs. The XFCBs are part of the module URSRVA.)

Chapter 18. System Internals 373

Unit 5 Thisisthe system input unit. Commands, programs and input data are read from this unit.
MFIO calls the module SOCSto process the I/0. SIOCS starts out reading the terminal or
batch input spool. If a/INCLUDE statement is encountered it switches to reading the file
named on the /INCLUDE statement.

Unit 6 Thisisthe system output unit. Program output and messages are by default sent to this unit.
MFIO calls the module SIOCS to handle the I/O. SIOCS writes the output to the terminal or
batch output spool. On batch the output is sent to the printer. On aterminal the output is
displayed on the terminal.

Unit 7 This unit isthe system punch and it israrely used these day. On batch it represents the card
punch, on terminals the paper tape punch. Again SIOCSis called to do the I/O and the data
iswritten to the batch or terminal output spool.

Unit 9 Thisis used when a program wants to read interactively from the terminal. On batchitis
treated like unit 5. Again MFIO calls SIOCS. SIOCS writes a specia record to the terminal
output spool and then calls URMON to end the time slice. When the module that handles
terminal (TCS) detects this specia record, it reads the input from the terminal and resche-
dules the program execution. Once the program regains control, MFIO passesiit the terminal
input.

Unit 10 Thisisthe known asthe HOLDING file. Some compilers write object programsto thisfile.
MFIO will check if thisisthefirst 1/0 on unit 10 in thisjob. If thisisthe case then it will
create afile called @HOLD.sss. (sssisthe subcode.) Any previously existing file with this
name will be purged. Subsequent writes to unit 10 just add records to thisfile.

Units 16-255 These unit numbers are assighed when afileis dynamically opened using the OPEN request
of the MFIO SVC.

Batch Spooling

The module SPAM supervises the batch spooling in MUSIC. It logicaly consists of two processes: (1) read-
ing cards and writing them to the batch spool area on disk and, (2) reading the batch output spool area and
printing or punching the records.

Batch Input Spooling

SPAM constructs the CCWSs to read from the card reader. It calls the module MIOX to initiate the 1/O opera-
tion and perform most 1/O error recovery. It callsthe module XTXT to compress the card images into the
same format as used with /INPUT files. (Refer to the topic "Batch Input File Format" for a description of the
packing scheme.)

SPAM calls the module IOBUFR to buffer these compressed records into physical spool block format.
IOBUFR will perform the actual disk request when a spool buffer fills.

When a/ID card is detected the module CKCDE is called to perform the userid (code) checking function.
CKCDE calls the module CDSRCH to locate and read in the userid (code) record. (The job time and page
limits, etc, are not processed at thistime. They will be handled later by CTL when the job starts running.)

When SPAM reads a/END card, the input spool fileis closed and the user region job scheduler is called to
gueue the job request.

374 MUSIC/SP Administrator's Reference - Part V

When SPAM reads a/PAUSE card, a console message is sent and spooling continues. When a/END card is
later detected, SPAM will check if the operator has responded to the PAUSE message yet. If not, thejob
will not be queued at thistime.

Batch Output Spooling

SPAM calls IOBUFR to read the output spool disk data set. Each logical record is prefixed with a one byte
output route code which indicates if the record is for the printer or punch. (The output records arein
compressed form with trailing blanks removed.)

SPAM forms the required CCWsto print or punch the record and call MIOX to perform the actual 1/O.

Batch Internal Reader

Jobs submitted to the internal reader get written to the system data set SYS1.MUSIC.SUBMIT. Control
information existsin the first block of thisfile. The data set is divided into a number of sections (also called
gueues), each representing one of the internal reader classes (1, 2,...). A submitted job occupies one block in
the appropriate queue.

The subroutine SBMJOB ($SUB:SBMJOB.S) places ajob into the submit data set. It also initializes the
submit data set, if necessary. The routine SBREAD in the module SPAM reads the job from the submit data

set. The module CAR processes the /RDR console command, used by the operator to control the internal
reader.

For more information, refer to the comments and coding in SPAM and $SUB:SBMSET.S.

Batch Input File Format

Lines entered through batch as card images (80-character records) are compressed and blocked prior to being
written on disk. This packing conserves disk space and reduces data transfer time.

Each card image is compressed by removing high-order (trailing) blanks from the following 3 fields:
Field1: positions 1to 6

Field2: positions 7to 72
Field 3: positions 73 to 80

Four 1-byte binary counts are appended to the compressed text to enable the line to be unpacked. The final
format is

C L1 L2 Text C
where:
C total length of packed line, including control bytes. The C at the end of each lineis used by the
/DELETE command.
L1 length of field 1 after high-order blanks removed.

L2 length of field 2 after high-order blanks removed.
Text fields1to 3in packed format.

Chapter 18. System Internals 375

Example:

Colum 1 7 73
17 FORMAT(| 5) FORT0003
appears as

24 2 10 17FORVAT(I5) FORTO003 24
A blank lineis stored as 04000004 (hexadecimal, 4 bytes).
The compressed lines are blocked into 512-byte physical blocks. A lineisnot split over aphysical block.

Thelast linein ablock is always followed by a zero byte to indicate end of buffer. Thus, each 512-byte
block may contain from 6 to 128 lines, depending on the amount of information in each line.

Consolel/O

The module CAR manages the I/O to the MUSIC system console.

CAR isentered by an SV C when amessage to the console is requested. The console queue is updated and if
possible, the I/O started.

CAR isentered from MIOX upon aconsole I/O interrupt. The interrupt may indicate the completion of
some /O activity. It could also indicate that the console REQUEST button has been pressed.

Accounting L og

The module DICDOC handles writes to the MUSIC accounting log. Records are written to the log by using
an SVC. DICDOC huffers these records and does disk 1/O when required through calls to DIOEX.

The ACTDMP utility program is used to read this detailed log and produce single accounting records for
each session. The format of the detailed log records is described below.

SPAM calls DICDOC to write the information from the /ID card read from the card reader. It also calls
DICDOC to write out details of ajob's output such as how many lines were printed and how many cards
were punched.

SIGNON issues an SVC that calls DICDOC to write information from the /ID commands processed. TCS
calls DICDOC to record the number of characters transmitted to the terminal, information about /OFF
commands.

URMON calls DICDOC to write end of job records that contain the total amount of time used in the user
region.

Accounting Record Formats

The accounting datais stored on the system data set SY SL.MUSIC.ACCT. Each block on thefile is 4096

bytesin length. The first block in the file contains pointersinto the file. The remainder of the blocks contain
the actual accounting records.

376 MUSIC/SP Administrator's Reference - Part V

The accounting datais written block by block to the disk file by the system module DICDOC. The blocks
are written in ascending block number order until all the blocks have been used. Subsequent blocks will be
written to block numbers 2, 3, etc. The pointersin the first block contain information that will stop the
system from destroying blocks which have not been processed by the ACTDMP utility.

Each block ends with afour byte sequence number. This number is always one greater than the last block
written. A discontinuity in these numbersindicates the logical end of thefile.

Several record formats are used to hold accounting information in the disk accounting file:

System Initialization Record
Ti me of day Dat e d ock
K HHMM MM/ DD/ YY cCcCCC
Notes:
1. K representsthe character count of the record (all counts include themselves).
2. The CCCC represents the time of day clock which isin units of two's-complement three-hundredths of a
second. Thevaueisstored in 4 bytes.
/ID Record

Logi cal Job Packed |ID Line d ock
CNT Unit Code

K uu 01 XXX--- X C€cCccCCcC

General Accounting I nformation Record

Logi cal Job Request

CNT Unit Code Type d ock
K Uuu J R cccc
Job Code

02xx Job Request(xx is Request Type--see below)
03 Job Selection

06 Job Cancel or Job Cutoff (see below)

07 End of Output (See below)

08 /OFF Record

Request Type (code 2 records only)

01 /RUN or /EXEC

02 /UPDATE

03 /SAVE

04 /PURGE

05 Jobone system initialization phase
06 /DISPLAY OR/LIST

Chapter 18. System Internals 377

07 /D
08 /RENAME
09 /INPUT

End of Output Record (#7) (Terminal)

Cnt Logi cal # of d ock
Uni t chars
K uJ 7 XXXX Ccccc

End of Output Record (#7) (Batch)
cnt crds rd crds pch Ins prt tape, disk nounts

K 0 7 XXXX XXXX XXXX X X

Job Cutoff (#6) Records

Logi cal Job Cut of f Info Executi on
CNT Uni t Code Code Byt es Ti me d ock
K uu 6 C P KK TTTT CcCCC
Job Code

Same as for Genera Accounting Information record.

Cutoff Code
01 Job Overtime
02 Not used
03 Norma EOJ
04 Not used

05 Abnorma EOJ
06 System /O Error
07 Abnorma End of phase
08 Not Used
09 Cancd
Info Bytes (#6 records only)
P is processor identification set by CTL.

KK isthe number of 4K pages allocated to the job. Minimum is 27 representing 108K.

UDS Delete Record (#10) (See module PST for details)
Cnt Cde Cde cont'd Vol Ucb Type Details

K CcC A cceec VWWW u

378 MUSIC/SP Administrator's Reference - Part V

Shutdown Record

Shut down
CNT Code d ock

K FFFFFF CCCC

Ordinarily the accounting records for terminals will be recorded in logical sequence. However, they are
recorded in time sequence, i.e., in order of their occurrence in the system. This meansthat /ID records for
other terminals can be recorded before another job occupying the processing unit is done. The end of output
rcd (#7) for batch may occur before or after the end of job record or after the next /ID record. The #7 records
for terminals can occur anytime.

Accounting Record Notes

1. Theexecution time portion of ajob cutoff entry isin service unitstimes 300. It isthe total chargeable
time for the job.

2. /ID'sare placed in the Accounting File in packed input format.

3. Theaccounting records are packed into 4096-character blocks on disk. A record with CNT = 0 indi-
cates end-of-buffer. The last four bytes contains a sequence number. This number isincremented by
one for each subsequent record. A discontinuity of these numbers indicates the logical end of the file.

4. Number 6 records usually occur after number 3 records. The exception isthat anumber 1 record (/ID)
can occur between a number 3 and a number 6.

User CodeTable

The User Code Table contains the information required by MUSIC for each userid authorized to use the
system. Thisinformation includes passwords, time limits, options, privileges, etc. (Useridson MUSIC are
sometimes called the user's code.) Thetable residesin two system data sets: SY S1.MUSIC.CODINDX,
whichisa2-level index, and SY S1.MUSIC.CODTABL, which contains the individual userid records. Each
userid, consisting of 16 characters with trailing blanks, is represented by a code record, which is pointed to
by an entry in theindex. Theindex provides quick accessto any record, and also alows records to be added
and deleted easily.

An SVC ($GETCOD, processed by module CDSRCH) is used to get the code record for a given userid. The
SV C searches the index for the userid, then reads the corresponding code record into main storage. For
example, at sign-on time, the module SIGNON uses this SV C to verify the user's password and fill in fields
in the user's Terminal Control Block (TCB). It isaso used by module CKCDE for batch jobs, and by the
CODUPD and PROFILE programs.

The Code Table Update utility (CODUPD) is a conversational program which adds, changes, displays, and
deletes code records. Usage of CODUPD, aong with the various code record fields, is fully described in the
Chapter 17 - System Utility Programs. A restricted version of this program (PROFILE) enables usersto
change and inspect some of the fields in their code records, such as passwords, default time limit, auto-pro-
gram name, etc. PROFILE usage is described in the MUS C/SP User's Reference Guide.

The Code Table Dump/Restore utility, CODUMP, is used to dump the entire code table to tape or a sequen-

tial file, for backup purposes. It can also restore the code table from adump. The restore function recreates
the index, compressing it at the sametime. CODUMP is described in the Chapter 17 - System Utility

Chapter 18. System Internals 379

Programs.

Source for CODUPD, PROFILE and CODUMP is stored under code $COD in the Save Library (or on the
MUSIC source tape). Code $COD &l so contains some subroutines that are useful for scanning and modify-
ing the code table. File $SMCM:CODENTRY .M contains the macro that defines the code record contents.

Code Table Structure

The codetable index (SY S1.MUSIC.CODINDX) contains the master index record (the first record of the
data set) and the second level index records. The data set isreferred to by Data Extent Block (DEB) number
234. Eachrecord is normally 4096 bytes, but a shorter length may be used. The master index record is kept
in main storage, for faster code lookup.

Data set SY S1.MUSIC.CODTABL contains the actual code table records, one for each userid, pointed to by
entriesin theindex. Itisreferred to by DEB number 233. Each record is 512 bytes.

Both DEBs use a pseudo device format, with 10 logical tracks per logical cylinder and 40 (code table) or 11
(index) records per logical track. Use of a pseudo format does not affect the number of records per real
track.

The userid is a 16-byte key that is used for indexing the code records. Each index record has one or more
18-byte entries, each entry being a userid followed by a 2-byte pointer. The entriesarein increasing order by
key, and (unless the record isfull) the last entry isfollowed by 18 hex FF bytes. An entry in the master
index record contains the highest key of an index record and the pointer is the number of that index record
(the index records after the master are numbered 1,2,3...). An entry in an index record points to a code
record (the records in the code data set are numbered 0,1,2,...).

The maximum number of code recordsis limited by the number n of entries per index record. The maximum
number of code recordsis n*n (assuming that the code data set is big enough). Index records are normally
4096 byteslong, so n = 4096/18 = 227, and the biggest code table could hold 227* 227 = 51529 records.

The CODUPD program keeps track of unused index and code records by means of bit maps, which it builds
at the start of each CODUPD run. CODUPD isthe only program allowed to add or delete code records. All
other programs can only get or change records (but they must not change the 16-byte userid at the beginning
of the code record).

To avoid wasted space in index records when adding a large group of consecutive codes or subcodes, they
should be added in increasing sorted order, i.e. the ADD commands should be sorted by userid.

Code Search SVC

The $GETCOD supervisor call instruction is used to search the code table index for a given code/subcode
and read the code record into main storage. The SV C can aso be used to request information about the code
table, and to mark the main storage copy of the master index record asinvalid. For the calling sequence and
return codes, refer to the source of system module CDSRCH (under code $SY'S). Subroutines CDSVC,
CDPRM and INVAL (source under code $COD) can be called from a Fortran program to issue the SVC.

380 MUSIC/SP Administrator's Reference - Part V

Chapter 19. Direct Access Storage

Overview

Two classes of direct access storage devices are supported by MUSIC: count-key-data (CKD) devices such
as 3375 and 3380, and fixed block architecture (FBA) devices such as 3310 and 3370. Datarecords on CKD
packs are accessed by cylinder, track and record number, and the records may be of various lengths. Records
on FBA packs are accessed by a single block number (0,1,2,...) and are all of fixed length 512 bytes.

All disk packs used by MUSIC arein the standard OS/VSformat. That is, they use normal volume labels
and volume table of contents (VTOC). MUSIC CKD packs differ from OSin that most data sets are prefor-
matted, which alows for more efficient access techniques. Furthermore unallocated tracks on UDS packs
are preformatted in anticipation of future allocation, as described later on in this chapter. Preformatting is
not required on FBA volumes since all blocks are of fixed length.

For CKD packs, the VTOC on MUSIC's IPL pack must not be greater than one cylinder. Format-5 DSCBs
on CKD disks are used to keep track of free space, and the free space entries are maintained in order by disk
address.

The format-5 DSCBs on FBA disks are not used (there is a single dummy format-5).

For purposes of data set allocation, blocks on FBA devices are grouped into logical tracks. A logical track is
defined by MUSIC as a set of 32 512-byte blocks, in which the block number of the first block isamultiple
of 32. All MUSIC FBA data sets must start and end on logical track boundaries. MUSIC's alocation
routines automatically adjust to these boundaries.

Data sets allocated by MUSIC fall into one of two categories: SDS and UDS.

System Data Sets (SDS) contain all system controlled data such as spooling and swap areas, accounting files,
Save Libraries and system residence data sets. A system data set must occupy only one extent. A system
data set has a name of the form SY S1.MUSIC.xxxxxxx, where xxxxxx is from 1 to 7 characters. The
MUSIC/SP file system, the Save Library, is contained within these data sets.

User Data Sets (UDS) can be created by users by means of a/FILE statement. A UDS may occupy from 1 to
5 extents. A UDS has aname of the form cccexxxx, where cccc is the 4-character sign-on code of the owner
and xxxx isfrom 1 to 4 characters. Despite the name, most users never use User Data Sets. The MUSIC/SP
Save Library iswhere most user files are stored.

These two types of data sets can be intermixed on the same physical pack. However, to alow for easier
dump/restore operations, it is recommended that they not be intermixed. If user allocation is allowed on SDS
volumes on CKD disks, then you must ensure that all the free space on the pack is preformatted to conform
with the UDS requirements (ie. 512-byte records, no key). For example, before deleting a system data set,
use the FORMAT utility to format its space to 512-byte records. The FMFREE utility can be used to format
all the free space on a CKD volume.

All SDS packs are permanently mounted at IPL time. UDS packs normally are permanently mounted but
batch jobs may make use of temporarily mounted disk packs.

A UDS CKD pack must be pre-formatted using the MUSIC disk format utility before it can be used for user
data sets.

A SDS pack is not normally pre-formatted, but any data set allocated on the pack must be formatted prior to

Internals - Chapter 19. Direct Access Storage 381

its use.

At IPL time, the system initialization routine reads the system catalog (a data set on the IPL volume). This
catalog provides (among other things), the data set names of all system data sets to be used. The volume
label of the pack on which each SDSisto be found may aso belisted. All ready disk packs are scanned. All
SDS are located and control blocks are constructed to later allow system routines to use them. Any pack on
which aSDSislocated is marked asa SY STEM pack. All other disk packs are marked as UDS packs.

System Data Sets

Thefollowing isadiscussion of each type of SDS. Thistopic isuseful if the installation wishes to expand or
optimize these data sets for the configuration. Unless otherwise mentioned, the following rules should be
assumed.

1. A SDSname must begin with the three characters SYS. The usual naming convention isto start a
SDS name with SYS1.MUSIC.. The names used on the distribution system are shown at the begin-
ning of each section.

2. Theblock size specified for each data set must be used. It cannot be altered. If the wrong block
Size is used, system errors may occur.

3. Onthefirst line of each description, following the data set name, is the following information:

dat a- set - nane identification, block-size

The identification and data set name are specified in the catalog. Certain data setsare not listed in
the catalog. For these, no identification is shown.

4. All data setslisted are needed for MUSIC operation.

5. All MUSIC SDS must be one extent as multiple extent SDS data sets are not allowed.

SavelLibrary Index
SYSL.MUSIC.UIDX U000,512
This data set contains the index of the MUSIC Save Library. Eachfileinthelibrary islocated
through as reference to the data set. The usua size for this data set is 15552 records.

Save Library Space
SYS1.MUSIC.ULnn Unnn,512
Thistype of data set contains MUSIC files. They are numbered starting from 01 up to a maximum
of 180. Each datasetisreferredto asalibrary space. The nn above refers to the space number.
At least one must be present. The starter system comes with several defined. New library volumes
must be added in numeric order. Once avolume is added to the Library, it becomes part of the set
and thereis no quick way to removeit. Each library space can be up to 114,504 records in size.

Batch Input Spooling
SYS1L.MUSIC.BATCHIN B001,512
This data set is used for input spooling for batch card reader/printer jobs. If it isnot available to the
system, batch jobs can not be processed. The number of records allocated to thisfile should be at
least one sixth the number of cardsto beread in for any single job. In practice, more than six cards
will normally be placed in each record. The maximum number of records which will be used is
32767.

Batch Output Spooling
SYSLMUSIC.BATCHOT B002,512

382 MUSIC/SP Administrator's Reference - Part V

This data set is used for both printer and punch output spooling for batch jobs. It should be avail-
ableif batch jobs areto run. Output lines are stored in compressed format with trailing blanks
removed. A singlerecord may hold several lines. The output from any executing programs may
exceed the size of the data set. In this case, the job istemporarily suspended until al output
aready spooled to disk is printed or punched. Then the job is continued, re-using the spooling
area. The maximum number of records of this data set that will be used by the system is 32767.

User Region Swap 1
SYS1L.MUSIC.SWAP1 F203,4096

This data set is used to store user jobs while they are being executed and not resident in main stor-
age. Theblock size used is always 4096 bytes. The system divides the blocks into groups of 10.
Each group is called aswap set. A user'sjob can use up to nK of real main storage, wherenis
MAXRRS specified in NUCGEN. That size together with the RCB control block of 8K totals
(n+8)K. Thus ajob may require atotal of (n+8)/40 swap sets. These swap sets can be divided up
among the swap data sets SWAPL, SWAP2 and SWAP3. A job may use considerably less real
storage, resulting in fewer space sets used. Each swap data set size can range from 10 to 64,000
blocks.

User Region Swap 2
SYS1L.MUSIC.SWAP2 F204,4096

This data set and SY S1.MUSIC.SWAP3 are optional. They are of benefit only when each of the
swap data sets are located on different disk channels. When this condition is met, the swap load is
distributed among the channels such that they may be concurrently transferring parts of asingle
user'stask. Thiscan provide a significant performance enhancement. All the swap data sets
should be approximately the same size, as the system will attempt to divide the swap load evenly
between them and when it runs out of space of any one it will not be able to perform the swap oper-
ation.

User Region Swap 3
SYS1.MUSIC.SWAP3 F205,4096
See notes under SY S1.MUSIC.SWAP2 above.

Temporary User Data Sets
SYS1L.MUSIC.SCRATCH F206,512

If auser job specifies UDS(& & TEMP) on a/FILE statements, this is an indication that the user
wants ascratch file. Thisis onewhichisto be deleted at end of job. Instead of going to the trouble
(and overhead) of allocating and then deleting a UDS, the system gives to the user a portion of this
SDS. Itin effect sub-allocates the UDS within this SDS. This data set is the exception to the
normal SDS pack rule. It may reside on anormal UDS pack. A pack will not become a SY STEM
pack solely dueto thisdata set. Of courseg, if any other SDSisfound on the pack, it then becomes a
SYSTEM pack. Thisdata set can be up to 8176 trackslong. (On an FBA device, 1 track is consid-
ered to be 32 blocks.) Note that any job currently running may use this space and that any job may
reguest up to 8,000 512-byte records of space (although most jobs do not use this much).

Page Data Set 1
SYS1L.MUSIC.PAGEL F207,4096

This data set is used to store infrequently used pages of user jobs while they are being executed.
The block size used is always 4096 bytes. The system divides the blocksinto groups of 8. Each
group is caled apage set. The maximum amount of page space that could be used per job depends
on the maximum region the job has requested. Thissizeis given on the/SY S REGION= statement
associated with the job. Some additional storage beyond this size can also be paged. This holds
items such as Save Library 1/O buffers.

The first page data set must be big enough to hold al pages associated with the pageable link pack

areamodules. If your installation has fixed head devices such as a 2305, then it would be desirable
to have this data set on it.

Internals - Chapter 19. Direct Access Storage 383

Each page data set size can range from 8 to 64,000 blocks.

Page Data Set 2
SYS1.MUSIC.PAGE2 F208,4096
This data set and SY S1.MUSIC.PAGES are optional. They are of benefit only when each of the
page data sets are located on different disk channels. Unlike the swap data sets, the page data sets
need not be the same size.

Page Data Set 3
SYS1.MUSIC.PAGE3 F209,4096
See notes under SY S1.MUSIC.PAGE2.

Batch Internal Reader
SYSLMUSIC.SUBMIT F225,512
This data set is used with the internal batch reader support. Its minimum size is 200 blocks. A
typical sizeisabout 1800 blocks, which allows up to 250 jobs in queue 1 and up to 100 jobsin
each of queues 2 to 16.

System Load Library
SYS1L.MUSIC.LOADLIB F226,2048
This data set holds the processors and phases that may be loaded into the user region or link pack
areas. It should contain at least 4000 records. Typical sizeis 12000 records. The LDLIBE utility
program is used to initialize and maintain the load library. The directory should allow for at least
600 members.

Resident System Residence
SYS1L.MUSIC.NUCLEUS F227,note below
Thisisthe SDSin which the core-resident part of MUSIC resides. It isread into main storage at
IPL time. The block size is 6400 for count-key-data devices and 512 for FBA devices. It should
be at |east 80 records long (1000 records if FBA device). It must reside on the IPL volume and its
name must be as shown.

MUSIC Accounting File
SYS1L.MUSIC.ACCT F232,4096
This data set is used to record all accounting data regarding computer and terminal usage. Records
are entered here at such times as terminal sign-on and sign-off, job start and job end. The system
will use whatever size data set is allocated. This data set must be initialized using the =RESET
specia IPL option before it can be used for the first time.

User Authorization Code Table
SYS1L.MUSIC.CODTABL F233,512

This data set contains one record for each userid authorized to use the system. The maximum
number of user code records in the code table depends on the block size B of the
SYS1.MUSIC.CODINDX dataset: the maximum number is (B/18)**2. Normally B is 4096,
resulting in amaximum of 51529 codes or the number of recordsin SY S1.MUSIC.CODTABL,
whichever isless. Thetotal number of recordsin the data set must not exceed 52000. The number
of records must be at least 40.

User Authorization Code Table Index
SYS1L.MUSIC.CODINDX F234,4096

This data set contains the various index records which enable the system to quickly locate a
specific code table entry. A completely full code table should require only (B/18)+2 recordsin this
data set, where B is the block size of SYS1.MUSIC.CODINDX. However, due to fragmentation it
is recommended that more records be allocated. Thisis particularly required when many additions
and deletions are made to the code table. A recommended sizeis 1.5 * (B/18) records (i.e. about
340 records for the standard blocksize 4096). The Code Table Dump/Restore (CODUMP) utility

384 MUSIC/SP Administrator's Reference - Part V

can be used to compress the code table to eliminate fragmentation.

The total number of records in the data set must not exceed 700. The number of records must be at
least 11.

The standard and maximum block size of theindex isB = 4096. A smaller block size may be used,
but there is no advantage in doing so.

Spooling Area Status
SYS1.MUSIC.HPOOL -,6400
This data set is used by the system initialization at a system START to record the spooling areas
and Save Librariesin use. It must reside on the IPL volume and its name must be as shown. Itis
only one track long.

Permanent Volume List
SYSLMUSIC.HVLIST -,80
This data set is used to record the list of permanent volumes mounted at IPL time. Its name must
be as shown, and it must reside on the IPL volume. The minimum number of records required is
one plus the number of permanently mounted volumes.

System Data Set List
SYSL.MUSIC.DSLIST -,6400
This data set logs the data set names and volumes of all current system data setsin use at IPL time.
It may be used by statistical and error logging or analysis routines. It is one record long, its name
must be as shown, and it must reside on the IPL volume.

Generation Load Utility
SYS1L.MUSIC.GENLOAD -,446
This data set is used during the time the system nucleusis being loaded on disk. It is not required
during normal operation of MUSIC, but since it israther small in size, it is recommended that it
always be present. Itssizeisat least 100 records, its name must be as shown, and it must reside on
the IPL volume of the generated system.

System Catalog
SYS1L.MUSIC.CATALOG -,80
This data set is used to contain the MUSIC system catalog which describes the MUSIC SDSfiles
and their location. This catalog is used only at MUSIC IPL time and must be located on the IPL
volume. It should have at least 300 records.

Accessing Data Sets

Data on disk can be accessed in avariety of ways. The most basic method is to invoke the disk 1/0O scheduler
passing the Unit Control Block (UCB) number of the disk to be used, and the absolute cylinder, head, and
record of the data on the pack. Thismethod isin general only used at system start-up time and by certain
error and recovery routines.

The more common method is not to refer to the UCB, but to a Data Extent Block (DEB) number. Thereis
one such number for every system data set used by the system. In addition to the DEB number, the routine
indicates which record(s) of the data set it wishesto read or write. It may use arecord number for this (first
record of data set is number one, etc), or it may pass a pseudo-device CCHHR disk location. In the latter
case, the program assumes that the datain the SDSis arranged asiif it were a disk with a specific number of
records per track, and heads per cylinder. It constructs what it considers the correct cylinder, head, record
address. The disk scheduler converts this to a record number according to the pseudo-device format of the

Internals - Chapter 19. Direct Access Storage 385

data set (that is, the number of pseudo records/track and tracks/cyl.). The record number isthen normally
processed. Each data set which may be accessed in this way has a pseudo-device format specified in the
catalog.

For more information about the System Catalog, refer to the EDTCAT utility in Chapter 17.

Allocating MUSI C System Data Sets

MUSIC system data sets are allocated in asimilar manner to user data sets. However, several extra parame-
ters are available on the /FILE statement.

All MUSIC system data set have data set names of the following form:
SYS1. MJSI C. XXXXXXX

Thelast identifier isa 1-7 character alphanumeric string, the first of which is alphabetic. Sincethe /FILE
statement only allows a maximum of 8 characters in a data set name, the percent character (%) is used to
abbreviate 'SYS1.MUSIC.". A system data set islimited to one extent.

Instead of defining the size of the data set in number of records, the number of tracksis specified viathe
NTRK parameter. This parameter is only valid when the data set starts with the % character. The NREC
parameter may not be used to allocate system data sets. For a data set on an FBA (fixed block architecture)
device, onetrack is considered to be 32 512-byte physical blocks.

The BLK parameter must be used to specify the block size of the data set. For an FBA data set, thisisthe
logical block size; alogical block is composed of one or more physical 512-byte blocks, and each logical
block starts on anew physical block.

The MUSIC VIP code privilege is required to allocate or delete a system data set.

An example of ajob to alocate a system data set follows. Thiswill be anew batch input spooling data set.
The BUFNO parameter avoids the unnecessary allocation of buffersin the user region.

/1D appropriate paraneters

/ FILE 1 UDS(%BATCHI N) NTRK(250) BLK(512) VOL(MJSI CX) NEW BUFNO(0)
/ LOAD | EFBR

/ END

Note that IEFBR is adummy program which simply returns control to the system.

Extra parameters are available (although not often used). They alow a data set to be alocated at a specific
absolute address on adisk pack. For example:

CC(cc) HH(hh)

The valuesin parenthesis are the starting cylinder and head addresses of the new data set (in decimal). For
this allocation to be successful, sufficient free space must be available at the specified address. The'LISTV"
function of the DSKDMP utility may be used to inspect the position of free extents on disk packs. On FBA
devices, specify cc as 0 and hh asthe logical track number (the starting physical block number divided by
32).

The figures below are useful for calculating the number of tracks needed for data sets. Figures 19.1 and 19.2
give the track capacity (number of records) for various size records. Figures 19.3 - 19.5 review some disk

386 MUSIC/SP Administrator's Reference - Part V

device characteristics.

RECORD SI ZE RECORDS PER TRACK
(I N BYTES) 2314 3340 3330 2305ML 2305M2 3350 NAT
80 40 3 4 6 1 28 53 7 2
4 4 6 13 13 22 16 23 30
512 11 12 20 15 20 27
1024 6 7 11 10 12 15
2048 3 3 6 5 6 8
4096 1 2 3 3 3 4
6400 1 1 2 2 2 2
VTOC DSCBS 25 22 39 18 3 4 4 7

Figure 19.1 - Disk Device Track Capacity (Part 1 or 2)

RECORD SI ZE RECORDS PER TRACK

(I' N BYTES) 3375 3380 3390 9345
80 75 8 3 78 6 7
4 4 6 4 3 49 52 4 4
512 40 4 6 49 41

1024 25 31 33 28

2048 14 18 21 17

4096 8 10 12 10

6400 5 6 8 6

15476 3

17600 2

VTOC DSCBS 51 53 50 4 5

Figure 19.2 - Disk Device Track Capacity (Part 2 of 2)

Internals - Chapter 19. Direct Access Storage 387

2314 | 3340 | 3340 | 3330 | 3330 | 2305 2305 | 3350
M35 M70 ML, 2 ML1 ML M NATI VE
Max BLKSI Z 7294 | 8368 | 8368 | 13030| 13030| 14136 | 14660 | 19069
Tr ks/ Cyl 20 12 12 19 19 8 8 30
No. of Cyl 200 348 696 404 808 48 96 555
Capacity nb 29.1 35 70 100 200 5 11 317
Capacity nb
Bl ksi ze 512 22.5 25.6 51.3 78. 6 157 2.9 7.8 230
Capacity nb
Bl ksi ze 4096 16. 3 34.2 68. 4 94. 3 188 4.7 9.4 272
Xfer Rate kb 312 885 885 806 806 3000 | 1500 | 1200
Av Access s 60 25 25 30 30 0 0 25
Rot Delay ns 12.5 10.1 10.1 8.4 8.4 2.5 5.0 8.3

Figure 19.3 - Disk Device Characteristics (Part 1 of 3)

388 MUSIC/SP Administrator's Reference - Part V

3375 | 3380 | 3380H 3380K 3390 | 3390 | 3390 9345 | 9345
[arm| /arm .2 .3 .2
Max BLKSI Z |35616 (47476 (47476 [47476 |56664 |56664 |56664 |46546 | 46546
Trks/ Cyl 12 15 15 15 15 15 15 15 15
No. of Oyl 959 | 885 | 1770 2655| 1113 | 2226 | 3339 | 1440 | 2156
Capacity nb| 409| 630 1260| 1890 | 946 1892 | 2838 | 1000 | 1500
Capacity nb
Bl ksi ze 512 235 312 625 937 418 837 | 1256 453 678
Capacity nb
Bl ksi ze 4096 377 543 | 1087 | 1631 820 | 1641 | 2461 884 1324
Xfer Rate kb | 1859 | 3000 | 3000 | 3000 | 4200 [4200 | 4200 | 4400 | 4400
Av Access s 19 16 16 16 9.5] 12.5] 12.5 10 11
Rot Delay ns | 10.1 8.3 8.3 8.3 7.1 7.1 7.1 5.6 5.6
Figure 19.4 - Disk Device Characteristics (Part 2 of 3)
3310 |3370-1 (3370-2 | 9332 9335
per per
arm arm
Bl ock Size 512 512 512 512 512
Capacity nb 64.5 285 364.9 184 412
Capacity bk | 126016 [558000 |712752 | 360036 |804714
Xfer Rate kb 1031 | 1859 1859 2500 3000
Av Access s 27 20 19 19.5 18.0
Rot Del ay mns 9.6 10.1 10.1 9.6 8.3

Figure 19.5 - Disk Device Characteristics (Part 3 of 3)

Adding DiskstoMUSIC

All MUSIC packs use standard OS/V Stype formats. That is, they have standard labelsand VTOCS. This
label and VTOC must be created before attempting to use a new disk on MUSIC. The Device Support

Internals - Chapter 19. Direct Access Storage 389

Facility program (DSF) can be used to perform thisinitialization. In addition, it isuseful in detecting and
correcting disk errors. A copy of DSF can be loaded by IPLing from the SOURCE tape. For more informa-
tion see Device Support Facilities User's Guide and Reference (GC35-0033).

The OS/VS IEHDASDR or standalone IBCDASDI programs can be used to initialize non-FBA disks. The
MUSIC utility INITFBA can be used to initialize FBA devices.

When initializing a pack any volume name may be used, as long as no two packs (to be used at the same
time) have duplicate names. The user is cautioned against changing the name of the MUSIC1 UDS volume
as certain execution procedures (for example PL/1) refer toit.

If avolumeisto be used for User Data Sets, it should be formatted as documented under the Disk Format
Utility (FORMAT). A VOLUME specification should be added to the MUSIC system catalog to enable
usersto alocate on this pack. All that isthen required isto ensure that it is online when MUSIC is next
loaded. In addition, the DSLIST file should be changed to include this new UDS pack (last statement of
file). Take careto ensure that the file remains execute-only (XO). If the DSACT program is used, its control
statements should also be changed to include the new volume.

If avolumeisto be used for System Data Sets (SDS), it must be mounted and ready at IPL time. Any
required data sets should be allocated as detailed in the previous topic of this chapter. The data sets should
then be formatted using the Disk Format Utility (FORMAT).

The DSCOPY program can be used to move the contents of system data sets from one disk to another with-
out using tape. The catalog statementsin file SY SCAT should be modified to reflect the new data set loca-
tions. The catalog creation utility (EDTCAT) should be run to create anew catalog. The system should then
be reloaded. If the code table was newly created, a current copy (dumped before reloading) should be
restored using the code table dump/restore program. |f a new subroutine library was allocated, it should be
recreated by performing a subroutine library edit. If new Save Library data sets were allocated, formatted,
and specified in the catal og, they are automatically incorporated into the Save Library at IPL time.

The case of moving existing Save Library data sets is a somewhat special case. Care must be taken to ensure
that nothing on the entire Save Library changes from the time any of the data sets is copied until the time the
system isloaded using this new library.

It isrecommended that the starter system (after generation) be preserved so that in the case of any failure of
the production system, aworkable, compact system is still available.

Migrating MUSIC to a Different Type of Disk

Take the following steps to convert DASD.

1. Initialize the new volumes, using e.g. DSF asin the MUS C/SP Administration Guide, "Installation”
chapter. Configure your existing MUSIC system so that the new volumes are accessible to it, as extra
volumes. You will probably need to assign different volume names to the new volumes for now, to
avoid duplicate names -- e.g. MUSNWX, MUSNW1. Y ou will rename the new volumes later, to their
standard names MUSICX, MUSICL.

2. Format the new volumes like UDS volumes, i.e. 512-byte blocks. Use FORMAT program with /INC
FMTUDS. See control statements in description of FORMAT utility in MUSIC Admin. Reference.
Thisjob (and most jobs that follow), requires the /VIP ON command to be entered before you run it.

3. Allocate the new system data sets. These are al the SY SL.MUSIC.xxxxxxx data sets that MUSIC

needs. Seethe chapter "Direct Access Storage” in the Admin. Reference. Use your existing data sets as
aqguide.

390 MUSIC/SP Administrator's Reference - Part V

4,

Format any system data sets which do NOT have blocksize 512, using the FORMAT program. They
are SWAPN, PAGENn, LOADLIB, NUCLEUS, CODINDX, HPOOL, HVLIST, DSLIST, GENLOAD,
CATALOG.

From this point on, keep all usersoff of MUSIC, and stop all BTRMs, until the migration is complete.

5.

10.
11.

12.

Use DSCOPY to copy any system data sets which contain data: UIDX, ULnn, SUBMIT, LOADLIB,
CODTABL, CODINDX. (Do not copy NUCLEUS and CATALOG, since they will be generated
below.)

Copy UDSfiles:

Note: If your users do not use UDSfiles, or if you have only afew UDSfiles, you can skip this step
and copy the UDS files manually, using DSCOPY .

a Scanold VTOC's (using STDSCB routine) to produce job stream of DSCOPY jobs, preserving
LRECL, backup, and number of records.
b. Temporarily REP the module PRE to not update the date of last access: DSIREFD field in
format-1 DSCB, near label PREB106.
Submit the DSCOPY jobstream to batch.
Run a program to copy some format-1 DSCB fields from old VTOC to new:
- date and time of creation
- date and time of last accounting
- date of last access
- opened-for-write bit

oo

Prepare the new system catalog (with ultimate volume names) and use EDTCAT program to write it to
the new IPL volume.

Prepare aNUCGEN tape for the new system: new unit addresses, device types. Thisinvolves running
your $GEN:NUCGEN.JOB file (updated as required), with output to tape. See the NUCGEN utility in
the Admin. Reference.

Rename the new volumes to their final names, by using the NEWID option of the FORMAT uitility.
This needs /VIP ON.

Shutdown MUSIC and remove the old volumes.
IPL the new NUCGEN tape.

IPL the new system and test.

Internals - Chapter 19. Direct Access Storage 391

Chapter 20. File System

SavelLibrary

MUSIC/SP'sfile system is called the Save Library. Physically the Save Library consists of agroup of

system data sets named SY S1.MUSIC.ULnn and an index data set called SYS1.MUSIC.UIDX. The system
manages this common pool of disk space to provide file space for the users. Users need not be concerned
about the physical organization of these data sets. Logically, each user has their own private set of files. The
ownership of thesefilesis based on an ownership id, which in most cases, is the userid that is used to logon
to the system. The exception isfor userids that have subcodes - the subcode is excluded for file ownership
since these users share the same set of files.

File Names

A file name consists of a1 to 17 character name. These file names can be stored in directories. These direc-
tories give the file system a tree-structured hierarchical structure.

Thefile system can refer to any filein the system by using what is called a"fully qualified" file name. All
filesin the system have a unique fully qualified name. An example of afully qualified nameis:

ABCD:CS100\NOTES

In the above example, ABCD refers to the ownership id. Note the colin (:) is used to separate the ownership
id from the rest of the name. Thefile nameis NOTES and it islocated in the directory called CS100.

The file system has reserved 64 characters to hold the fully qualified name field. The directory and file name
portion including any "\" characters can be up to 50 charactersin length in total.

Usually users only use the filename part when referring to their own files. The ownership id and the colon
can be prefixed in front of the directory and file name portions to refer to files belonging to other users. If a
file has been stored with the share (SHR) attribute then any user can accessthat file. An administrator with
the FILES privilege can access any file by prefixing file names with an ownership id.

Files can also placed in something called the Common Library. In this case aspecia index entry is created
so that al users can reference the file without having to prefix the file name with the ownership id. Filesfor
MUSIC/SP commands and utility program arein this Common Library. Filesthat are to be accessible to all
users would normally be placed in thislibrary. Thereisan option in the user profile that can be set to allow
or disalow saving filesin the Common Library.

Record Formats

The following record formats are supported (FC is the most used format):

F Fixed Format. All records are the same length and are physically stored on disk that way. Direct
access is possible with such afile since each record occupies a fixed and predictable position on
disk. The system maps the fixed format records to the physical 512 byte blocks. Records less than
512 in length are packed into the physical blocks but do not span those blocks. Records greater than
512 may span blocks but, each new record must start at the beginning of a physical block.

FC Fixed Compressed. To the application, all records appear to have the same record size. The record

392 MUSIC/SP Administrator's Reference - Part V

sizeis defined when thefileis created. Internally thefile is compressed with repeated character
seguences of four or more of the same character reduced to two bytes. Trailing blanks at the end of
each record will never be written to disk. Logical records may span 512-byte disk boundaries though
the user never needs be concerned about the internal representation of thisfile type.

\% Variable Length. Each record iswritten to disk without compression. The length of each record is
also written so that the length may be returned when it isread. The system keeps track of the size of
the largest record written. The maximum record length is 32760. Trailing blanks at the end of each
record may be truncated, by user option, so that they will never be written to disk. Logical records
may span 512-byte disk boundaries though the user never needs be concerned about the internal
representation of thisfile type.

VC Variable Compressed. Internally the fileis compressed with repeated character sequences of four or
more of the same character reduced to two bytes. The length of each record is also written so that
the length may be returned when it isread. The system keeps track of the size of the largest record
written. The maximum record length is 32760. Trailing blanks at the end of each record may be
truncated, by user option, so that they will never be written to disk. Logical records may span
512-byte disk boundaries though the user never needs be concerned about the internal representation
of thisfile type.

U Undefined. Thisformat allows the user to use any style data handling desired, although the user
must do the deblocking or blocking since the logical record routines will not attempt to handleit.
Record Size

The maximum record sizeis 32760 bytes. The minimum lengthisOfor V and VC, and 1 for F and FC.

File Sizes
The minimum file size is four 512-byte records for atotal of 2048 bytes.

The first 512-byte record of afileis used by the system to keep control information about the file. This
record is called the header.

Thereis no absolute limit to the size of afile. A file€'sinitial alocation must be satisfied in one library space.
Since asingle library space can hold up to 57 million bytes, that limits theinitial size of afile. For any
particular user, the system administrator can set a personal limit to be smaller than this.

Direct Access Support

Regardless of the format, recordsin all files can be accessed directly by telling the file system to position
itself at a particular location in thefile. Thisfeatureis particularly useful with fixed format files, where the
application knows the positioning information in advance.

For all formats except U, file positioning information is given in the form of arelative byte address (RBA).
The RBA isrdativeto thefirst block of the file. The RBA of thefirst usable byte in the fileis 512 since the
file's header occupiesthe first 512 bytes. The RBA of the second usable block in thefileis 1024. Record
format U files are positioned by physical block number.

The access methods supported by MUSIC allow direct access based on record number on fixed format files.
OS-style NOTE and POINT operations can be done on all files excepting format U. A Write Rule isused to
avoid the security exposure of accessing the old contents of file written by the previous user. (See Usage
Notes for details.)

Internals - Chapter 20. File System 393

Dynamic Access

Files can be dynamically created, deleted, opened, closed, expanded and read or written into during the
execution of a program.

RAS
Reliability and serviceahility is enhanced through the following techniques:

The bitmaps, used to manage file space, are checked with a check-sum technique. When a purge opera
tion is done, the system checks when bits are added back to the maps to detect the case of freeing space
aready freed. Inthiscase, the total bit count is maintained correctly. If the checksum fails, the system

will remove this space group from future allocations. The system will keep running.

Should a part of the library be unavailable, (due to failure of disk drive, for example), the system will
still be able to operate. Attempt to use filesin the unavailable space will result in a message to the user.

Should the master index get destroyed, it is possible to recreate it in most cases by scanning the library
spaces since the file header has an unusual character sequence at the start of it. Headers of purged files
are zeroed.

User Controls

Associated with each userid isa User Control Record (UCR) that controls the amount of file space that the
user can have. Even privileged users cannot save afile under a userid that has no UCR record. The UCR
record contains the maximum amount of space the user can alocate per file and maximum total space for all
the user'sfiles. The record also contains the amount of space currently used. All space amounts are
expressed in units of K bytes (K=1024). (Since the basic allocation unit is currently set to 2K, the space used
amounts will be even multiples of 2.)

Usage Dates

The system maintains three dates: date last opened for writing, date last opened for reading only, and the
date the file's header was created. The time of day that the file was last opened for writing is aso main-
tained.

Audit Information

With each file is maintained the full userid of the creator and last writer.

There is an option to maintain a usage count for each file recording the number of accesses.

Access Control

The basic options are PRIVATE and PUBLIC. A private file can be accessed only by itsowner. Public files
can be read by any user but only written by the owner. A user can select that afile can be added to but not
read or written in any other way (APPEND). A file can be EXECUTE-ONLY, meaning that it can only be
read by the systems job startup routines. User's can run the programs in these files but cannot look at them.
The access control can differentiate between two classes of users: file owners and others. Thus afile can be
execute only to others but not to the file owner. A number of combinations of access controls are available.
The utility FILECH can be used to set or modify them.

394 MUSIC/SP Administrator's Reference - Part V

Tag Field

Each file has a 64 byte tag field. Thisfield can be used for any purpose the user wishes. Itisnot read or
written as part of the data of the file but is part of the system information in the file's header. For example, it
could be used to hold a phrase to describe the contents or usage of thefile. Directory names can also contain
atag field.

Installation Field

Each file has a 16-byte installation dependent field that can be used for any purpose. It isreserved for use by
installations other than McGill or for features that McGill wishes to use and never be part of the distributed
MUSIC system.

Extendable

The Save Library index is a separate data set allowing it to be expanded or put on afaster device should that
be desirable. This data set contains the hash numbers used with the index.

The number of concurrently open files can be expanded by the re-assembly of MFIO and MFIOCB. The
space used per open fileis 108 bytes. The number of open files bears no relation to the number of available
buffers.

The size of the buffer pool used by the SL routinesis also expandable. Each buffer requires 512 bytes.

Naming Conventions

Refer to the MUSI C/SP Users Reference Guide publication for a complete description of file naming conven-
tions and directories. The following isasummary of the conventions.

File Names

The file name can be up to 17 charactersin length. The user's current directory name is prefixed to the file
name and can result in a string of up to 50 characterslong. A "\" character will separate the directory prefix

from the file name portion.

The user can prefix the userid (excluding subcode) and/or a directory to afile name. Thisis useful to refer to
files owned by other users or to filesin other directories. The genera form of the fully qualified nameis:

USERID:directory\filename

Character Set

The following characters are allowed in the ownership id and file name fields:
letters: A through Z (Upper Case Characters Only)
numbers: O through 9
special characters: thefive (5) characters: # $ @ _ .

The special character "\" can be used when it follows the rules of the tree-structured directory naming

Internals - Chapter 20. File System 395

conventions.
The file name can include more special characters than ownership ids. They are:
-+ %! &~

The first character of the file name cannot be any of these special charaters or a period (except for the special
name of && TEMP).

National Language File Suffix

File names can be suffixed by the 3 specia character sequence "{ @} " when used to open old files. Thisis
used in the support of national languages. It allows programs to refer to different files depending on the
user's language preference.

At open time, the system will replace these 3 characters with a single character taken from the national
language option in effect. For example, if auser has selected the national language option of Portuguese,
then opening with the character string "M SG{ @} " will result in the attempt to open the file "M SGP".
Should that file not exist, then an attempt will be made to open file"MSG". If the current language selected
was English, then the file suffix isignored. The 3-character file name suffix is not counted as part of the 17
character name although the generated name must be 17 characters or less.

The national language suffix characters are:

blank English
F French

K Kanji (Japanese)
P Portugeuse

E Spanish

G German

Reserved File Names

File names should not start with the commercial 'at' sign (@) since certain system utilities will use names of
thisform. The search order for files starting with this character is also different. For example:

@ADMIN.Xxx Used by ADMIN system facility
@ADMIN.CONFIG Configuration filein the NUCGEN
@AMS.sub Used by VSAM's AMS

@APLW.wsname VS APL workspaces

@APLV.vvvvvv Used to store VASPL external variables
@APL.DUMP.NNn Used to hold dump of VS APL
@AUTHSCHED Used by SCHED

@CF.xxxx Used to hold CONF xxxx

@CI . XXXX Used by CONF

@CONF.sub Used by CONF utility to store user's full name
@CONLOG Used by CONLOG

@CW.sub Used by Waterloo C

@ELOG.sub.nn Editor restart file.

@GNJOB Used by GENPCH

@HOLD.sub Holds the user's write 10 output

@INPUT.sub Holds the user's /input file

@date.SCHED. Used by TODO to hold user's monthly schedule.
@INI.xxx Used by FSI

396 MUSIC/SP Administrator's Reference - Part V

@INI.LISTING Used to hold job output run under FS

@INI.sub Used to hold the FSI options.

@LEARN Holds the restart info of the LEARN command of |IPS

@LIB Used by /library command to hold list of files

@MEMO Used by the now obsolete MEMO facility

@NAMES Used to hold the MAIL directory.

@PRT Used by the print screen utility (F9)

@REMIND Used by REMIND

@REXX.sub Work file used by REXX

@EXEC.sub Work file used by the exec command of REXX.

@SENDFILE Used by the SENDFILE program.

@SORT.TMP Used by SORT macro for editor.
Qualification

The 17-character file name can have the period characters anywhere within it (ie not at the beginning or end).
Examples of valid names are RM.LETTER.05DEC77, PROG.V1.L1, THISISALONGNAME.

For example, MAIN.SRC could contain the source and MAIN.OBJ could contain the object deck for the
program MAIN.

The qualification can be used to give the appearance of a PDS asin the example: SCRIPT.MAIN,
SCRIPT.FORMAT, SCRIPT.SAMPLE, etc.

Notice that CMS's naming conventions of filename/filetype can be directly mapped to filename.filetype.

Specifying Owner ship Ids
The ownership id isthe userid excluding any subcode. It can prefix the file name asin the example:
OWNERID:FILENAME. Note the use of the colon (:) to separate the ownership id from the file name as
well as specifying the presence of an ownership id.
If the ownership id starts with an asterisk (*), it takes on the following meanings:

*com:filename means look into the common library only

*usr:filename means look into the user's private library only

Temporary Files

Temporary files exist only for the duration of asinglejob. The only data set name that specifies atemporary
fileis& & TEMP.

Temporary files are always deleted when closed unless a rename to some permanent name is done at that
time.

Internally the system will use afilename of the form .nnnnnn where nnnnn is a number that startsat 1 at 1PL

time and isincreased by one each time atemporary fileis allocated. The system will purge any temporary
filesthat exist at |PL time through aroutine in the transient phase $PUS.

Internals - Chapter 20. File System 397

Save Library Usage Notes

* When one user has afile open for writing, others are locked out as with the UDS system. DISP=WSHR
can be used for valid multiple write situations.

» Write Rule. Only affects direct access operation. The system remembers the highest block number
written. Y ou may never write beyond this point unlessit is the next highest record. This scheme
prevents a security exposure that would otherwise result.

* Only one end-of-file (EOF) mark is permitted per file. The UDS system allows any number of end of
filemarks. Thereisno specia character string that cannot be written to the file. The location of the eof
mark is stored in the file's header and is thus not part of the file's data.

» Tapel/Owill normally be buffered by the system to correspond to the LRECL and BLKSIZE given on
the /FILE command. If RECFM=U isgiven, then each IO request reads and writes a complete block.

* Theminimum record length for reads from file types RDR and TERM is 80 bytes. For other file types
the minimum is one byte for RECFM=F and FC files and zero bytes for RECFM=V and VC files.

e Should thefilerun out of space during awrite operation, the system will automatically add secondary
extents. The amount of secondary space added as well as the maximum size is controlled by attributes
stored with the file.

Assembler Language | nterface

Overview

This section describes the macros and control blocks that constitute the assembler language interface to the
MUSIC file system. A high level language subroutine interface is also available. It is described in Chapter
22.

In order to use afile the user must OPEN thefile. If the file does not exist, there is an option that will have

the open create one at thistime. Several other options exist on the open and are discussed below. Once the

file has been successfully opened, the user can then read and write records to and from the file. Two general
techniques exist to read and write to thefile. Oneisthe unbuffered technique. With this technique, the user
must provide the block number that starts the read or the write request. Logical record deblocking with this
form of request is the user's responsibility.

The other, more common access method, isto alow the system to do the logical record deblocking. With
this technique, the user need not be concerned with how the logical records are mapped into the physical disk
records. There arefour record formats: F, FC, V and VC. The meanings of these four formats were
discussed in a previous section.

Once the read and write operations have been completed, you then CLOSE the file. On the close operation
you can specify that the file be deleted from the system, or kept, or renamed to some other name.

All the requests reference aMFIO argument list. The user may choose to use the same argument list for all
filesthat will be referenced in a program, or the user can choose to have different ones for each file. The
argument list is composed of two sections: one afixed section which must always be given. Thisis
followed by alist of optional argument pointers. Pointers can be given to optional arguments which have no
meaning for the specific request currently being used.

398 MUSIC/SP Administrator's Reference - Part V

WARNING: Do not attempt to use the MFIO interface from within the MUSIC resident system modules.
They are designed to be used by code in the User Program or Link Pack areas.

M acros

The following five macros are used. These not only give accessto the Save Library file system, but are used
to access tapes, UDSfiles, terminals, and other 1/0 devices.

MFARG

MFGEN

MFVAR

MFSET

MFREQ

This macro is used to set up an argument list. Several MFARG's can be given to set up one
argument list. The argument list is not generated until aMFGEN macroisused. Itisquite
common to have several MFARG macros in sequence terminated with aMFGEN macro.

This macro completes the argument list definition defined by a series of MFARG macros.

This macro can be used to create any of the argument blocks pointed to by the MFARG
macro.

This macro alters the request optionsin an argument list. It performs no system request but
just sets the required bits for afuture request. Register 1 isaltered by this macro.

This macro issues the SV C that performs the request defined in the argument list. Register 1
is altered by this macro.

reg-name par ameter

The reg-name parameter is used in several macros to specify the type of request. The valid reg-name param-
eters are given below:

OPEN

CLOSE

DIRSRV

FSIO

10

EXTRACT

JOBI

JOBT

LIBR

MISC

MSG

The open function is to be performed.

The close operation is to be performed.

A directory service function like CD, MD, or RD isto be performed.
Perform 3270 full screen operations.

Perform aread or write or control request using the logical record deblocking routines. The
file's RECFM determines how the deblocking will take place.

Extract information about this file but do not open it. The user must have enough privileges
to at least read the file in order that the extract operation be done.

Perform the job initialization functions. This call is used internally and can never be done
from a user program.

Perform the job termination function. Thiscall is used internally and can never be done
from a user program.

Return the parameters which enable the caller to perform aLIBRARY operation.
Performs miscellaneous functions.

Get error message text (treated like an /O read).

Internals - Chapter 20. File System 399

ulo Perform an unbuffered read-write request. The read/write request always starts at the begin-
ning of the 512-byte disk block and continues for as many blocks as required to satisfy the
length field. The file's RECFM has no effect on this type of 1/0.

USERCTL Read or write a user control record (UCR).

MFARG Macro
The following are the operands that may be placed on this macro:

reg-name Specifies the request code to be assembled into the argument list. The request code of
numeric O may be used if noneisto be assembled into thelist.

(optionl,option2,...)
Specifies the options to be assembled into the argument list. Options are separated from
each other by commas and the entire list must be enclosed in parentheses. Refer to the
comments under the various request types for valid option names.

optional parameters
Specify the optional parameter name in keyword format followed by the Assembler label of
the optional argument. Refer to the separate list below for the valid names.

ULAB= Specifies the Assembler label that will be generated on the one byte internal unit number in
the argument list.

U=n Specifies that a unit number of nisto be assembled into the argument list.

RLAB= Specifies the Assembler label to be generated on the one byte return code returned by the
various requests.

PICT=Y This parameter can be used to have the macro generate a diagram showing the layout of the
argument.

The label field of this macro will generate a corresponding label if it isused on the first MFARG macroin a
sequence. Otherwise the label will be associated with the optional parameter pointer given on the macro.
Because of this second usage, the user should use separate MFARG macros when the user wishes the labels
to be associated with the specific optional parameter names.

The MFARG instructions (one or more) are followed by an MFGEN macro instruction, which causes the
argument list to be generated. An optional operand AREA=location on MFGEN causes MFGEN to generate
executable instructions to create an MFIO argument list at the specified location, using information from the
MFARG instructions. Thismakesit easier for reentrant code to set up an MFIO argument list in awork area
defined by aDSECT. A label may be used on MFGEN if the AREA option is present. When AREA is used,
MFGEN modifies register 1.

Optional Parameters

The optional parameters on the MFARG macro are given in akeyword format. For example,
XNAME=FNAME would be used to specify that the optional parameter XNAME should point to alabel
called FNAME in the user's program. The valid optional parameter names are given below:

ARG Points to the buffer location and length associated with the current read or write operation.

For certain types of /O, this control block will also contain the starting record number or
RBA locator.

400 MUSIC/SP Administrator's Reference - Part V

BUPNUM

EOFPT

EXTNTS

FSARG

INFIN

INFOUT

LIBR

XNAME

NAME

RNAME

PHYS

TAG

UCTL

HINFO

UINFO

XINFO

Points to the argument that contains the backup tape number associated with the last backup
operation done for thisfile. This number may be zero indicating no backup done yet for this
file. Thisnumber can be set by privileged users viathe SETBFG option on the CLOSE
request.

Points to the argument area which contains the highest block number written and the
displacement of the last written byte within that block.

Points to the argument area which contains the extent list of thefile.

Points to the 3270 full screen I/O argument. This contains the buffer addresses, lengths and
control options used by the interface.

Points to the information to be assigned to anew file. Such information includesits records
Size, itsrecord format, and its access control.

Points to the location of the control block which isto befilled in by the system to contain
information about an existing file. INFOUT may point to the same location as INFIN.

Points to the optional argument area used in conjunction with the LIBR request.
Points to the file name or the ddname of the file (64 characters).

Points to the file name or the ddname of the file (22 characters). The XNAME parameter
should be used for new code as it can handle longer names.

Points to the returned file name (64 characters).

Points to the control block that will contain the current record length and RBA information
after aread or write operation.

Points to the tag field to be associated with anew file or the location where the system is to
move in the tag information of the existing file. The tag information isonly returned if the
user isthe owner of thefile.

Points to the argument area used to access and modify the user control record for a specific
library code. A non-privileged user can only read the user's own UCR record.

Points to the argument area that contains the usage information from this file's header. This
argument replaces UINFO used before ownership ids could be longer than 4 characters. The
only case to use UNIFO isfor EXTRACT requests that use the header location on input.

This argument was used before ownership ids could be longer than 4 characters. The only
caseto use UNIFO isfor EXTRACT requests that use the header location on input. Use
HINFO for other cases.

Points to the 40-byte argument area that contains additional usage information from thefile's
header. Thefirst 4-byte word contains the time of day (in units of 1/300 sec) of creating or
last open for write.

MFVAR Macro

This macro is used to generate any optional argument that may be required. The argument name that isto be
generated is given asthe first operand. The name is the same as the reg-name given on the MFARG macro.
A keyword parameter of PRE=prefix, may be used to specify afour character prefix to be placed in front of

Internals - Chapter 20. File System 401

the generated labels within the argument. The keyword parameter of PICT=Y, can be used to generate a
diagram to show the layout of the various fields in this argument.

MFSET Macro
The operands in this macro are as follows:

arg-name This specifies the Assembler label of the argument list to be used for the request. The label
isthe one given of a MFARG macro.

reg-name This specifies the request type to be moved into the argument. Omit this parameter if the
reguest type is not to be changed from a value previously set in the argument.

R=(option1,option2,...)
Thisis used to specify the request options to replace those in the specified argument.

M=(optionl,option2,...)
This specifies the request options that are to be modified in the specified argument. Notice
that this form only modifies the specified option bits and keeps the remaining ones
untouched. Y ou can omit the reg-name operand, meaning that you do not wish to ater the
request code in the argument list. Y ou may use a minus sign immediately in front of any
option to specify that option is to be turned off in the current argument list.

MFREQ Macro
The options for this macro are as follows:

arg-name Points to the Assembler |abel associated with an argument list generated by aMFARG
macro.

EOF=eofadr Specifiesthe Assembler label to branch to should an end-of-file condition be found during a
read operation.

BAD=badadr Specifiesthe Assembler |abel to branch to if an unusual condition occurred during the
processing of this request.

OPEN Request

The OPEN request passes a data set name, a ddname, or a PDS member name to the SL and upon the
successful completion, the system will set the one byte interna unit number in the argument list.

An OPEN by data set name (dsname) is independent of any /FILE JCL definitions. It isatrue dynamic
OPEN. Various options are available at open time to say whether an existing file with that name is accepta
ble and whether anew fileisto be created if none exists with that name.

An OPEN by ddname requires that avalid /FILE JCL definition bein effect for this ddname. This OPEN
retrieves the internal unit number associated with the ddname. The EOFB field in the EOFPT argument is
returned for SL and UDSfiles. The RSIZ and RFM fields of INFOUT are also returned. For files, the PRM
field of INFOUT returns the current file size. The file has already been opened when the /FILE JCL was
checked. Therefore, the OKOLD option must aways be given. The LU option can be given to mean that the
first word of the ddname field is the binary logical unit number.

An OPEN by PDS member name uses the root name given on avalid /FILE JCL definition to form a

402 MUSIC/SP Administrator's Reference - Part V

dsname. Once formed, the OPEN proceeds similarly to an OPEN by dsname. |If the dsname cannot be
found, it will create anew fileif OKNEW isgiven. If OKNEW is not given, other root names will be tried
in the order specified on the /FILE JCL.

At least one of the options RDOK, WROK must be given.

The various options that can be specified with the OPEN request are as follows:

DDNAME

DDORDS

MEMBER

LU

OKNEW
OKOLD
RDOK
WROK

APPOK

NODATE

SETUI

POSEND

NOEFPUP

NOEFPLO

ENQSHR

ENQEXCL

XONLY

JOBOPN

The name provided is addname. Only the ddname OPEN will be attempted.

An attempt will be made to perform an OPEN by ddname. If the ddname is not found, an
OPEN by dsname will be done.

An OPEN by PDS name will be done. The name field contains the ddname as the first eight
characters followed by the member name as the next eight characters.

Used with DDNAME. The OPEN isto be done on alogical unit number. The full word
logical unit number isin the first 4 bytes of the name argument.

Specifies that the OPEN will create anew file if one does not exist.
Specifies that an existing file can satisfy the OPEN request.
Specifies that the user will be reading from thefile.

Specifies that the user will be writing to thefile.

Specifies that the user wishesto write records only to the end of the file. The file will be
positioned to the end in anticipation of these writes. The WROK option must aso be given.

Specifies that the date last opened for reading will not be updated. This optionisonly valid
for privileged users. When the fileis opened for writing, this option has no effect.

Specifies that the usage information given with the open request is to be used with the new
file. Thisoption requiresthat the user be privileged. This option can use the HINFO or
UINFO parameters. Do not use both.

Specifies that the file pointers are to be set so that writes done will add records to the file.

Do not update the EOF pointer at CLOSE or TCLOSE time. This option isignored if the
RLSE option is used.

Do not lower the EOF pointer at CLOSE or TCLOSE time.

Forces the engqueue operation to be done in share mode. Normally the enqueue operation
will be done in share mode only when WROK is not used.

Forces the enqueue to be done in exclusive mode. This means that no other user can access
the filewhile thisoneis open. A user who is not allowed write access to the file cannot use
this option. Normally the enqueue operation will be done in exclusive mode when WROK is
used.

Used only from the module SIOCS to inform MFIO that reads of execute only files are valid
at thistime.

Specifies that the file is to be kept open until the end of the job. CLOSE requests on the file

Internals - Chapter 20. File System 403

will be handled asif the TCLOSE option was also given. Thisoption is used by the module
CTL when opening afile specified on a/FILE statement.

EOJDEL Thisoption is used in conjunction with JOBOPN to delete afile at the end of ajob.

EOJREL This option is used in conjunction with JOBOPN to perform the RL SE option at the end of
the job.

PGMP Use merged program and user privileges for file access.

DIRNOK Allows the user to create and read the directory file. It also allows the creation of filesinto a
non-existent directory. This option requiresthe MAINT privilege, otherwise this option is
ignored.

NORAM Do not use RAM disk copy of thefile. Valid with OKOLD.

CLOSE Request

The following options are defined for the CLOSE operation:

DEL

REPL

RENAME

RLSE

TCLOSE

SETBFG

SETEFP

GETEFP

Specifies that the file isto be deleted from the library.

Specifies that a new file nameis to be associated with the existing file. If afile already
exists with that name, it isto be deleted. If afile does not exist, then this option will have
the same effect as the RENAME option. New access control flags are assigned to the new
name from the INFIN argument that should be provided when this option is used. Other
parts of the INFIN and TAG arguments are not used by CLOSE. The new name cannot be
the same as the original file name. This option does not set the RNAME field.

Specifies that the file isto be renamed to another name only if that new name does not exist
on thelibrary. New access control flags are assigned to the new name from the INFIN argu-
ment that should be provided when this option isused. Other parts of the INFIN and TAG
arguments are not used by CLOSE, except for logical record length when the SETEFP
option isused. This option does not set the RNAME field.

Specifies that any unused space at the end of thefileisto be released. This meansthat the
fileisto be made as small as possible to hold the existing data.

Specifies that the CLOSE function is to be performed but that the file is to remain open for
further requests. The current end of data pointer is updated in the file's header. RLSE isthe
only other option that can be given when TCLOSE is used.

Specifies that the backed up bit in the index entries for thisfile areto be set. The backup
tape number specified by the BUPNUM isalso to be set in theindex. Thisoption isonly
valid for privileged users.

Specifies that the pointer to the end of the written data is to be updated with the value speci-
fied in the EOFPT argument. Thefile'srecord size will be set to the value given in the RSIZ
field of the INFIN argument. This allows the maximum record size to be set for avariable
length file. The SETEFP option isonly valid for privileged users and exists primarily for the
MFREST utility and the COPY command.

Refresh the EOF pointer. The file remains open. This option does not decrease the EOF
pointer. This option cannot be used with other CLOSE options.

404 MUSIC/SP Administrator's Reference - Part V

RESET

CTAG

PGMP

DIRNOK

Do not do pending 1/0, but update header block, setting line count to zero and end-of-file
pointer to the start of the file. This sequenceislogically equivalent to, but faster than, a
rewind operation followed by awrite end-of-file. Thefileis closed.

Set anew tag field when thefileis closed. The new tag is taken from the TAG argument.

Use merged program and user privileges for file access. This option is used with REPL or
RENAME.

Allows the user to create and read the directory file. It also allows the creation of filesinto a
non-existent directory. This option requiresthe MAINT privilege, otherwise this option is
ignored.

The above options can be used in combination. Should a request such as RENAME fail to work, the user
may issue additional CLOSE requests. When the CLOSE requests is successful, the unit number in the argu-
ment list will be set to 0.

10 and Ul O Requests

These requests are used to perform read, write and control operations on thefile. The valid options are as

follows:

LU

RD
WR

WEOF

REW

BSP

FILL

TRUNC

RBA

USERL

The unit number in the argument list isalogical unit 1 to 15. The system will use this
number to index into $LUXTAB to determine the internal unit to use. This option isused
mainly by FORTRAN to performits1/O. ($LUXTAB isinitialized by CTL and may be
atered by giving /FILE JCL with numeric ddname.)

Read arecord from thefile.
Write arecord to thefile.

Specifies that an end-of-file operation is to be done on the file. Not valid with the UIO
request. (Notice that with the SL, only one end-of-file marker can exist on the file.)

Specifies that arewind operation is to be done on the file. Not valid with the UIO request.

Specifies that a backspace operation isto be done on thefile. Not valid with UIO request
and SL files.

Specifies that the user's buffer isto be filled with blanks should the current record read from
the file be smaller than the user's buffer. Not specifying this option is no guarantee that the
fill function will not be done. Not valid with the Ul O request.

This specifies that blank characters are to be truncated from the record that is being written
to the file. Only meaningful for RECFM=V or VC files. The record will then appear to
have no trailing blanks on it. Not valid with the UIO request.

The 10 request isto start at the specific location within the file given by the relative byte
address (RBA) contained in the ARG parameter. Use this operation with careif write opera-
tions are being performed. This option is not valid with UIO requests.

The caller'srequest length isto override the file's record size for the current 10 operation of
RECFM=F files. Thisoption isused by FORTRAN when doing direct access operations.

Internals - Chapter 20. File System 405

EXTRACT Request

This request is used to obtain information about a file without opening it. (An OPEN request can also obtain
the same information.) The options are as follows:

DIRLOC Specifies that the location of the file's header is given in the UINFO argument. Do not use
the HINFO parameter. (Note the "header” used to be called the file's "directory”. The name
has been changed to avoid confusion with directories that the user see.) In this casethe
UINFO argument is 4 bytesin the form 00OXXYYYY where XX isthe library number and
YYYY isthe space unit number (asin theindex entry). This savesthe index search that
would otherwise be done. This option can only be used from a privileged program. Itis
used by the LIBRARY command. Note that the file name argument must still be provided
when DIRLOC is used.

PGMP Use merged program and user privileges for file access.

DIRSRV Request

The Directory Service request usually takes a directory name asinput. Upon the successful completion, the
system will return a 64 byte RNAME field as aresult.

The directory name can either be passed to the DIRSRV reguest in the NAME field if the directory is 22
characters or less, or in the XNAME field if the directory is 64 characters or less.

Directory names prefixed by with stringslike"..\", ".\", and ".." will be resolved by using the current direc-
tory.

The various options that can be specified with the DIRSRV request are as follows:

DIRCD Changes directories from the current directory to the specified directory.

DIRMD Creates a new directory.

DIRRD Removes an empty directory.

DIRQD Queriesthe current directory. Works like DIRCD but does not change the current directory.
M SG Request

This request is used to obtain the message text corresponding to the error code set in the argument list.
Should not be called if error codeis0. The ARG argument defines the |ocation and maximum length for the
returned message. A length of 70 is considered ample for message texts. Unused location in the message
buffer will be blanked.

USERCTL Request

Thisrequest is used to read and write a UCR record. A non-privileged user can only read the user's own
UCR record. The options are as follows:

SETUCR Specifies that the maximum allocation limit fields in the UCR are to be replaced with the
ones specified in the calling argument.

REPUCR Specifies that the user control record is to be replaced entirely with the one specified in the

406 MUSIC/SP Administrator's Reference - Part V

calling argument.

CODE Specifies that the ownership id associated with the UCR record isto be taken from the
NAME argument. Otherwise the ownership id will be that of the current user. Maximum
length is 16 characters with ablank terminating the field if shorter.

DELUCR Specifies that the UCR record for this ownership id isto be deleted from the index.

LIBR Request

This request returns arguments to enable the caller to do a scan of the Save Library Index. For example, the
LIBRARY command issues this request to determine the first and last block numbers of the index it will
haveto read. If the caller passes a 4-character ownership code, then only the block numbers corresponding
to that segment will be returned.

LIBNAM Gets name from XNAME field instead of from the LIBR parameter.

MI1SC Request
Thisrequest is used to perform miscellaneous functions as follows:

SETLUX Takes the one byte internal unit number given in the basic argument and places it in the logi-
cal unit cross reference table (LUXTAB) at location corresponding to the full word logical
unit number given in the NAME argument.

SETDDN Adds a ddname to the ddname table (if not already there), and associates an internal unit
number with the ddname. The step number in the table entry is set to zero, so that the
ddname will apply to all steps of the job. The ddname is taken from the first 8 bytes of the
file name argument. Theinternal unit number is taken from the basic argument block. 1f
thereis not enough room in the ddname table, the ddname is not added, and error 31 is
returned.

FSIO Request

This request is used to perform full screen 1/0 operations to 3270 type terminals. The basic request block
should contain pointers to the FSARG and PHY S blocks. U=9 should also be specified. The FSARG block
contains lengths and pointers to the 3270 data stream buffers. The actual length of the input read is returned
inthe PHY Sblock. Chapter 22 - System Programming contains detailed information of the assembler and
subroutine interfaces to this facility.

File System M essages and Return Codes

Specia Conditions

Error 1 END OF DATA SET ENCOUNTERED (see al so error 44)
Error 2 | NCORRECT LENGTH

Errorsin Caling ARG

Error 10 | NVALID REQ

Internals - Chapter 20. File System 407

Error 11 | NVALI D REQ PARAMETER
Error 12 FILE NAME | NVALID
Error 19 | NVALID ARGUMENTS I N CALL TO SERVI CE SUBROUTI NE

Violations of MUSIC Conventions

Error 20 TOO MANY OPEN FI LES
Error 21 NOT YOUR LI BRARY
(Not authorized to store under this code.)
Error 22 NOT YOUR FI LE
Error 23 VI OLATI ON OF WRI TE RULE
Error 24 ATTEMPT TO READ BEYOND END OF WRI TTEN | NFO
Error 25 WRI TE THEN READ SEQ | NVALI D
Error 26 YOUR USERI D CANNOT CREATE FI LES ACCESSI BLE BY OTHERS
Error 27 YOUR USERI D CANNOT CREATE FI LES I N THE COMMON | NDEX

File Existence Errors

Error 30 FI LE NOT FQOUND

Error 31 DDNAME NOT FOUND (see al so error 35)
(on a SETDDN request, error 31 neans that there
i s not enough roomin the ddname table)

Error 32 FI LE ALREADY EXI STS

Error 33 FILE I N USE

Error 34 COVMON NAME USED BY SOVEONE ELSE

Error 35 UNI T NUVMBER NOT DEFI NED
(or ddname undefined by user request such as by
speci fying UNDEF on a /FILE statenent.)

Error 36 SUBDI RECTORY DOES NOT EXI ST

Restrictions Imposed by FILE

Error 40 SPACE QUOTA EXCEEDED FOR THI S USERI D
Error 41 SPACE QUOTA EXCEEDED FOR THI S FI LE

Error 42 CANNOT ADD SPACE TO THI' S FI LE

Error 43 REQUESTED ACCESS OR OPERATI ON NOT ALLOWED
Error 44 REQ BEYOND EXTENT OF FI LE

Error 45 FI LE RECFM NOT DEFI NED

Error 46 FI LE CANNOT BE READ SEQUENTI ALLY

Error 47 I NSUFFI CI ENT SPACE FOR BUFFER ALLCC

Error 48 M N RECORD LEN I'S 80 FOR TH' S FI LE TYPE

System Temporary Limits
Error 50 FILE NOT ON-LINE

Error 51 NOT ENOUGH FREE DI SK SPACE
Error 52 NOT ENOUGH FREE DI SK SPACE (1 DX)

408 MUSIC/SP Administrator's Reference - Part V

System Integrity Errors

Error 60 RD 1 /O ERROR I N FI LE

Error 61 WR I /O ERROR I N FI LE

Error 62 RD 1/ O ERROR I N SYSTEM AREA
Error 63 WR |/ O ERROR | N SYSTEM AREA
Error 64 I NDEX | N ERROR

ERROR 65 HEADER | N ERROR

Error 66 MAP | NTEGRI TY ERROR

Error 67 | NDEX/ HEADER M SNVATCH

System Coding Errors

Error 70 SYSTEM FI LE ERROR (logic error in system nodul e)

Control Blocks

Basic Caller's Request Block

0
MAJOR | REQFLAG1 | REQFLAG 2 | REQ FLAG 3
oP | (MNOR OP) | |
4
ULCB # | RESERVED | RESERVED | RESERVED
| | |
8
RETURN | RETURNED STATUS FLAGS
CODE |
12

NAME- - Dat a Set or DDNAME (ol d format 22 character name)
Sane as XNAME but is only 22 characters |ong

Label DC CL22' ' NANME

XNAME- - - Dat a Set or DDNAME
CAN BE IN 4 FORWVE:

1) DSNAME EG CODE: FI LENANVEXXXXXXX (MAX 64 CHARS)
EG FI LENAVEXXXXXXX (MAX 50 CHARS)
EG DI R1\ DI R2\ DI R3\ FI LENAME (MAX 50 CHARS)
2) DDNAME EG DDDDDDDD (MAX 8 CHARS)
3) DDNAME AND MEMBER NAME EG DDDDDDDDMVVMVVMVM (MAX 16 CHARS)
EG DDDD MWMW (MAX 16 CHARS)
4) BINARY LOG CAL UNIT NUVBER (4 BYTES)

Label DC CLe4" XNANVE

Internals - Chapter 20. File System 409

RNAME- - - Ret ur ned NAME from MFI O

RNAME is a 64 byte long field
General format is
CODE: DI R1\ DI R2\ FI LENAME

One use for this arg is to return the filename actually found
on an open request.

Label DC CLe4" RNAVME

I NFI N | NFOUT---Si ze and Attri butes

0

I NFI N:. PRI MARY SPACE ALLOC I N K BYTES

| NFOUT: CURRENT FILE SIZE I N K BYTES
4

SECONDARY SPACE ALLCC. IF>0 THEN IS AMI | N K BYTES

| F=0 THEN AMI | S CURRENT + 50%
I F-N THEN AMTI | S CURRENT + N%

8

MAX SPACE LIMT FOR FILE IN K BYTES
12

INFIN: RSIZ | F RECFMEF, FC | RECFM | (RESERVED)
I NFOUT: MAX RSIZ WRI TTEN | |

16

Cmmmmmm o FI LE ACCESS CONTROL FLAGS-------------- >

GEN CTL I NFOQ OWNER ACCESS | NOBODI ES ACC | RESERVED
20
Label DS OF
**E| LE SI ZE SPECI FI CATI ONS
XXXXPRM DC A(0) PRI MARY SPACE WANTED I N K BYTES
XXXXSEC DC A(0) IF >0 THEN IT IS AMI I N K BYTES

IF =0 THEN AMI | S CURRENT + 50 %
IF -N THEN AMI | S CURRENT + N %

XXX X MAX DC A(0) SPACE LIMT IN K BYTES

-1 MEANS UNLI M TED

**LOd CAL RECORD CONTROL
XXXXRSlI Zz DC AL2(0) RSl Z | F RECFM-F OR FC
XXXXRFM DC AL1(0) RECFM

=X' 00' RECFM=U (NO LOGI CAL RECFM DEF)

=X' 01' RECFM:=F (FI XED)

=X 02' RECFM-FC (FI XED COVPRESSED)

=X' 03' RECFM:=V (VARI ABLE)
=X' 04' RECFMEVC (VAR COVPRESSED)
DC AL1(0) RESERVED FOR CARR CTL TYPE

410 MUSIC/SP Administrator's Reference - Part V

GENERAL CONTROL FLAGS

EQU B 10000000 FILE IS I N COW | NDEX
EQU B 01000000 MAI NTAI N USAGE COUNTS | N DI RECT
EQU B 00100000 FILE IS A VSAM FI LE

XXXXGCTL DC X 00 GENERAL CONTRCL FLAGS

ACCESS CONTROL BI TS (USED FOR NEXT 3 BYTES)

NOTES:
-BI TS NORD+NOWR MEANS NO ACCESS
-IF XO TO OANER, NO ATTRI BUTES CAN BE CHANGED
-ONLY THE OMNER (OR A PRI VI LEGED USER) CAN REPLACE OR
DELETE THE FI LE

* k k%

EQU B' 10000000’ NO KI ND OF READ ACCESS ALLOWED

EQU B' 01000000’ NO KI ND OF WRI TE ACCESS ALLOWED

EQU B' 00100000’ ONLY RD ACCESS | S EXEC- ONLY

EQU B' 00010000’ ONLY WR ACCESS | S APPEND
XXXXACOW DC X' 00 ACCESS CONTROL FOR OWNERS
XXXXACNB DC X' 00 ACCESS CONTROL FOR NOBODI ES
XXXXACPJ DC X' 00' ACCESS CONTROL FOR PRQIECT MEMBERS

ARG --Read/ Wite Arg

0

PCSI TI ONI NG | NFO (RBA OR DA BLOCK NUMBER)
4

LENGTH OF |/ O OPERATI ON | N BYTES (0-32760)
8

BUFFER ADDRESS
12
Label DS OF

**THE FOLLOW NG WORD | S USED TO PASS POSI TI ONI NG | NFO
XXXXSBNU DS OF STARTI NG BLK NUMBER (Ul O ONLY)
xxxxI RBA DS OF RBA FOR RWB REQUESTS ONLY
DC A(0) PCSI TI ONI NG | NFO (SEE ABOVE)

XXXXRLEN DC A(0) LENGTH OF REQ (BYTES)
xXxXRBUF DC A(0) LOCATI ON OF BUFFER

PHYS- - - Ret ur ned Physical Info

0
ACTUAL LOG CAL RECORD LENGTH OF DATA

4

PCSI TI ONAL | NFO I N RBA FORM

Internals - Chapter 20. File System 411

Label DS OF

*THESE ARGS ARE VALI D ONLY FOR BUFFERED READ/ VRl TE REQUESTS

XXXXARSZ DC A(0) ACTUAL LOd CAL RCD LEN ON DI SK
(I E LENGTH OF VAR RECORD BUT NOT
NUM OF BYTES | N COVPRESSED RCD)

XXXXORBA DC A(0) RBA OF START OF THI S RECORD

TAG --Tag I nformation

0

64 BYTES OF TAG | NFORMATI ON (I NI TI ALLY HEX Q' S)
64
Label DC XL64' 00’ TAG FI ELD

LIBR---Arg for LIBRARY Req

0
FOUR CHAR LI BRARY OAMNERSHI P CODE
4
START BLOCK NUMBER I N | NDEX TO START SEARCH
8
BLOCK NUMBER I N | NDEX TO END SEARCH
12
DEB NUMBER
13
Label DS OF
xxxXxLBCD DC CL4' ' OMERSH P | D FOR LI BR OPERATI ON
xxxxLBSB DC A(0) START BLOCK NUVBER OF SEGVENT
XXXXLBEB DC A(0) ENDI NG BLOCK NUMBER OF SEGVENT
xXXxLBDB DC AL1(0) DEB NUM OF | NDEX DATA SET

UCTL-- - User Control Record Arg

° MAX TOTAL SPACE THAT CAN BE ALLOCATED IN K BYTES
) MAX SPACE THAT CAN BE ALLOC PER FI LE I N K BYTES
° CURRENT AMI' OF SPACE ALLCCATED I N K BYTES

e H GHEST AMOUNT ALLOCATED IN K

* RESERVED FOR FUTURE USE

20

412 MUSIC/SP Administrator's Reference - Part V

Label DS OF **ALL UNI TS ARE K BYTES (K=1024)
XXXXMAXS DC A(0) MAX SPACE THAN CAN BE ALLOC TOTAL
XXXXMAXF DC A(0) MAX SPACE PER FI LE
XXXXACUR DC A(0) AMT CURRENT ALLOCATED
XXXXAHW DC A(0) HI GHEST AMOUNT ALLOCATED

DC A(0) RESERVED FOR FUTURE USE

H NFO- - Usage Information fromFile's Header for 16 char userids

° OMERSH P CODE (1-16 CHARS W TH BLANK FI LL)

w USAGE COUNT (I F KEPT FOR THI' S FI LE)

* CREATI ON DATE DATE LAST REFERENCED ONLY
* DATE LAST OPENED FOR WRI TE /11 RESERVED ///

% USERI D OF CREATOR (1-16 CHARS W TH BLANK FI LL)

* USERI D OF LAST WRI TER (1-16 CHARS W TH BLANK FI LL)

°° | NSTALLATI ON DEPENDENT FI ELD (16 BYTES)

76

*NOTE

*Thi s argunment replaces U NFO used before ownership ids
*coul d be longer than 4 characters.
*The only case to use UNIFO is for EXTRACT requests that
*use the header |ocation on input.

Label DS OF

*NOTE: THE OANERSHI P AND USERI DS ARE 1 TO 16 BYTES

* LONG W TH BLANK FI LL.

XXXXHI FC DC CcL16' ' OMERSHI P | D OF CREATOR
xxXxxH UC DC F' O’ FI LE USAGE COUNT (I F KEPT)

** DATE | NFORMATI ON.
* DATE NUMBER | S DAYNUMH(YEAR- 1970) * 366

xxXxxH CD DC AL2(0) DATE TH S DI RECTORY | TEM WAS CREATED
xxxxH RD DC AL2(0) DATE FI LE WAS OPENED ONLY FOR READI NG
* (MAY BE =0)
xXxxH VD DC AL2(0) DATE FI LE WAS OPENED FOR WRI TE
DC AL2(0) RESERVED
xxxxH ClI DC cL16" ' USERI D OF CREATOR
xXxxH W DC CL16' ' USERI D OF LAST WRI TER
xxxxH | D DC XL16' 00' | NSTALLATI ON DEPENDENT FI ELD

Internals - Chapter 20. File System

413

U NFO - Usage Information fromFile' s Header

0
FOUR CHARACTER OWNERSHI P CODE
4
USAGE COUNT (I F KEPT FOR THI' S FI LE)
8
CREATI ON DATE DATE LAST REFERENCED ONLY
12
DATE LAST OPENED FOR WRI TE
14
USERI D OF CREATOR (7 CHARACTERS MAX)
RESERVED
22
USERI D OF LAST WRI TER (7 CHARACTERS MAX)
RESERVED
30
| NSTALLATI ON DEPENDENT FI ELD (16 BYTES)
46
Label DS OF

*NOTE THE FI RST WORD | S USED TO PASS THE HEADER LOC ON

*CERTAI N TYPES OF EXTRACT REQUESTS.

xxXxxU FC DC cL4' ! OMERSHI P | D PART OF FI LE NAME.
xxXxxU ucC DC F 0 FI LE USAGE COUNT (I F KEPT)

** DATE | NFORMATI ON.
DATE NUMBER | S DAYNUMH(YEAR- 1970) * 366

xxxxU CD DC AL2(0) DATE FI LE WAS CREATED
xxxxU RD DC AL2(0) DATE FILE WAS OPENED ONLY FOR READI NG
(MAY BE 0)
xxxxU MD DC AL2(0) DATE FILE WAS OPENED FOR WRI TE
xxxxU c DC CL7" USERI D OF FILE S CREATCR
DC C RESERVED
xxxxUW DC CL7" USERI D OF LAST WRI TER
DC C RESERVED
xxxxU 1D DC XL16' 00' | NSTALLATI ON DEPENDENT FI ELD

XINFO - Extra Usage Information fromFile' s Header

0

TI ME OF DAY (1/300 SEC) OF CREATI ON OR LAST OPEN FOR WRI TE
4

RESERVED FOR FUTURE USE
40

414 MUSIC/SP Administrator's Reference - Part V

Label DS OF
xxXxXxXI TD DC F' O’

xXXXXIRS DC 9F' O'

EOFPT--Pointers to End of File

TIME OF DAY (1/300 SEC) OF CREATI ON
OR LAST OPEN FOR WRI TE (OR 0 | F BEFORE
TOD SUPPORT BEGAN)

RESERVED FOR FUTURE USE

0
TOTAL NUMBER OF LOG CAL RCDS WRI TTEN TO FI LE
4
H GHEST BLOCK NUMBER WRI TTEN (0 | F NOTHI NG WRI TTEN)
FOR UDS, THIS I S NUMBER OF LAST BLOCK OF THE DATA SET.
8
DI SPL OF LAST WRI TTEN BYTE
10
Label DS OF

THE FOLLOW NG IS THE NUMBER OF LOG CAL RECORDS WRI TTEN TO THE

FI LE.

THI' S NUMBER MAY BE O EVEN | F THE FI LE CONTAI NS | NFORVATI ON AS
THI' S FI ELD CANNOT BE CORRECTLY NAI NTAI NED I N ALL CASES.

xXXXNLRC DC A(0)

THE FOLLOWNG I S THE 512-
IF NUMBER IS 0, THEN THE

XXXXEOFB DC A(0)

BYTE BLOCK NUMBER LAST WRI TTEN.
FILE IS EMPTY.

THE FOLLOW NG IS DI SPLACEMENT | NTO THE BLOCK OF THE 1ST BYTE

BEYOND THAT LAST WRI TTEN.

FOR EXAMPLE, =512 |IF BLOCK ALL WRI TTEN.
(CAUTI ON-- THE'S NUMBER MAY NOT BE 0 FOR AN EMPTY FILE.)

XXXXECFD DC AL2(0)

EXTNTS--Extent List of File

° NUM OF EXTENTS (MAX 16)

’ LI B SPACE #

’ SPACE # OF START LOC # SPACE UNITS | N EXTENT
REPEAT OF LAST 5 BYTES FOR 15 MORE EXTENTS

82

Internals - Chapter 20. File System

415

Label DS OH
XXXXEXTC DC AL2(0) COUNT OF NUMBER OF EXTENTS (MAX 16)

** EXTENT | NFO FOLLOWS.
PER EXTENT: FIRST BYTE IS LI B SPACE NUMBER WHERE EXTENT IS
LOCATED (1,2, ...)
NEXT HALF WORD |'S STARTI NG SPACE UNI T NUMBER OF
EXTENT (1,2,...)
NEXT HALF WORD |'S NUMBER OF SPACE UNI TS I N EXTENT.
XXXXEXTI DC 16XL5' 00' EXTENT | NFO

BUPNUM - Backup Tape Number

0
BACKUP NUM

1

Label DC AL1(0) BACKUP TAPE NUMBER

FSARG- - FSI O ARG

0
CONTROL | NFO FOR FULL SCREEN |/ 0O
4
LENGTH OF WRI TE OPERATI ON (0 | F NONE)
8
BUFFER ADDRESS FOR WRI TE
12
LENGTH OF READ OPERATION (0 | F NONE)
16
BUFFER ADDRESS FOR READ
20
Label DS OF
xXxXFSFG DS XL4' 00’ FLAGS TO CONTROL FULL SCREEN 1/0O
XXXXFSW. DC A(0) VRI TE LENGTH
XXXXFSWB DC A(0) WRI TE BUFFER LOCATI ON
xXXXFSRL DC A(0) READ LENGTH
xXxXFSRB DC A(0) READ BUFFER LOCATI ON

The control flag definitions are described in the FSIO section of
Chapter 22.

Internals- SaveLibrary

Tree-Structured Hierarchical Processing

By default, the current directory is set to the root directory when the user signs on to MUSIC. The character
string associated with the current directory is stored in the X TCB control block. It can be set and queried by
the DIRSRV service request of MFIO or by the CD command. If auser issuesthe"CD \ABC\DEF"
command, the field in the X TCB will be set to:

416 MUSIC/SP Administrator's Reference - Part V

AL1(8),C'ABC\DEF\
A count of hex 0 would indicate the root directory.

Directory names are stored in the file system like ordinary user files. Their name always ends in a backslash
(\) character. Suppose auser creates adirectory using the"MD SAMPLE" command. Thiswill cause the
file system to create afile called "SAMPLE\". Thisfileis stored like any other file that a user may own.
The contents of the file are not used. Thisisvery different to many other systems which actually store the
names of all the filesthat are part of adirectory with adirectory file. The main use of the directory file on
MUSIC isto establish that the user hasissued aMD command.

Y ou cannot normally create or delete a directory file. That should be done with the MD or RD commands or
by the equivalent DIRSRV MFIO request. The MUSIC backup and restore utilities can directly create and
delete directory names. Thisis done through the use of the DIRNOK special request on some MFIO calls.

Suppose a user creates afile called TEST after he has set the current directory to "SAMPLE". Thefilewill
be stored under the name of "SAMPLE\TEST". Thisallowsfor direct accessto all files on the system with-
out having to read any directory filesfirst.

Data Set Overview

The Save Library consists of a number of data sets. All these data sets have a blocksize of 512 bytes. There
isoneindex data set that contains the names of all the files. The remaining data sets contain the actual data.
The Save Library can be expanded by adding more of these data sets, however, there is only one index data
Set.

Index Data Set

The index data set contains the names of al files and a pointer to the start of each one. It also contains the
UCR records. Thefirst few blocksin this data set contain the system control datathat is used at IPL time.
Such information includes hashing numbers and afield that contains the number of data spaces. The remain-
der of the index data set is split into several sectors. All the file names belonging to any one given user will
be found entirely within one sector. Thus, the LIBRARY command need only search one sector to find the
names of all the files stored under one code. Thereisan overflow sector in the index data set that contains
records which could not fit within the proper sector because there was no space in the specific record that
was pointed to by the hashing process.

In order to locate a specific file the system first takes the code part of the file name and determines what
sector it mapsto. It then takes the file name, and using the hashing process, locates the specific disk block
within that sector that would contain the specified file name. Upon reading the block, the system can deter-
mine whether the file doesin fact exist. (The hashing schemeis set so that if multiple users who are sharing
the same index sector use the same file name, it will probably map to different index blocks.)

To locate an item in the common library, the system considers all the primary sectors as being one large
sector and hashes the file name to locate a specific index block.

Space Data Set

Each space data set starts off with several blocks that contain control information. One of the blocks
contains a bitmap which indicates which space units are used within this data set.

The remainder of this data set is used to contain users data. Thefirst block of any user fileis reserved for
system use. Thisblock containsthe file header. In the file header are the various attributes and

Internals - Chapter 20. File System 417

characteristics of the user'sfile. (The header block used to be called the directory block. It was renamed to
avoid confusion with directories that the user can create.)

Bitmap

The bitmap is stored in up to 7 512-byte blocks that start at block 2. The first four bytes contain a check
sum. Thisfield isused to check the validity of the map and is calculated by an arithmetic process involving
the addition of the remaining words in the map. (Consult the system code in module MFIO for a complete
description of how thisis calculated.)

The check sum isfollowed by atwo byte bit count containing the number of free space unitsin this data set.
The bit count field is followed by a bitmap. The bitmap shows exactly which units are free. Each bit corre-
sponds in order with the space unit number available. Thus the bit after the counter is the status of space unit
one, the next, space unit two. If the bit is on, then the space unit is free and hence, can be allocated.

File Header

Thefirst block of each file containsits header. This header contains such things as the access control infor-
mation, the ownership id (userid without subcode), usage dates and the file's extent information.

ULCBs

A set of User Library Control Blocks (ULCB) exist in the service area of the user region. These control
blocks contain information about open files. They are contained in the system module MFIOCB.

Buffer Pool

A buffer pool exists for the use of Save Library 1/0. This pool islocated in the system module MFIOCB.
Each buffer in the pool can be assigned to any file. They are assigned dynamically as required using a
scheme similar to a paging scheme.

L ogical Record Formats

The following describes how the logical records are stored on the Save Library's 512-byte physical blocks.

Fixed Format (F)

With this format, the first logical record contained in any disk block always starts at the first byte of the disk
block. When the record sizeis not greater than 512, then no logical record spans adisk block. Unused space
may therefore exist at the end of each block.

When the logical record sizeis greater than 512, each logical record starts at the beginning of a disk block.

Overflow from one block is continued at the first byte of the next block. Unused space may exist at the end
of the last block used for each record.

418 MUSIC/SP Administrator's Reference - Part V

Variable Format (V)

Thefirst two (2) bytes of each disk block are used to contain the displacement to the start of the first logical
record in that block. The remaining 510 bytes are always used. Logical records exceeding one disk block
will continue at the third byte of the following block. Each logical record is preceded by a 2 byte count
containing the number of bytesin the record plus two.

Compressed Format (FC and VC)

The only difference between FC and VC is the meaning of the file'srecord size. For FC files, the record size
means that all records will appear to be thissize. Trailing blanks will aways be removed from FC files
before compression and supplied on expansion. For VC files, the record size means the length of the largest
record in the file so far.

Thefirst two (2) bytes of each disk block is used to contain the displacement to the start of the first logical
record in that block. If nological record starts in this block, the first two bytes are zero. The remaining 510
bytes are always used. Logical records exceeding one disk block will continue at the third byte of the
following block. Each logical record may be composed of a number of segments. Each startswith a1 byte
descriptor. A repeated text segment is used when four or more bytes in sequence are the same. One byte
segments are al so represented by the repeated text format. The three types of segments are:

1. Non-repeated text. Format: D string
The D byteisthe length of the string minusone. D may range from X'01' to X'7F' representing string
lengths of 2 through 128 bytes. D may not be zero.

2. Repeatedtext. Format: D C
The D byteisthe number of timesto repeat the character C plus X'7F'. D may range between X'80' and
X'FE' representing a repeat count of 1 to 127.

3. Recordend. Format: X'FF
This segment indicates the logical end of the record.

Working with Files

» Referenceto another user's private file is done by prefixing the ownership id to the file name. The
ownership id is usually the same as the userid. The only exception is when subcodes are used. Thus
ABCD:HISFILE refersto the file HISFILE belonging to userid ABCD. Thisownershipid prefix is
accepted in EDIT, RENAME, SAVE, PURGE and other similar commands.

» Tochange ownership of filesyou can use the RENAME command. To change along list of files, use
the FILECH utility. The COPY COL command of the Editor is useful in the preparation of the input to
this program.

* Usethe TAG command of the Editor to help keep track of the contents of files. Thisis particularly
useful when you own alarge number of files.

*+ A COM option can be specified on the Editor FILE and SAVE commands. This has the effect of forc-
ing the file name to be placed in the common index. A private file in the common index can be
accessed only by its owner or by aprivileged user. This feature can be used to reserve namesin the
common index, or to share files between privileged users without the need for public files.

 The"LIBRARY abcd:*" command lists al the files belonging to the ownershipid ABCD. The

Internals - Chapter 20. File System 419

"LIBRARY ab*:*" command lists all the files belonging to the set of ownership idsthat start with the
letters AB.

Y ou can select only certain names within aownershipid. The"LIBRARY *:@learn" command lists all
thefiles called @LEARN belonging to anyone.

Use"LIBRARY *:* COM" to list dl filesin the common index. These files were saved with the COM
or PUBL option.

Usethe ATTRIB utility to find the owner of apublic file. Thus"ATTRIB xxxx" displays who owns the
file xxxx.

The FPRINT utility is useful to list alarge number of files with page headings.

To purge a number of files, first create afile that contains alist of the file names. Then use the
"PURGE <list" command.

Even privileged users will be unable to store files under unused userids. Thisis because a UCR record
for the userid must exist before files can be stored with that userid. UCR records are automatically
added by CODUPD when userids are added. Y ou can use the UCR utility to add UCR records directly
without requiring a corresponding sign-on userid.

The following technique can be used to activate the usage counting of afile. Edit the file and type the
editor command FILE * CNT.

The FIXINDEX and MFHASH utilities are useful for direct inspection and ateration of the Save
Library Index should that be required.

Note that when you set up an execute-only file, you should put in a/SY S NOPRINT statement in the
file so that the system will know not to print any /FILE statements that follow.

Y ou can specify aownership id on the CD command by using the following format:

CD \ownerid:\dir

Working with UDSFiles

This topic contains tips and techniques for working with User Data Set (UDS) files. These are OS style data
sets that are supported by MUSIC. Each file hasits own VTOC entry and may occupy from one to five
extents. Despite the name, most users datais stored in the Save Library and UDS files are only kept around
for compatibility with past releases. An entry in the user's profile sets the maximum number of tracks that
can be used for aUDSfile.

The LISTV command of the DSKDMP utility is used to list the contents of the VTOC. Thisgivesa
comprehensive list of al UDS (and SDS) fileson any disk. It isaso useful in determining the amount
of free space on the disk.

The EDITOR can edit UDSfiles. Definethe UDSfile aslogical unit 4. Remember to specify the OLD
option on the /FILE statement if you want to file the changes.

When UDSfiles are deleted, their contents are not erased. Therefore, subsequent users who allocate
UDSfiles may be able to read the information stored there by the previous user of that disk space. (This
is not the case with regular files.) The ZERO.FILE utility described in the MUS C/SP User's Reference

420 MUSIC/SP Administrator's Reference - Part V

Guide, can be used to clear the contents of afile that contains sensitive information.

To be ableto list the UDS files owned by specific users, first create afile SY SDSL which isthe same as
the file DSLIST with the last line removed. Then run the following job:

/1 NC SYSDSL
VOL=' vol unel, ' vol une2', DSNS=' useri d*'

where volumel,volume2 are the names of the UDS volumes to scan and userid is the file ownership id

of the filesthat you want to list. The DSNS parameter can specify a data set name pattern, containing
wild characters* and 2.

Internals - Chapter 20. File System 421

Chapter 21. Load Library and Link Pack Area

Load Library

The system load library isin the dataset SY S1.MUSIC.LOADLIB. Privateload libraries can be created in
UDSfiles. These libraries contains relocatable machine language programs that are loaded into memory
using the SVC $LODSVC. The OS LOAD and LINK macro instruction can aso be used to load programs
from these libraries. The system load library contains the modules for system utilities, the editor, the assem-
bler, compilers, system interfaces and commands. Private libraries are used when specific applications
reguire large program libraries. A example of thisisthe PL/I transient library.

The LDLIBE utility program is used to create and maintain load libraries, LDLIST lists information about
the contents of load libraries, and SY SREP can be used to make machine language modifications (ZAPs or
REPs) to the programsin aload library.

System performance can be significantly improved by placing programs from the system load library in
either the Fixed or Pageable Link Pack Areas. In addition to the loading overhead being reduced, this also
reduces system paging and swapping loads.

Modulesin the Fixed Link Pack Area (FLPA) are loaded into memory during system initialization. If the
module is reentrant it can be executed directly from the FLPA. The pages of the module are never involved
in paging or swapping. If the moduleis not reentrant, it is copied to the user region before execution. This
memory to memory load is much less overhead than loading from the load library on disk.

Modulesin the Pageable Link Pack Area are copied from the load library to the system's page data sets
during systemiinitialization. To be eligible for the PLPA a program must be reentrant. When a PLPA
module is loaded, the system simply adjusts the user's page tables to point to the area of the page data set that
contains the module. The pages are brought in to memory as required by demand paging. This greatly
reduces loading overhead. Paging overhead is also reduced since the PLPA pages never have to be paged
out.

Entries in the system catalog determine which modules are placed in the FLPA and the PLPA.

Load Library Member Formation Procedures

This section contains the job control statements used for creating the modulesin the system Load Library.
Most of the members are formed by running two jobs. The first job uses the Linkage Editor (/LOAD LKED)
to create aload modulefile, from the object decks asinput. The second job uses LDLIBE to copy the
member from the load module fileto the Load Library. Refer to the LDLIBE utility for an explanation of the
options.

The LPA copies and main storage directory entries for these members will not be updated until the next time
MUSIC isIPLed. Some of the jobs that follow use the REPL=T option. Using REPL=T meansthat an
attempt will be made to use the same space occupied by the previous version. It may be advisable to rename
old members and then use REPL=F if you are not sure the new module will work or if you do not planto
re-IPL MUSIC right away.

422 MUSIC/SP Administrator's Reference - Part V

$CTL Module Formation

Refer to files $SYS:CTL.LKED and $SYS:CTL.APPLY for the two jobs required.

$FNPAK 1 Re-entrant Subroutine Package

Refer to files $SUB:$FNPAK1.LKED and $SUB:$FNPAK1.APPLY for the jobs required.

$INP Module Formation (/INPUT Command)

Refer to files $SY S:INPUT.LKED and $SY S:INPUT.APPLY for the two jobs required.

$L ST Module Formation (/LIST Command)

Refer to files $SYS:LIST.LKED and $SY S.LIST.APPLY for the two jobs required.

$OSTRAP Module Formation

Refer to files SCMP:OSTRAP.LKED and $CMP:OSTRAP.APPLY for the two jobs required.

$PRE Module For mation

/ FI LE LMOD NAME(xxx) NEW REPL)

/ LOAD LKED

/ JOB MAP, NOGO, NOSEGTAB, NOSEARCH, MODE=0S

. ORG 1000
ENTRY PRE

R L obj ect for PRE. (Source stored under code $SYS)
NAME $PRE

[FILE 1 N(xxx)

/1 NCLUDE LDLI BE

LI BE=' SYST', I N=1

NAMVE=' $PRE' , RENT=F, REPL=T

Internals - Chapter 21. Load Library and LPA 423

$PST Module Formation

/ FI LE LMOD NAME(xxx) NEW REPL)

/ LOAD LKED

/ JOB MAP, NOGO, NOSEGTAB, NOSEARCH, MODE=0S

. ORG 1000
ENTRY PST

L obj ect for PST. (Source stored under code $SYS)
NAMVE $PST

[FILE 1 N(xxx)

/1 NCLUDE LDLI BE

LI BE=' SYST' , | N=1

NAMVE=" $PST' , RENT=F, REPL=T

$PUR Module Formation (/PURGE Command)

Refer to files $SY S:PURGE.LKED and $SY S:PURGE.APPLY for the two jobs required.

$REN Module Formation (/RENAME Command)

Refer to files $SY SSRENAME.LKED and $SY S:RENAME.APPLY for the two jobs required.

$REX Module Formation

Refer to files SREX:REXX.LKED and $REX:REXX.APPLY for the two jobs required.

$ROUTING Module Formation (Route Name Table)

Refer to file $PGM:$ROUTING.S for instructions.

$SAV Module Formation (/SAVE Command)

Refer to files $SYS:SAVE.LKED and $SY S:SAVE.APPLY for the two jobs required.

$SIGNON Module Formation

Refer to files $SY S:SIGNON.LKED and $SY S:SIGNON.APPLY for the two jobs required.

$UPD M odule Formation (/UPDATE Command)

Refer to files $SY S:UPDATE.LKED and $SY S.UPDATE.APPLY for the two jobs required.

$XMON M odule Formation

Refer to files SLKD:XMON.LKED and $LKD:XMON.APPLY for the two jobs required.

424 MUSIC/SP Administrator's Reference - Part V

APL Module Formation

Seefile SAPM:MUSAPL.LKED for the link edit job. See file SAPM:MUSAPL.PUTSY S for the
LDLIBE job.

APLVSXEC Module Formation

ASM Module Formation

See files$CMP:ASM.LKED and $CMP:ASM.APPLY for the two jobs required.

ASMLG Module Formation

See files$CMP:ASMLG.LKED and $CMP:ASMLG.APPLY for the two jobs required.

BLKLET Module Formation

/ FI LE LMOD NAME(xxx) NEW REPL)

/ LOAD LKED

/ JOB MAP, NOGO, NOSEGTAB, NOSEARCH, MODE=0S

. ORG 0000

S L obj ect for BLKLET. (Source stored under code $CWMP)
NAMVE BLKLET

[FILE 1 N(xxx)

/1 NCLUDE LDLI BE

LI BE=' SYST', | N=1

NAME="' BLKLET' , RENT=F, REPL=T
CBMANIP Module Formation

Refer to files $V SM:CBMANIP.LKED and $V SM:CBMANIP.APPLY .

CMPMON M odule Formation

Refer to files $SYS:CMPMON.LKED and $SY S:=CMPMON.APPLY for the two jobs required.

Internals - Chapter 21. Load Library and LPA

425

COBOL Module Formation

/ FI LE LMOD NAME(xxx) NEW REPL)

/ LOAD LKED

/ JOB MAP, NOGO, NOSEGTAB, NOSEARCH, MODE=0S

. ORG 4600

S L obj ect for COBOL. (Source stored under code $CMVP)
NAME COBOL

[FILE 1 N(xxx)

/1 NCLUDE LDLI BE

LI BE=' SYST', I N=1

NAME=' COBOL' , RENT=F, REPL=T

DICT1 Module Formation (Spelling Dictionary)

Refer to Chapter 12 - TODO Facilities under the topic "Installing a System Word Dictionary in the
PLPA".

DM SREX M odule Formation

Refer to files SREX:DMSREX.LKED and $REX:DMSREX.LD for the two jobs required.

EDIT Module Formation

/ FI LE LMOD NAME(xxx) NEW REPL)

/ LOAD LKED

/' JOB MAP, NOGO, PRI NT, STATS, NOSEGTAB, MODE=0S

. ORG 1000

S L object for EDIT. (Source stored under code $EDT)
NAME EDI T

[FILE 1 N(xxx)

/1 NCLUDE LDLI BE

LI BE=' SYST', I N=1

NAME=' EDI T' , RENT=F, REPL=T

426 MUSIC/SP Administrator's Reference - Part V

EDITOR Module Formation

/ EI LE LMOD NAMVE(xxx) NEW REPL)

/ LOAD LKED

/' JOB MAP, NOGO, PRI NT, STATS, NOSEGTAB, MODE=0S

. ORG 1400

R L object for EDITIO (Source stored under code $EDT)
R L obj ect for EDI TOR (Source stored under code $EDT)
R L obj ect for EDTFI X. (Source stored under code $EDT)
R L obj ect for TSUSER (Source stored under code $EDT)
R L object for SUBMT. (Source stored under code $PGV
R L object for PRINT. (Source stored under code $PGV
S L obj ect for QSCAN. (Source stored under code $PGV
S L obj ect for DUMW. (Source stored under code $EDT)

NAME EDI TOR

[FILE 1 N(xxx)

/1 NCLUDE LDLI BE

LI BE=' SYST', I N=1

NAME=" EDI TOR , RENT=T, REPL=T

EDTDSP Module Formation

/ FI LE LMOD NAME(xxx) NEW REPL)

/ LOAD LKED

/' JOB MAP, NOGO, PRI NT, STATS, NOSEGTAB, MODE=0S

. ORG 0000

S L obj ect for EDTDSP. (Source stored under code $EDT)
NAVE EDTDSP

[FILE 1 N(xxx)

/1 NCLUDE LDLI BE

LI BE=' SYST', I N=1

NAMVE="' EDTDSP' , RENT=T, REPL=T

EXEC Module Formation

/ FI LE LMOD NAME(xxx) NEW REPL)

/ LOAD LKED

/ JOB MAP, NOGO, NOSEGTAB, NOSEARCH, MODE=0S

. ORG 1000

R L obj ect for EXEC. (Source stored under code $LKD)
NAME EXEC

[FILE 1 N(xxx)

/1 NCLUDE LDLI BE

LI BE=' SYST', I N=1

NAME=" EXEC , RENT=F, REPL=T

Internals - Chapter 21. Load Library and LPA 427

FORTG1 Module Formation

Seefile $FG1:FG1.GEN for generation procedure.

IBCOM Module Formation
Seefile SLM1:LM1.GEN (Fortran Mod | library) or $LM3:LM3.GEN (Fortran Mod Il library) for
generation procedure.

IEFBR M odule Formation

/ EI LE LMOD NAME(xxx) NEW REPL)

/ LOAD LKED

/ JOB MAP, NOGO, NOSEGTAB, NOSEARCH, MODE=0S

. ORG 0000

R L obj ect for IEFBR (Source stored under code $CMVP)
NAME | EFBR

[FILE 1 N(xxx)

/1 NCLUDE LDLI BE

LI BE=' SYST', I N=1
NAME=' | EFBR , RENT=T, REPL=T

IFOXnn Module Formation

/ EI LE LMOD NAMVE(xxx) NEW REPL)

/ LOAD LKED

/ JOB MAP, NOGO, NOSEGTAB, NOSEARCH, MODE=0S
/ 1 NCLUDE $CMP: VSASM LKED

[FILE 1 N(xxx)

/1 NCLUDE LDLI BE

LI BE=' SYST', I N=1

NAME=' | FOX00' , RENT=F, REPL=T
NAME=' | FOX01' , RENT=F, REPL=T
NAME=' | FOX02' , RENT=F, REPL=T
NAME=' | FOX03' , RENT=F, REPL=T
NAME=' | FOX04' , RENT=F, REPL=T
NAME=' | FOX05' , RENT=F, REPL=T
NAME=' | FOX06' , RENT=F, REPL=T
NAME=' | FOX07' , RENT=F, REPL=T
NAME=' | FOX11' , RENT=F, REPL=T
NAME=' | FOX21' , RENT=F, REPL=T
NAME=' | FOX31' , RENT=F, REPL=T
NAME=' | FOX41' , RENT=F, REPL=T
NAME=' | FOX42' , RENT=F, REPL=T
NAME=' | FOX51' , RENT=F, REPL=T
NAME=' | FOX61' , RENT=F, REPL=T
NAME=' | FOX62' , RENT=F, REPL=T

428 MUSIC/SP Administrator's Reference - Part V

IGIALL Module Formation:
IGIEXT Module Formation:
IGIGEN Module Formation:
IGIPAR Module For mation:
IGIUNF Module For mation:

See file $FG1:FG1.GEN for the generation procedure.

ITSRENT Module Formation

Seefile $11S:11S.GEN for the generation procedure.

IKFCBLNN Module Formation

See file $GEN:COBOL4.GEN or $GEN.VSCOBOL.GEN for the generation procedure.

ILBOPRMO M odule Formation

See file $GEN:VSCOBOL.GEN for the generation procedure.

JOBONE M odule Formation

Refer to files $SY S:IJOBONE.LKED and $SY S:JOBONE.APPLY for the two jobs required.

LIBRARY Module Formation (/LIBRARY Command)

/ EI LE LMOD NAMVE(xxx) NEW REPL)

/ LOAD LKED
/ JOB MAP, NOGO, NOSEGTAB, NOSEARCH, MODE=0S
. ORG 1000

ENTRY LI BCVD
R L obj ect for LIBCVD. (Source stored under code $SYS)
R L obj ect for MFINDX. (Source stored under code $SUB)
R L obj ect for MATCH. (Source stored under code $SUB)
R L obj ect for SSORT. (Source stored under code $SUB)

NAME LI BRARY

[FILE 1 N(xxx)

/1 NCLUDE LDLI BE

LI BE=' SYST', I N=1

NAME=" LI BRARY' , RENT=F, REPL=T

Internals - Chapter 21. Load Library and LPA

429

LKED Module Formation

L KEDPHS1 Module For mation:
L KEDPHS2 Module For mation:
L KEDPHS3 Module For mation:

/ EI LE LMOD NAMVE(xxx) NEW REPL)
/ LOAD LKED
/ JOB MAP, NOGO, NOSEARCH, MODE=0S
. ORG OF80

OVERLAY A

opti on NOSEGTAB not

S L object for SYSIO (Source stored under code $LKD)
S L obj ect for LKDMON. (Source stored under code $LKD)
S L obj ect for SBLOPN. (Source stored under code $PGV

S L obj ect for PHASEl. (Source stored under code $LKD)
S L obj ect for PREPL. (Source stored under code $LKD)

S L obj ect for PHASE2. (Source stored under code $LKD)
R L obj ect for PREP2. (Source stored under code $LKD)

R L obj ect for PHASE3. (Source stored under code $LKD)
R L obj ect for PREP3. (Source stored under code $LKD)

NAME LKED

[FILE 1 N(xxx)

/1 NCLUDE LDLI BE
LI BE=' SYST', I N=1
NAME=' LKED , SEG=2

NAVE=' LKED , RENAME="' LKEDPHS1' , SEG=3
NAVE="' LKED , RENAME=' LKEDPHS2' , SEG=4
NAME=" LKED , RENAVE=' LKEDPHS3' , SEG=5

LKEDEXEC Module Formation

See $LKD:LKEDEXEC.LKED and $LKD:LKEDEXEC.APPLY for the two jobs required.

430 MUSIC/SP Administrator's Reference - Part V

LOADER Module Formation

/ EI LE LMOD NAMVE(xxx) NEW REPL)

/ LOAD LKED

/ JOB MAP, NOGO, NOSEGTAB, NOSEARCH, MODE=0S
.ADD 004300 STRTUC

.ADD 001000 | BCOM

.ADD 002394 FI OCSt

_ADD 002840 ADCON#

. ADD 003CE8 | HNERRM

.ORG 001000

R L obj ect for LLOADER (Source stored under code $LDR)
NAME LQADER

[FILE 1 N(xxx)

/1 NCLUDE LDLI BE

LI BE=' SYST', I N=1

NAME=" LOADER' , RENT=F, REPL=T

OLOADER Module Formation

/ FI LE LMOD NAME(xxx) NEW REPL)

/ LOAD LKED

/ JOB MAP, NOGO, NOSEGTAB, NOSEARCH, MODE=0S

. ADD 004800 STRTUC

.ORG 001000

S L obj ect for OLOADER. (Source stored under code $LDR)
NAMVE OLQADER

[FILE 1 N(xxx)
/1 NCLUDE LDLI BE

LI BE=' SYST', | N=1
NAVE=" OLOADER' , RENT=F, REPL=T

PLI Module Formation

/ EI LE LMOD NAMVE(xxx) NEW REPL)

/ LOAD LKED

/ JOB MAP, NOGO, NOSEGTAB, NOSEARCH, MODE=0S

. ORG 4600

R L object for PLI. (Source stored under code $CWP)
NAME PLI

[FILE 1 N(xxx)

/1 NCLUDE LDLI BE

LI BE=' SYST', I N=1

NAME=' PLI"' , RENT=F, REPL=T

Internals - Chapter 21. Load Library and LPA 431

QLOADER Module Formation

/ EI LE LMOD NAMVE(xxx) NEW REPL)

/ LOAD LKED

/ JOB MAP, NOGO, NOSEGTAB, NOSEARCH, MODE=0S
.ADD 004300 STRTUC

.ADD 001000 | BCOMH

.ADD 002394 FI OCSt

_ADD 002840 ADCON#

. ADD 003CE8 | HNERRM
.ORG 001000
S L obj ect for QLOADER. (Source stored under code $LDR)

NAMVE QLQADER
[FILE 1 N(xxx)
/1 NCLUDE LDLI BE

LI BE=' SYST', I N=1
NAVE=" QLOADER' , RENT=F, REPL=T

RLOADER Module Formation

/ EI LE LMOD NAMVE(xxx) NEW REPL)

/ LOAD LKED

/ JOB MAP, NOGO, NOSEGTAB, NOSEARCH, MODE=0S

L obj ect for RLOADER (Source stored under code $LDR)
S L obj ect for SBLOPN. (Source stored under code $PGV

NAMVE RLOADER
[FILE 1 N(xxx)
/1 NCLUDE LDLI BE

LI BE=' SYST', I N=1
NAVE=" RLOADER' , RENT=T, REPL=T

SORT Module Formation

/ EI LE LMOD NAME(xxx) NEW REPL)

/ LOAD LKED

/ JOB MAP, NOGO, NOSEGTAB, MODE=OS (note: NOSEARCH is not used)

. ORG 0000

R L obj ect for SRTMRG (Source stored under code $CWVP)
NAME SCORT

/FILE 1 N(xxx)

/1 NCLUDE LDLI BE

LI BE=' SYST', I N=1

NAME=" SORT' , RENT=F, REPL=T

432 MUSIC/SP Administrator's Reference - Part V

VSAM Module Formation

Refer to files $V SM:VSAM.LKED and $VSM:VSAM.APPLY .

VSAPL Module Formation

Seefile SAPV:VSAPL.LOAD.LKED for thelink edit job. Seefile $APV:VSAPL.LOAD.PUTSY Sfor
the LDLIBE job.

VSBASCMP M odule Formation

Seefile $BAV:VSBASIC.GEN for the generation procedure.

VSBASIC Module Formation

/ EI LE LMOD NAME(xxx) NEW REPL)

/ LOAD LKED

/ JOB MAP, NOGO, NOSEGTAB, NOSEARCH, MODE=0S
.ADD 005000 CMPADR

. ORG 1000

ENTRY SYSI O
S L object for SYSIO (Source stored under code $BAV)
S L obj ect for VSBMON. (Source stored under code $BAV)

NAME VSBASI C
[FILE 1 N(xxx)
/1 NCLUDE LDLI BE
LI BE=' SYST', | N=1
NAME=' VSBASI C , RENT=F, REPL=T
VSBASL IB Module Formation

Seefile $BAV:VSBASIC.GEN for the generation procedure.

Link Pack Area Considerations

The Link Pack Areas are used to hold resident copies of transient system and compiler modules. These
modules are read in from the system data set SYS1.MUSIC.LOADLIB.

The Fixed Link Pack Area (FLPA) and Pageable Link Pack Area (PLPA) are loaded at during system initiali-
zation based on the names given on RESPGM statements in the system catalog. These copies are subse-
guently used by the system avoiding the 1/O overhead involved in loading them each time they are required.
The LPA program can be used to display the current contents of the FLPA and PLPA.

FLPA modules are loaded into real memory and remain resident there. Thereis obviously not enough room
in real memory to load all load library modules. High usage modules are the best candidates for the FLPA.
By default, a number of system utility modules such as SIGNON and EDITOR are put in the FLPA. If an
FLPA moduleisreentrant, then it can be used directly by the user program. This not only reduces the load

Internals - Chapter 21. Load Library and LPA 433

time but also cuts down on the swap and paging load. If it is not reentrant, acopy is madein the user region
when requested.

PLPA modules are placed on the system's paging datasets during the initialization process. Thereisno red
storage penalty for putting amodule in the PLPA, but the module must be reentrant to be eligible. When a
PLPA moduleis requested the system only need adjust the page table of that user. Any required pageisthen
read in as required using the system page mechanism.

The utility LDCNTS can be used to determine how often amoduleisused. Most installations will find that
the following are the most commonly used and therefore should be in the FLPA: $CTL, $PRE, $PST, $LST,
EDIT, EDTDSP, EDITOR, and $SIGNON. Other good candidates are SOSTRAP, $XMON, EXEC,
IBCOM, $REX, and DMSREX.

The following members must be in either the FLPA or PLPA: RLOADER, EDITOR, EDTDSP.

The member $ROUTING must always bein the FLPA. Even though it is reentrant it will not work in the
PLPA as some nucleus routines refer to it.

Keeping VSBASCMP and VSBASLIB routines resident means that about 50K larger VS BASIC programs
can be handled in the same size user region.

Keeping all C/370 modules resident has shown a marked reduction in compile times. The routine names are:
EDCP, EDCO, EDCT, EDCXV, EDCX?24, and IBMBLIIA.

The current sizes of modules on your system can be listed by running the LDLIST program. Non-reentrant
modules in the FLPA will typically use 15% more space than indicated here due to space needed to hold the
relocation information. The items marked RENT are reentrant modules and hence are suitable for the PLPA
aswell asthe FLPA.

434 MUSIC/SP Administrator's Reference - Part V

Chapter 22. System Programming

Overview

This chapter contains information of interest to system programmers who want to add new functions or make
modificationsto MUSIC/SP. Before undertaking a programming project there are some basics you should
know.

The source for MUSIC is available on the source tape. This source is not only useful when you want to
make modifications, but contains many valuable comments and programming examples. Some features of
MUSIC internals that are not documented in manuals are described in detailed commentsin the source
modul es themselves.

There are a number of choices available when adding a new program or command. The command could be
written in REXX and interpreted directly from the REXX source. It could be written in a high level language
or assembler and run from aload module or object deck. A load module could be run from the system Load
Library or the LPA. A new command could be added to the system nucleusitself. The method chosen
depends of the type of application and required performance characteristics.

Y ou should keep track of any local modifications or additions so they don't get forgotten when applying
maintenance or going to another release of the system. Also keep your own source separate from the base
System source.

Naming Conventions For System Files
MUSIC system files follow a set of naming conventions based on the suffix used. The most common
suffixes used are the following:

Sourcefilesend in .S

Object decksend in .OBJ

Files containing linkage editor control cardsend in .LKED

Files containing load modulesend in .LMOD

Files containing program dataend in .DATA

Files containing macro definitions end in .M

Usage of $ Useridson MUSIC

All system files are stored under an ownership userid that starts with adollar ($) sign. Files associated with
different system functions are stored under different userids asfollows. (For the latest table of $ userids see
thefile CATALOG.)

$ACT Contains the files associated with the session accounting program.

Internals - Chapter 22. System Programming 435

$ADM Files associated with the ADMIN program for the system administrator.

$ADS Filesfor the site's Ads Facility. These files are not distributed with MUSIC. They are created
by the site.

$ADZ Datafilesfor the SAMPLE ADS (classified ads) Facility.

$SAPM Contains the files associated with MUSIC/APL.

SAPV Contains the files associated with VS APL.

SAXF Contains the files associated with VS Assembler (XF).
$BAV Contains the files associated with the VS Basic compiler.

$BBS The BBS utility program, which is used for HELP, ADS, CWIS, and other applications. Files
with names starting $BBS: @CIO are a SAMPLE CWIS.

$BMK Benchmark programs, for comparing and measuring machine and system speeds.
$CIC Contains the files associated with IBM CICS.

$CMP Contains the files associated with OS simulation and the VS Assembler.

$COD Contains files associated with sign-on code utilities.

$CON Contains the files associated with the CONF and CONFMAN utilities.
$CSL Contains the Contributed Software Library.

$DEM Contains the files containing demonstration programs and games.

$DW2 Contains the files associated with IBM DisplayWrite/370.
$EDT Contains the files associated with the Editor.

$EMD Contains files associated with the Mail facility operation.
$EML Contains the source for the MAIL facility.

$EMM Userid owning the mailbox containing the site's mail profile defaults that are copied to new
mailboxes at creation time.

$SEMP Contains the files associated with the postmaster for the MAIL facility.

$EMS Electronic Marks Submission facility.

$EMN $EM1,$EM?2,... Contain the outgoing mailboxes for the RDMAILER tasks that process incom-
ing mail.
$FG1 Contains the files associated with the FORTRAN 1V (G1) compiler.

$GDM Contains the files associated with IBM GDDM.

$GEN Contains the files used by system generation functions.

436 MUSIC/SP Administrator's Reference - Part V

$GPS Contains files associated with the GPSS product.

$HLP Contains the files used by the HEL P commands. Fileswith prefix "@ED." are used with the
Context Editor HEL P facility. Fileswith prefix "@GO." are used with the * GO mode HELP
facility. Fileswith the prefix "@FC." are used with the MUSIC/FCS facility.

$/BB Contains the files associated with IBM Basic.

$IBC C/370 and C/370 Version 2, Compiler and Library.

IS Contains the files associated with the Interactive Instructional Presentation System (11PS) and
with the Interactive Instructional Authoring System (11AS).

$IMD Contains the files associated with IBM GDDM IMD.

SINT Contains the files associated with the Full Screen Interface (FSI).

$ITS Contains the files associated with the indexed text searching utilities.

$IvVU Contains the files associated with IBM GDDM 1V U.

$JCL Model job control card files for the SUBMIT program.

$KRM KERMIT filetransfer (part of the CSL - Contributed Software Library).
$LDR Contains the MUSIC loaders.

$LKD Contains the MUSIC Linkage Editor.

$LM1 Filesto generate the FORTRAN Mod | Library.

$LM3 Files associated with the FORTRAN Mod Il Library.

$MAN Contains the files associated with the online manuals.

$MBx $MBA ,$MBB,... Contains mailbox files for the MAIL facility.

$MCC I(IZ(;ntai ns CMS macros. (CMSisacomponent of VM.) These macros are needed to assemble
source.

$MCM Contains the MUSIC system macros. They are used when assembling system source.
$MCS Client-server programs for interfacing with PC workstations.

$MCU Contains the MUSIC user macros (mainly OS macros).

$MDxx (SMDAA,..$MDZZ, $MDQO,...$MD99) Mail datafiles.

SMEM Contains files associated with the MEMO tility.

$MON Contains some auto sign-on programs.

$PAN Contains the files associated with the 3270 PANEL subsystem.

$PCW Files associated with the Personal Computer Workstation (PCWS).

Internals - Chapter 22. System Programming 437

$PGF
$PGM
$PIP
$PLI
$PL2
$PLK
$PRT
$PUB
$RDR
$REX
$RG2
$RPG
$SCR
$SRV
$STP
$suB
$SYS
$TCP
$TDO
$TPC
$TUT
$VCT
$ve2
$VF2
$VMR
$VP2
$VSsC

$VSF

Contains the files associated with IBM GDDM PGF.

Contains the files associated with miscellaneous main programs.
Contains the files associated with the pipe cmd.

PL/I Optimizing Compiler and Libraries.

PL/l Version 2 Compiler, Library and Test Facility.

Contains the files associated with IBM GDDM (PCLK feature).

Print queue and print files.

Default anonymous FTP code.

Contains the batch jobs submitted to the MUSIC internal reader.
Contains the files for the REXX command executor.

RPG/370 Compiler and Library (5688-127).

Contains files associated with the RPG |1 compiler product.

Contains the files associated with MUSIC/SCRIPT.

Contains the files for applying service and installing optional products.
Files associated with STATPAK. (Not distributed with MUSIC/SP.)
Contains the files associated with the subroutine library.

Contains the MUSIC system source.

Contains the files associated with TCP/IP.

Contains the files associated with the Time, Office, and Documentation Organizer (TODO).
Files associated with the PC co-axial connected file transfer program.
The TUTORIALS facility: tutorials on programming languages such as Rexx, Fortran, etc.
Vector Facility Simulator (5798-DWF).

Contains the files associated with VS COBOL 1.

Containsthe filesfor VS Fortran, Version 2.

Contains the reader queue used by the VMREADX utility.

Contains the files associated with VS PASCAL.

Contains the files associated with VS COBOL.

Contains the files associated with the VS FORTRAN compiler product.

438 MUSIC/SP Administrator's Reference - Part V

$VSM Files associated with the VSAM (Virtua Storage Access Method).
$VSP Contains the files associated with the VS PASCAL compiler product.

SWWS Sample data files for Web server.

XXX Contains miscellaneous dummy files.

$001 Contains workspaces distributed with VS APL for lib 1. (Not distributed with MUSIC.)
$002 Contains workspaces distributed with VS APL for lib 2. (Not distributed with MUSIC.)
$003 Contains workspaces distributed with MUSIC for VS APL lib 3.

SourceKey File

The file SOURCE.KEY contains alist of al the system files. All of these files can be found on the
MUSIC/SP distribution tapes. Not all of these files are included in the Save Library when you install
MUSIC/SP. For example source codeis hot loaded onto your system to save disk space.

An* beside afile name means that the file is on the tape but is not restored during system generation.

The LIBRARY command can be used to obtain alist of the files currently on your system. For example,
type the command "LIBRARY $PGM:*" to obtain alist of all the files under the ownership userid of $PGM.

Use the MFREST uitility to restore selected files from the source tapes as required. Consult the file
CATALOG for sample usage of MFREST. Thisfile also contains information on how to locate which tape
specific files are on.

Modifying MUSI C'sNucleus

Y ou must recreate the system nucleus to change the I/O configuration, modify a nucleus module or add a
new module to the nucleus. The ADMIN facility can be used to make routine configuration changes. You
should understand what goes on behind the ADMIN menus however, if you want to actually change the
nucleus code.

Change the Sour ce

If required, restore the source for the existing module from the distribution tape using MFREST. Source for
the nucleus modulesiis stored under the userid $SY'S. Make your changes using the editor. Usethe FLAG
command of the editor to identify your changes. Thisis done by issuing the following Editor command:
"FLAG DEL=*/,COL=73". Filethe changed version using a different name from the original.
Assemble the Module

Thefile SY SASM is setup to assemble system modules. The following JCL is used to assemble the system
module XXX X and save the abject deck in the file XXXX.0BJ.

Internals - Chapter 22. System Programming 439

/ FI LE SYSPUNCH NAME(XXXX. 0BJ) NEW REPL)
/1 NCLUDE SYSASM

/ OPT DECK

=XXXX

Modify the NUCGEN Job Stream

This can be done using the ADMIN facility or by simply editing the file $SGEN:NUCGEN.JOB. The
NUCGEN utility reads the base system object decks from the file $SGEN:NUCLEUS. It then reads the
device control cards and replacement object decks from the input data stream. As output, the NUCGEN
program produces afile which contains an IPLable loader, the object decks for the system modules including
the replacements, and the new device control cards. The output can be written to afile or to tape. The tape
option is useful in that it provides a good backup copy of the nucleus. This output file can optionally be used
as the base system input file for a subsequent run of the NUCGEN program.

To replace a system module an /INCLUDE statement pointing to the new object deck should be placed after
the DEVEND statement. If more than one copy of that module is found, the first oneis used.

If you are adding a new module to the nucleus, edit the file $GEN:MDLSY G and add)OBJ statement for the
new module where you you want it to appear in the nucleus. It should be placed somewhere between the
modules URMON and PROTND.

Install the Nucleus

Before installing the new nucleus make sure that you have a backup copy of the old nucleus on tape. If the
nucleus was written to tape, attach a tape drive to the MUSIC virtual machine, shutdown MUSIC and IPL
from the tape drive. If the nucleus was written to afile use the SY SGEN1 utility to install it directly. The
ADMIN facility also usesthistechnique. Once the nucleusisinstalled reload the system and test out your
changes. If you are making changes to system code, the tape method is preferred, since if something goes
wrong you aways have the tape from the previous NUCGEN as a backup. Thisisonly true of courseif you
used the tape method the last time.

Backup copies of the MUSIC nucleus can also be kept in CMSfiles. Punch thefile created by the NUCGEN
job to aCMS machine, read it in and save it inaCMSfile. Toinstall the nucleus, punch a copy of thefileto
MUSIC and IPL thefile from the virtual card reader. (Specify the no header option on the punch command).

Under VM, you can also setup a second copy of MUSIC to be used as atest system. Thisisvery useful in
debugging and testing system changes during normal working hours. If you are considering making major
maodifications to the nucleus this option should not be overlooked.

Modifying Applications, Utilitiesand Commands

This section gives a genera overview of the steps required to modify or add applications, utilities or
commands. The basic procedure involves three steps: get the source off the distribution tape if required;
make the changes; install the new version.

Restore Sour ce from Tape

Y ou can use the ADMIN facility to restore source files as described in the MUS C/SP Administrator's Guide
under the topic "Restoring System Source Files'.

440 MUSIC/SP Administrator's Reference - Part V

Alternately, the MFREST utility is used to restore files from the distribution tapes. Consult the file
CATALOG tofind out what tape a specific file is on and sample jobs to restore them. When restoring
groups of fileswith MFREST, never specify REPL=T unlessyou realy mean it and always specify FIXUP='
" unless you specifically want it to do name fixup. The files you restore from the distribution tape depend on
what you want to do. If you have alot of disk space you may want to restore all the files and have the
convenience of having everything online.

Install the New Version

The procedure to follow here depends on the language used and on whether the program is run from aload
module or from the load library.

If the program iswritten in REXX thereis very little to do after the source changes are made since REXX
runs directly from source. Y ou can make REXX programs more efficient by removing comments and
compressing the source using the REXDCOM and REXCOMP commands. Thisis only important for large
programs or programs that are used frequently. (Remember to keep the original copy with the comments
around). Toinstall the new version simply replace the contents of the origina file with the new REXX
source.

Programs written in other languages must be compiler or assembled. They can then be made into load
modules. Load modules can be executed directly or put in the Load Library. Files have been set up to assist
you in performing these steps. The source files for many programs contain the control statements required to
compile or assemble that program. Simply executing the file will automatically produce the object file. You
create the load module by running the LKED file for the program. Sometimesan LD or APPLY fileisalso
available to copy the load module to the system load library. (Theload library is described elsewhere in this
manual).

Suppose you are changing the AUTOPR utility.

$PGM:AUTOPR.S Contains source. Executing this file compiles the source and produces the
object program.

$PGM:AUTOPR.LKED Executing thisfile creates the load module.

Making Changeswith REPs

The Replace (REP) statement is a convenient method of making small changes to the MUSIC system without
the need for reassembling the modules.

The REP statement is considered by the MUSIC loaders as a special form of a TXT statement found in
object modules. The REP statement is normally inserted in the object module after the TXT statements and
before the RLD statements. It will also work when placed just before the END statement of an object
moduleif the information in the REP statement is not subject to relocation.

Thefirst character on REP card can be punched by the combination of the 12-2-9 punches using the multi-
punch key on acard punch. Alternately it can be entered while using the Context Editor's hexadecimal input
feature. The 12-2-9 punch is hexadecimal 02. For example, type the following commands to place a hexa
decimal 02 in position 1 of aline:

xin;o 02;ain

The format of the REP cardsis as follows:

Internals - Chapter 22. System Programming 441

card col. 0000000001111111111
1234567890123456789

. REP aaaaaa ssscccc, cccc,cccc comrents

where:

col 1 isa 12-2-9 punch (hexadecimal 02)

col 2-4 are the characters 'REP

col 7-12 isa6 digit hexadecimal address relative to module and obtained from the far left column of
an assembled listing. The address must be a multiple of 2.

col 14-16 isthe control section id, normally 001. This number is hexadecimal. This can be verified by
the SD number given in the External Symbol Dictionary on the first page of an assembled
listing

cols 17-70 contain amaximum of 11 4-digit hexadecimal fields separated by commas.
Example:

12
2
9REP 000452 014700, 0000 MAKE I'T A NO OP

REP cards can aso be included in the NUCGEN jobstream after the DEVEND statement. A special)REP
statement is used to indicate which module the REPs apply to.

) REP TCS

.REP 000100 010700 PUT NOPS IN TCS
.REP 000120 014700

) REP URMON

.REP 00024C 0147F0 FORCE BRANCH

"INOREP xxx" removes all reps previously made in module xxx.

SYSREP Utility

The SY SREP utility can be used to apply REPsto load library members. The format of the REP statement
used by SY SREP is different from the one described above.

System Control Blocksand DSECTs

In understanding any system, knowledge of the layout of the system control blocksisvery helpful. You can
get an assembled listing of MUSIC's control blocks by assembling the module @MUSBK. Thismoduleis
on the source tape under the userid $SYS. @MUSBK contains dsects of many of the system control blocks.
It is provided to assist in interpreting core dumps and system code. Some bits and bytes may not be currently
maintained. Avoid writing user code that refersto any bits or bytes directly as this may make it system level
dependent. Most of the control blocks and DSECTs and mapped by macros. These system macros are
stored on the user id $SMCM.

442 MUSIC/SP Administrator's Reference - Part V

Program Chaining and Multi-Tasking

MUSIC provides subroutines to control program chaining and multi-tasking. In program chaining a series of
programs are run one after another. The parent program must finish before the child program starts. Multi-
tasking allows the parent program to run in parallel with the child program it created. The parent may wait
for the child to finish before continuing.

Program Chaining

The subroutines NXTCMD and NXTPGM can be used to schedule another program or a command when the
current program finishes running. These are documented in the User's Guide. It isalso possible to designate
aparticular program as a user's ALWAYS program either in the user profile, or dynamically using an option
of the NXTPGM subroutine. When there are no other programs scheduled, rather than return the terminal to
*G0o mode, the system runs the ALWAYS program. This mechanism allows programs such as REXX and
TODO to schedul e the execution of other commands and programs but automatically regain control when the
scheduled jobs are finished. ALWAYS programs are started from the beginning each time and must be
responsible for saving information that must be preserved while scheduled commands and programs are
running. Also, scheduling a new ALWAYS program replaces the previous one. When executing a chain of
programs under the control of an ALWAYS program the /CANCEL command can be used to cancel the indi-
vidual programs. The/CANCEL ALL command will remove the ALWAYS program if it isflagged as
cancellable. Obvious applications are in the area of providing restricted or subset views of the system.

Multi-Tasking
The NXTCMD subroutine can be called to create a new task. The underlying mechanism uses MUSIC's
multi-session support to add a new session and start the new program running in that session. The parent
task controls how the user views this new session. The calling sequence for NXTCMD is asfollows.
CALL NXTCMDX(comand, | en, opt s)
conmand - conmand or programto execute
[en - length of the command
opts - options
The bitsin the low order byte of the options parameter are defined as follows.
X'80" Setto 1for multi-tasking request
X'40" Parent task will wait for child to terminate.
X'20" Delete the child task when the scheduled program finishes.
X'10" Display job startup messages.

X'08' Leave the parent task active on the terminal. The child task will run in the background until the user
activates it with multi-session function keys or commands.

X'04'" Don' let the user see the parent task while the child task isrunning. Thisisnormally used in
conjunction with X'40' to prevent the user returning to the parent task prematurely using multi-ses-
sion function keys or commands.

X'02" Create the new task asa BTRM and disconnect it from the parent. The BTRM is deleted when the

Internals - Chapter 22. System Programming 443

new task finishes.

X'01' Make child task non-cancellable.

Defining BTRMsand Auto-Sign-on

In implementing various features of the MUSIC system there was a requirement to be able to run programs
in the background without aterminal attached (BTRM), and to be able to run programs on terminals without
keyboards (Auto-Sign-on). Since both these areas involve starting a program without user intervention, they
have been addressed in the same way.

The problem of running background jobs was solved by introducing the dummy termina classBTRM. A
BTRM is specified as adevicein the NUCGEN. This causes MUSIC to construct the appropriate control
blocks during system initialization asif aterminal was defined at that address. The device address specified
for the BTRM is NOT related to any physical device, but is only used as a mechanism to determine which
code to sign on. By default the system should be set up to have BTRMs defined on 005 and 010-019. These
are used to run system utilities that communicate with VM. The fact that thereis aso virtual punches
defined on these addresses is not a problem.

The lowest (first) BTRM address (for example, 005 in the standard system) should be used for the System
Log Message Server BTRM ($PGM:SY SLG). Any BTRMs (such as RDMAILER) that may send log
records to the Log Server BTRM should come after it. Thisisso that at MUSIC startup time, the Log Server
BTRM will start before any of the other BTRMs.

In the NUCGEN, Auto-Sign-on terminals are defined in the same manner as regular terminals. They also
have the SIGNON option specified. Aswith BTRMs the device address plays arolein determining which
code to sign on.

By default BTRM or Auto-Sign-on terminal is automatically signed on to the code $M ONsss, where the
subcode sssis the device address of the BTRM or terminal as specified in the MUSIC NUCGEN. [f the code
does not exist in the system code table the sign-on will fail and the BTRM or Auto-Sign-on terminal will not
work. Alternately the userid can be defined in the file $PGM:AUTO.CONTROL. Each entry inthefile
contains a device address range and a userid. For example:

100- 13F CW S000
200- 23F | NFO000
250- 250 PRT1000

Anything in the virtual address range 100-13F is signed on with the userid CWIS000, 200-23F uses
INFOO000, and 250 uses PRT1000.

During the sign-on process time limits, file space limits, privileges, terminal type, and operation default are
all set from the user profile. Finally if an AUTOPROG is specified in the profile, and one should be, it is
run. Thisalowsthe BTRM and Auto-Sign-on terminals to be signed on and start running the appropriate
program.

The following steps should be taken when adding a new BTRM or Auto-Sign-on terminals to the system.

1. Decide on the device address and add the appropriate device specification statement to the NUCGEN
job stream and create a new nucleus.

2. Allocate the code $M ONsss, where sss the device address in question. When allocating the code set the
appropriate password, time limits, terminal type, and privileges. The AUTOPROG parameter must also

444 MUSIC/SP Administrator's Reference - Part V

be specified indicating which program isto be run. Use the CODUPD command "ADD $MON
SC(sss)..." so that ssswill be a subcode.

3. Set up thefile to contain the auto-program defined in step 2.

4. Test the program by signing on to the code from areal terminal and verifying that there are no prob-
lems. Thisisvery important since BTRMs have no terminals attached so you do not see any error
messages when they are run in production. Auto sign-on terminals may be remotely located and again
error messages may be difficult to access. Therefore testing the program before using it with the
production BTRM or Auto sign-on terminal prevent problems later on.

5. Apply the new nucleus and verify the new BTRM of Auto sign-on terminal is functioning correctly.

BTRMs and Auto sign-on terminals respond to operator commands in the same way as do regular terminals.
Normally the operator need not intervene, but under certain circumstances it may be necessary to cancel or
restart one of the programs running on aBTRM or Auto sign-on terminal. Typically this situation occurs
when the program or its parameters have to be changed, or the program is not functioning correctly. The
following commands are recommended for these functions.

/CANCEL nnn - the program is cancelled.
/RESET nnn - the program is cancelled and restarted.

(nnn is the TCB number)

System Log Message Server BTRM (SYSLG)

Several MUSIC applications (for example MAIL and RDMAILER) need to be able to write many log and
information recordsto alog file. Activity in such log files can be high - tens of thousands of records per day.
In order to do this efficiently, these applications can send the log records as messages to a single log server
task, viathe Intertask Communications Queue (BPOOL buffersin memory).

The log server, running the program $PGM:SY SLG asaBTRM session, does all the work of managing the
log files and writing the log records to the files. Thisis much more efficient, since each log fileis only
opened once, and many log records are batched together and written to disk with asinglei/o operation. In
addition, the log server can optionally redirect |og messages to the operator console, to multiple files, to anid
ase-mail, and to other programs. Thisis controlled by a definition file, $PGM:SY SLG.DEFINE. Log files
can be defined so as to create a new file each day or month, with the date in the file name.

An application calls the SY SLOG system subroutine in order to send alog record to the log server. The
application specifies an 8-character application name (e.g. MAIL and RDMAILER use the application name
"MAIL"), apriority or class number (normally 0), and the text of the message (1 to 1024 bytes). Refer to the
source file $SUB:SY SLOG.Sfor details. The calling program or user must have at least the SY SCOM privi-
lege. Thelog server receives the message (at some later time up to 3 minutes after the SY SLOG subroutine
was called) and uses the application name and priority/class number to route the message, according to the
definitionsin $PGM:SY SLG.DEFINE.

The format of the definition file $PGM:SY SLG.DEFINE is described in file $PGM:SY SLG.DEFINE.DOC.
The definefileis read once when the log server BTRM starts. |f you change the define file and you want the
change to take effect now, rather than at the next MUSIC IPL, you must stop the BTRM (by operator
command "REPLY n STOP" where n isthe TCB number - see below) and restart it (by "RESET n"). If the
define fileis missing or contains an error, the log server automatically appends al log recordsto file

$000: @SY SLOG.MISC.

Internals - Chapter 22. System Programming 445

When setting up the log server, the lowest (first) BTRM address (for example, 005 in the standard system)
should be used for it. Any BTRMs (such as RDMAILER) that may send log records to the Log Server
BTRM should come after it. Thisisso that at MUSIC startup time, the Log Server BTRM will start before
any of the other BTRMSs, and no log records will belost. Also, when shutting down MUSIC, in order not to
lose any log records, stop BTRMs (such as RDMAILER) that generate log records, then stop the log server
(see below), and finally shut down MUSIC.

The userid for the log server BTRM should be created by a command similar to the following, entered in the
CODUPD utility. "xxx" isthe 3-digit hex BTRM address, as specified in the MUSIC nucleus configuration.
For example, in the standard MUSIC it is 005.

ADD $MON SC(xxx) PW *NOLOGON) PROG($PGM SYSLG) -
PRI ME(NL) NONPRI ME(NL) BAT(0) DEF(NL) XSES(10) -
FI LES MAI NT LSCAN SYSCOM -

NAME(BTRM FOR SYST LOG SERVER)

The following MUSIC operator commands are used to communicate with the log server. "n" isthe TCB
number of the log server, which can be obtained by the command "engtab sysog" entered in aMUSIC termi-
nal session.

REPLY nHELLO To verify that the log server isrunning, and to cause it to process any accumulated
log messages.
REPLY n STOP To cause the log server to process any accumulated log messages, then shut down

the log server program.
WARNING: After the log server is shut down, any log records generated by applica
tion programs will be discarded.

RESET n Torestart the log server, after stopping it. This command should only be used after
"REPLY n STOP" has been used to shut down the log server.

MFIO Subroutinelnterface

Two subroutines, MFIO and MFACT, are provided to give high level languages accessto MUSIC's |/O
interface. Before attempting to use these routines you should review the information on the assembler and
macro interface in chapter 19.

MFACT - Open/Close afile

CALL MFACT(rc,'type options.','shortfilenane ')
CALL MFACT(rc,'type options.',-1,'longfilename ")

rc File system return code.
type Operation type (OPEN, CLOSE, EXTRACT).
options Options dependent on the type of operation (e.g. OKNEW OKOLD WROK RDOK APPOK

REPL RENAME etc..) The option string isterminated by a period.

shortfilename Thefile name (22 characters) terminated by a blank unless the file name is the maximum
length, 22 characters long.

longfilename The file name (64 characters) terminated by a blank unless the file name is the maximum
length, 64 characters long.

Examples:

446 MUSIC/SP Administrator's Reference - Part V

CHARACTER* 22 FNANEL

CHARACTER* 64 FNANE2

FNAMEL(1:)='

FNAMVE2(1:) ='

FNAMEL(1: 9) =' ABCD: TEMP'

FNAME2(1: 15) =' ABCD: \ WORK\ TEMP'

CALL MFACT(IRC,' OPEN RDOK OKOLD.', FNAMEL)
CALL MFACT(IRC,' OPEN RDOK OKOLD.', - 1, FNAME2)

MFIO - Read/Writeafile

CALL MFIQ(rc,'type options.', pos,|en, buf)

rc File system return code.

type Operation type (10, UIO, FSIO).

options Options dependent on the type of operation (e.g. RD WR WEOF REW FILL TRUNC RBA
etc..) The option string is terminated by a period.

pos RBA value used if RBA option is specified. Block number for UIO requests.

len Length of buffer.

buf 1/O buffer.

The string "*." can be used in the second parameter as shorthand for 'lO RD FILL.". The string '$.' can be used
for 1O WR TRUNC.".

MFGETU/MFSETU Subroutines

CALL MFGETU(unit)
CALL MFSETU(unit)

unit isthe integer internal unit number.

When MFACT iscalled to open afile the internal unit number assigned to that file is stored in the basic
request block used by MFIO and MFACT. Oncethefileisopened, all that isrequired during 1/O operations
isthis unit number, the buffer address and the length. However, if MFACT is called again to open a second
file, the control blocks are reused and the old unit number islost. The subroutines MFGETU and MFSETU
allow the programmer to have a number of files open at the same time by saving the unit number after open-
ing afile (MFGETU) and resetting it whenever an /O operation isto be done on that file (MFSETU).

M FIO Common Blocks

The following common blocks names are assigned to the MFIO control blocks used by these routines.
Detailed information on the contents of these control blocks can be found in Chapter 20.

MFARGX Copy of MFIO basic request block

MFTAG Tag information

MFINFO Infin/infout block

MFHINF User information block for 16 character userids
MFUINF User information block

MFEOFP End of file pointers

MFBUPN File backup number

MFLIBR Argument for library request

MFUCTL User control record

MFEXTN File extent information

Internals - Chapter 22. System Programming 447

MFFSAR FSIO argument

MEXINF Usage information block

MFPHY S Actual length read, RBA information

MFRNAM Returned file name from MFACT
MFIO tracing

Y ou can get full tracing of MFIO and MFACT subroutine activity. To activate this feature a/FILE statement
with a ddname of MFTRACE isrequired. For example:

/ FI LE MFTRACE N(GORK) NEW REPL) RECFM VC)
or /FILE MFTRACE PRT

Thetracing information looks as follows:

MFACT AT AAAAAA RC=RR U=UU REQ= PARM TEXT/ XXXXXXXXXX
Where aaaaaa is the address from where MFACT or MFIO isbeing called from. rr isthereturn code. uuis
the internal unit number. "parm text" isthe keyword literal text passed in the call. x00000x is the resulting

basic user request block.

Each type request provides additional useful information.

OPEN and EXTRACT - file name and block INFIN
CLOSE - blocks EOFPT and TAG
IO and UIO - block PHY S and 40 bytes of the 1/0O buffer

Enqueue/Dequeue Facility

The MUSIC subroutines ENQ and DEQ allow the user to gain shared or exclusive control of aresource (by
calling ENQ) and subsequently to release control of the resource (by calling DEQ). The QUERY subroutine
allows you to check if the resource has been enqueued. Thisfacility is used to coordinate the concurrent use
of resource by several users.

Theresourceisidentified by an arbitrary 8, 10 or 24 character name, of which the first character must be a
letter A to Z. Any number of users can have simultaneous shared control of the resource, but only one user
a atime can have exclusive control of the resource. A user's control of any resource is automatically
released when the user's job terminates. Each user may have control of no more than 2 resources at any one
time. Improper use of the enqueue/dequeue facility may cause the user's job to be aborted.

A privileged system programmer may display the contents of the system'’s enqueue table by executing the
ENQTAB utility, described in Chapter 17 in this manual.

The calling sequences are as follows:
CALL ENQ TYPE, NAME, RETCD1)
CALL DEQ TYPE, NAME, RETCD2)
CALL QUERY(TYPE2, NANME, RETCD3)

TYPE Integer specifying type of control and length of resource name:

448 MUSIC/SP Administrator's Reference - Part V

TYPE2

NAME

RETCD1

RETCD2

RETCD3

reguest for shared control, 8-byte name
reguest for exclusive control, 8-byte name
reguest for shared control, 10-byte name
request for exclusive control, 10-byte name
reguest for shared control, 24-byte name
request for exclusive control, 24-byte name

OO WN P

In the call to DEQ, TY PE should be the same asin the corresponding call to ENQ.
Integer specifying the length of resource name:

0 request for 8-byte name
1 request for 10-byte name
2 request for 24-byte name

Maximum length of resource name (8, 10, or 24 byteslong). Thefirst character must be A
to Z for anon-privileged user.

Integer return code from ENQ:

0 successful enqueue (the user has been given control as requested)

1 resourceis not available (shared control was requested and a user already had exclusive
control, or exclusive control was requested and a user already had shared or exclusive
control)

2 earor

Integer return code from DEQ:

0 successful dequeue (control has been rel eased)
1 theuser did not have control
2 eror

Integer return code from QUERY :

resource is not enqueued
resource is enqueued (shared)
resource is engqueued (exclusive)
error

WN PO

Unbuffered Tapel/O

Normally MUSIC will automatically buffer I/O to tape. This can be overridden by using RECFM (U) on the
[FILE statement. When thisis done, each read or write will be unbuffered. An automatic end-of-file will not
be donefor I/0O donethisway. The TAPUTIL utility uses this facility to handle variable length unspecified
blocks. The subroutine TPIO can be used to issue the file system callsto do /O in this manner. (The object
deck for TPIO isin the file $SPGM: TPIO.OBJ, not in the subroutine library). The calling sequenceisas

follows.

Internals - Chapter 22. System Programming 449

CALL TPI (U, O R, BUF, LEN)
U Unit number of the tape.

@) Operation code.
0 - Read (max Length = 32760)
1- Write
2 - Write EOF
3 - Read (max length = "LEN")

R Return code.
-1 - End of file
0-Norma
>1 - MFIO return code
BUF Buffer address.

LEN Length. On aread thisvalueis set.

L ogical Devicelnterface

Thisinterface can create aVM terminal session using logical device support and thus allow a user to connect
to other virtual machines directly from aMUSIC session. This gives the MUSIC user access to applications
that are not running on his MUSIC machine. These are referred to as remote applications. The interface can
control what goes on in the session it creates or turn control over to the MUSIC user's keyboard. In the typi-
cal situation aMUSIC application would create a session, issue the appropriate command sequences to
connect the user to aremote application and then turn control over to the user. When the remote application
terminates, the MUSIC application regains control and issues the commands to log the user off the remote
system.

The interface consists of a suite of subroutines that are used by the application to create, manage, and termi-
nate the remote session. In addition to providing aterminal session connection the interface can also dofile
transfer using the 3270 file transfer protocol.

CALL LDLOG(n)

Log operations within logical device support to the user file LDEV.LOG. Logging is off by
default.

0 turnlogging off
1 turnlogging on

CALL LDINIT
Create alogical device.
CALL LDECHO(n)

Echo session on usersterminal. The user can see what's happening but can't use the

keyboard.
0 turn echo off
1 turn echo on

450 MUSIC/SP Administrator's Reference - Part V

CALL LDTERM (kseq,lk,row,col,hseq,Ih)
Pass control to the user's terminal.
kseq Keyboard escape sequence. Any commands prefixed by this are passed to the local

MUSIC system for processing. The following exceptions are handled directly by the
LDEV routine.

RECeive - receive afile from the remote host
SEND - send afile to the remote host
LOG - log interruptsto LDEV.LOG
NOLOG - stop logging interrupts

END - return to controlling program

(also QUIT and QQ)

Ik Length of kseq

row row to scan for hseq

col column to scan for hseq

hseq Host escape sequence. When this character sequenceislocated in the specified loca-
tion on the screen control is returned to the calling program. Thisis useful in regain-
ing control to perform automatic logoffs. The scan follows the same rules as
LDWAIT.

hl Length of hseq

CALL LDPUT(row,col,data,len)
Put datainto amodifiable field. No checking is done on the validity of the data or the field.
row row number
col column number
data data
len length of the data
CALL LDCUR(row,col)

Set the cursor address prior to pressing afunction key.

row row number
col column number

CALL LDKEY (key)
Press afunction key.

key integer value representing the key
0 .

. enter
1-24 : PF key
-1 : PA1
-2 :PA2
-3 : PA3
-4 :CLEAR

CALL LDENT(data,len)

Put datain the input area and press enter. Thisis useful for applications that are not field
dependant,

Internals - Chapter 22. System Programming 451

data data
len length of the data

CALL LDGET(row,col,buf,len)

Get datafrom the in core screen buffer. This need not be used on afield basis. The routine
will pick out whatever part of the buffer you want. Note that currently keyboard input is not
maintained in the buffer, only host transmitted data can be retrieved.

row row number

col column number

buf local buffer to receive the data
len length of the data

CALL LDWAIT(row,col,data,len,secs,rc)

Wait for a certain string of text to appear on the screen. Thisis useful in synchronizing
events and preventing sending data before the host session is ready for it.

row row number

col column number

data data

len length of the data

secs The number of seconds to wait before returning to program empty handed.
rc Thisisnon zero if the text was not found within the specified limit.

Note: If col=0 the screen is scanned starting from the specified row. If row and col are
zero the entire screen is scanned.

CALL LDWINT(secs)
This causes the support routine to wait for an external interrupt or so many seconds, what-
ever comes first. 1t can also be used to force the interface to process any interrupts that are
currently in the stack if the time limit is set to zero.
secs number of seconds to wait
CALL LDCLR
Clear the screen buffer.
CALL LDSEND('Iname rname opt',len,flag,rc)
Send afileto the remote system.
Iname locd file name

rname remote file name
opt file transfer options

len length of first parameter
flag 1: display file transfer monitor.
rc return code

CALL LDRECV ('Iname rname opt',len,flag,rc)

Receive afile from the remote system.

452 MUSIC/SP Administrator's Reference - Part V

Iname locd file name
rname remote file name
opt file transfer options

len length of first parameter
flag 1: display file transfer monitor.
rc return code
Options If the remote system is a CM S system the the options must be separated from the file names

by an open bracket "(". The options are the same as the 3270 file transfer program.

Note: The user can invoke the file transfer facility from the keyboard using the %RECEIVE and %SEND
commands. (%" isthe escape character) The parameters on these commands are in the same
format as the first parameter of the subroutines. For example:

%ec nusic.file cns file (crlf
%end nusic.file tso.file crlf

This sample FORTRAN program listed below is the source for the VM program that is documented in the
MUS C/SP User's Reference Guide.

CALL LDECHO(1)
CALL LDINIT

CALL LDWAIT(1,2,' VIRTUAL', 7, 3)
CALL LDTERM' %, 1,0, 0, 0, 0)
CALL EXIT

END

Logical device routines can be called from REXX, however, the format of the CALL statement in REXX is
different from FORTRAN. Thefollowing isthe REXX version of the sample program above.

/I NC REXX
CALL LDECHO 1
CALL LDINIT
CALL LDWAIT 1,2,' VIRTUAL',7,3,' RC
CALL LDTERM "% ,1,0,0,0,0

Note that the 'RC' parameter must be present on the call to LDWAIT. Unlike FORTRAN, in REXX all
parameters must be specified.

For amore elaborate REXX example see the file $PGM:LDEV.REX.

SIGNON Subroutine (REXX)

The following is a sample REXX application that can be used to access other systemsin an automated way.
Thetarget could be on the same system, or accessed via VM-Passthru. A specific |D/Password can be used,
or a'shared' id, selected from the shared table can be utilized.

Calling Sequence: CALL SIGNON 'id' 'type' 'system' 'ipl' 'MSG(x)' "TDISK (xxxx,yyy,z)" ‘application’

Parameters:
The parameters are positional.

id SHARED, select ID/Password from table. UNIQUE(id/password) use the supplied | D/pass-
word.

Internals - Chapter 22. System Programming 453

type LOCAL, local VM system istarget system. PVM(node), target system accessed via
VM-Passthru.

system VM, targetisaVM system. MUSIC(VMID), target isaMUSIC system running in the
virtual machine VMID. the ID/Password used MUST be specified viathe unique parameter.

IPL

NOIPL If 'NOIPL" is used, then logon to VM id will be done with the 'NOIPL' option. When the
first CP read isissued, the an IPL CMSwill be done, and for the next read an ‘acc 191 a
(noprof* will be used, so CM'S goes to command mode. If 'IPL" is specified (or is not speci-
fied), then an IPL of CMSisdone and the profile exec (if it exists is executed).

msg specifies the message levels that will be produced from the SIGNON call.
0 defaultif not specified. |ssue the message about starting the automated sign on process.
1 no messages (except errors are displayed)
2 display amessage at each major step of the sign on process
3 turnonechoing, let caler see all screens.

TDISK alocate aTDISK, using:
XXXXX - the number of blocks
yyy - the virtual disk address
z - the file mode
(TDISK isonly allowed if the SYSTEM isVM.)

application specifies the name of application that is running. This parameter is not type-checked but is
used to match the application name in the Shared ID file. If application is not specified, a
Shared 1D without an application name will be used. If application has avalue, application
must match a SHARED |D's application name for the SHARED ID to be used.

After processing, return will be made to the caller with echoing OFF and control has NOT been passed to the

usersterminal. If MSG(3) was specified, then echoing has been turned on. Itisup to the caller toissuea

LDTERM call. When going through Passthru, the LDTERM would normally be of the form:

CALL LDTERM ' %, 1,6, 12," APPLI CATI ON TERM NATED , 22

Onreturn, if 'shared id' processing has been requested, the ID used will be returned in the RESULT. When
the logical session returnsto REXX, you MUST issue the following call, to free up the 'shared id'.

CALL DEQ 6, userid ,'RC /* renove nane from enqgtable */

where userid isthe ID provided in the RESULT variable.

3270 Full-Screen 1/0 Interface.

Using PANEL isthe best way to implement 3270 applications. This section describes the FSIO interface
that PANEL uses to communicate with 3270 terminals and PCs.

To use the FSIO interface, the application program places output data and orders in a buffer, then issues an
FSIO request. This sends the output datato the screen. The program is then delayed until the user presses an
action key, at which time the input data (from a READ-MODIFIED operation) istransferred to the program's
input buffer. The program then resumes execution and processes the data from the modified fields. This
write-read sequence can be repeated many times. The format of the input and output data streams is docu-
mented in the publication IBM 3270 Information, Display System Data Stream Programmer's Reference.

454 MUSIC/SP Administrator's Reference - Part V

The application program can address the screen by using a 1-byte row number followed by a 1-byte column
number, instead of the 2-byte screen address used by the hardware. The FSIO interface automatically does
the required conversion.

FSIO Assembler Language Interface

Thisinterface allows full screen I/0 to 3270 terminals. 1t does this through the MFIO SVC (MFREQ). Each
regquest can result in aWRITE, READ, WRITE/READ or control operation. After setting up the arguments
and buffersthe MFREQ SV C isissued to perform the I/O. The system then takes the data from the WRITE
buffer and places it into the system full screen buffer pool and stops the user'stime slice. The user may be
swapped out at thistime. The datais then written to the terminal using the system buffers. When any action
key is struck at the terminal, aread modified is done, the data placed in a system buffer and the user made
eligible for user region service. When the user program next gains control, the system will transfer the data
to the user's READ buffer.

Arguments

Three MFIO arguments are used.

Basi c req bl ock - al MFARG FSI O U=9, FSARG=a2, PHYS=a3
MFGEN

FSARG bl ock - a2 MFVAR FSARG Pl CT=Y

PHYS bl ock - a3 MFVAR PHYS, PI CT=Y

The basic request black contains contral information for MFIO, pointers to the other args and return codes.

The FSARG block contains control information, data lengths and buffer addresses. It expands as follows.

4 4 4 4 4
| control | wt len | wt adr | read len |read adr
control byte 0 - x"80" - wite erase
x'40" - erase all unprotected (after read)
x'20" - wite structured field
x'10' - asynchronous read
x'08 - skip wite operation
x' 04" - skip read operation
x' 02" - user supplies own WCC
x"'01'" - convert data (x,y -> 3270 form
x' 00" - normal WRI TE/ READ operation.
x'0C - immediate read nodified
x'0D - imrediate read buffer
control byte 1 - x'80" - no data conpression on this request
x"40" - no data conpression on this request
and all follow ng requests in this job
x'20" - no APL conversion on this request and
all following requests in this job
x"10" - remenber x'40' and x'20' option bits

fromthis control byte, but do not do
any |/ O operation

Internals - Chapter 22. System Programming 455

x'"08 - no translation for 3270 nodel 5 term na
(27 by 132 size screen)

x'04" - ignore screen not initialized error
x' 02" - reserved
x'01' - reserved

control byte 2 - x'nn'" - Overriding Channel Comrand

control byte 3 - reserved.

The actual length of the data moved to the users read buffer is saved in the first word of the two word PHY S
block.

Return codes

Thereturn code is stored in byte 8 of the basic req block. A return code of 0 isnormal. If any error has been
detected this code is set to 2 or 11 and in this case bytes 9 and 10 should be checked to find out what caused
the error. Vauesare asfollows.

Byte 9.

x"80" - not a 3270.

x'40" - bad screen. Screen is not setup for full screen I/QO
Probably caused because no full screen initialization
was done or sonme non-full screen |I/O was since then

x'20" - bad length on wite (0 or too big)

x'"10" - bad length on read (0)

x' 08" - bad screen addr (conv x,y -> 3270 addr)

x'04" - buffers not available for wite (retry later)

x'02'" - reserved

x'01' - no data fromread. Test request was hit.

Byte 10.

x'80" - input truncated (user buffer too snall)

x"40" - bad data streamfromterminal (1/O error on read)

x'20" - |/Oerror on wite

Data Conversion

The interface can optionally perform some data conversion for you. Thisis requested by setting the X'01' bit
in control byte 1. If thisisnot set raw 3270 data is expected from, and passed back to the program. Data
conversion is done as follows.

Write buffer The buffer is scanned for any occurrences of SBA, RA or EUA. In each case the next two
bytes are converted from X,Y to 3270 addresses. An error condition is set if these are not on
the screen.

Read buffer Data returned to the user buffer will be in the format...

aid, x,y X,Y,l en, data X,Y,len, data...etc

cursor field 1 field 2

456 MUSIC/SP Administrator's Reference - Part V

The length in front of each field is a halfword.

Note: Dataconversion is not performed on data associated with aWRITE STRUCTURED FIELD
command.

Notes on Usage

In addition to the standard write/read request a number of options can be selected using the control bytes.
Either the write or the read part of the operation can be skipped. This allows programs to handle output and
input as logicaly distinct. The system will automatically clear the input fields after aread if the erase al
unprotected option is selected. This may be useful in data entry applications.

During anormal read operation the application program is stopped, and the system waits for an attention
interrupt before doing the read and rescheduling the application. The asynchronous read option allows the
application to continue running while the system is waiting for the attention interrupt. When the interrupt
occurs, the system does the read and sets the post codeto ATTN. The application can test the post code
using the PSTCOD subroutine. If the application now issues aread request is given the data from the
asynchronous read. If it issuesawrite, the read datais purged. The application could also choose to issue an
immediate read buffer or read modified request at thistime.

On completion of afull screen read any action key and associated modified fields are returned to the program
with the exception of the TEST REQ key which isreserved as an escape mechanism and puts the terminal in
ATTN mode so that BREAK time commands can be entered. In this case no datais returned and the error
flag (byte 9 in MFARG) is set to x'01'".

Full screen 1/0 and regular 1/0O may be inter-mixed if certain rules are followed. Full screen I/O must begin
with either aWRITE ERASE or aWRITE STRUCTURED FIELD. (If thisisnot the case aBAD SCREEN
condition will be returned to the program.) From then on any full screen operations can be used. Any regular
I/0 from either the program or the system will automatically reset the screen to MUSIC mode and full screen
[/0O must be re-initiated.

The return flag should always be checked for error conditions.

Buffer Pool

The interface utilizes the terminal buffer pool which is alocated during system initialization. The BPOOL
parameter in the NUCGEN program is used to inform the system of how many buffers should be alocated.
Each buffer is 516 byteslong, 512 bytes for data and 4 for achain pointer. These buffers are allocated to a
particular terminal only when necessary. For example suppose a program wanted to write 1.2K of datato a
terminal and read the response. FSIO would request a chain of three buffers from the pool, move the data
there and schedule the write. When TM 3270 completes the write it frees the buffer chain and waits for an
attention interrupt. When that occurs, since the terminal could possibly transmit up to 2K of data during the
read, TM 3270 gets achain of 4 buffers from the pool to do the read, unused buffers are freed immediately.
The buffers that actually contain data cannot be freed until the application program is again swapped into the
user region.

If aprogram issues a write request that cannot be accomplished due to lack of buffers, it isinformed by a
return code, and should re-try the operation after waiting sometime. If this condition occurs often, systems
personnel should allocate more buffer space by increasing the BPOOL parameter and doing a NUCGEN.

If aread operation cannot be done due to lack of buffers the system will automatically re-try it later.

Internals - Chapter 22. System Programming 457

FSIO Subroutines

The following subroutines can be used instead of the assemble macro interface.

WBUF1

FSIO

GETAID

GETFLD

TRANSL

This routine places 3270 orders and data strings into the output buffer. The buffer is
contained in the common block /BUFCOM/.

After the output buffer is complete, this routineis called to issue the write-read request.

After theread is complete, this routine examines the input buffer to find which action key
was pressed and the row and column position of the cursor. The input buffer isin common
/BUFCOM/ (occupying the same storage as the output buffer). GETAID aso doesinitiali-
zation required for callsto GETFLD.

After theread, each call to this routine returns the next screen field in the input buffer, i.e.
the next modified field. An alternate return is taken when there are no more fields.
GETAID must be called before the series of callsto GETFLD.

This routine transates (using the TR machine instruction) a string of characters according to
a specified translate table. 1t should be used to remove screen control characters from output
data strings, and to trandlate input to upper case when necessary. Thisroutine is described in
the MUSIC/SP User's Reference Guide. It is recommended that characters X'00' through
X'3F and X'FF' be tranglated to blanksin output data strings.

Calling Sequences

CALL VBUF1(N1, N2, ..., LEN, DATA, &n)

N1,N2,...

LEN

DATA

&n

From 0 to 10 integer values, used for specifying order bytes (SBA, SF, etc.), attribute bytes,
and row and column numbers. The 4th byte of each argument is placed into the buffer.

The length of an additional character string (in DATA) to be placed into the buffer. LEN=0
indicatesanull string. If LEN is-1, the string in DATA is ended by $$.

Additional charactersto be placed into the buffer, after any bytes specified by N1,N2,...

Alternate return taken if there is no more room in the output buffer.

Note: BUFPTR in common /BUFCOM/ must be set to 0 before a series of callsto WBUFL1.

CALL FSI O TYPE, WRBUF, WRLEN, RDBUF, MAXRD, RDLEN, RETCCD)

TYPE

WRBUF

This 4-byte integer value contains the FSIO control bytes that specify the type of operation
that isto be performed. The bit settings correspond to those defined in the control byte
fields for the assemble macro interface. The bytes are reversed however. So the low order
byte of TY PE corresponds control byte 0 and the next one to control byte 1.

The write buffer.

458 MUSIC/SP Administrator's Reference - Part V

WRLEN

RDBUF

MAXRD
RDLEN

RETCOD

The number of bytes of datato be written.

The buffer to be used for the input operation. If WBUF1 and GETAID/GETFLD routines
are used, the read buffer isin common /BUFCOM/ (see below) and coincides with the write
buffer.

The size of the read buffer, i.e. maximum read length.

Thisis set by FSIO to the length of data actually read.

This 4-byte integer value contains the return code from the FSIO request. O indicates a
successful operation. If an error condition occurs, RETCOD isin the format X'0Bxxyy00'

where xx and yy correspond to bytes 9 and 10 of the basic 1/0 request block. The meanings
of theindividual bits are described in the assembler macro interface section.

CALL GETAI D(KEYHI T, CROW CCOL)

KEYHIT

CROW

CCOL

Note:

Set to an integer value indicating which action key was pressed:

0 ENTER key

1to24 Program function key

-1 PA1 key

-2 PA2 key

-3 PA3 key

-10 CLEAR key

-99 Some other key, or an error condition.

Set to the row number of the cursor at the time of the read.
Set to the column number of the cursor at the time of the read.

The variable RDLEN in common /BUFCOM/ must be set before calling GETAID. Also,
GETAID must be called before a series of calsto GETFLD.

CALL CGETFLD(FROW FCOL, PGS, FLEN, &n)

FROW

FCOL

POS

FLEN

&n

Set to the row number of the first character of the modified field, i.e. the character following
the attribute byte.

Set to the column number of the first character of the modified field.

Set to the position of the start of the data for the modified field in the read buffer. Thefirst
character of the buffer is considered to be position 1. POSmay be setto Oif FLEN isO.

Length, 0 or more, of the datafor thisfield.

Alternate return taken when there are no more modified fields.

Internals - Chapter 22. System Programming 459

Common Block Used

COMMON /BUFCOM/ BUFSIZ,BUFPTR,RDLEN,BUF

Routinesfor Scanning the Code Table

Code $COD contains some subroutines which can be called by privileged users to scan the code table, i.e.
process all the records, one by one, in index order. For example, they could be used to change a particular
code record field or option bit for al codes, or for al codes satisfying some condition. They could be used to
print a code table listing in some desired format.

Refer to the commentsin files $COD:NXTCOD.S and $COD:CDGETU.S for detailed descriptions.

NXTCOD Returns the next code record from the table. This routine should be used when none of the
records will be changed.

NXTCDA Similar to NXTCOD, but only the next userid (7-byte code/subcode) and a pointer to the
code record are returned. This routine should be used, with CDGETU and CDUPDT or
CDFREE, when some of the records will be changed.

CDGETU Gets a code record for updating. Enqueues for exclusive control of the code record. Either
routine NXTCDA or the code search SV C (or CDSV C routine) must have been used previ-
ously to get the (pseudo) disk address of the code record.

CDUPDT Writes an updated code record to disk and dequeues. The record must have been gotten by
CDGETU.

CDFREE Releases control of a code record (dequeue). This routine must be called instead of
CDUPDT if arecord obtained by CDGETU is nhot to be changed.

Defininga First-Time Program

The parameter FIRST(n) on a CODUPD ADD or CHANGE command can be used to define the ID number
n (1 to 255) of aspecial program that is to be run when the user signs on for the first time. For example, the
first-time program could prompt for information about the new user and storeitin alog file.

The file names for the ID numbers must be defined by modifying atable in system module SIGNON
(member $SIGNON in the Load Library, sourcein code $SY S). The file name must also be added to the
table in module LOOKUP (source in $SY S), since the program must be privileged, with at |east the CODES

privilege.

Once the first-time program has done its processing, it must zero the ID number in the user's code record, to
prevent the program from being invoked the next time the user signs on. Also, it must schedule the user's
normal auto-program, if any. This can be done by calling subroutine NOPGM 1. Seethe commentsin file
$COD:NOPGM1.Sfor details.

The system is distributed with one first-time program. It hasan ID number of 1. Its sourceis stored under
the name $PGM:FIRSTTIME.PGM..S.

460 MUSIC/SP Administrator's Reference - Part V

Defining an Alter nate System Catalog

Normally MUSIC will read the system catalog from the data set called SYS1.MUSIC.CATALOG. Thiscan
be changed by the use of the =CATxxxx special option at IPL time. The alternate name will be
SYSL.MUSIC.CATxxxx in this case.

The aternate catal og data set must first be alocated on MUSIC's IPL volume, and formatted. Then the data
iswritten to it by using the EDTCAT utility program.

Submitting Jobs Automatically

The AUTOSUB utility can be used to automatically submit batch jobs through VM at certain times of the
day and even on certain days of the week. Examples of use include submitting the system usage information
statistics programs IOTIME and COUNTS. Refer to the writeup of AUTOSUB in Part IV - Utilities.

Miscellaneous System Subroutines

CORZAP

This routine modifies (zaps) a string of bytes anywhere in main storage. The VIP privilegeisrequired.

Calling Sequence: CALL CORZAP(frmbuf,len,loc)

Arguments:

frmbuf Replacement bytes.

len Number of bytesto be replaced (any value .ge. 0).
loc Starting addr of main storage to be replaced.
FETCH

This routine fetches a string of bytes from main storage. Non-privileged users can fetch information from
the user region, page zero and their own TCB. The CREAD or VIP privilege alows you to inspect any part
of the job's virtual memory.
Calling Sequence: CALL FETCH(loc,len,tobuff)

or

CALL FETCHB(loc,len,tobuff,bufpos)

Arguments:

loc Starting addr of core to be fetched

Internals - Chapter 22. System Programming 461

len Number of bytesto be fetched (any value .ge. 0)

tobuff Receiving field
bufpos Starting position in tobuff (.ge.1) (fetch uses bufpos=1)
FSCHEK

This routine checks the status of 3270 screen. It isusualy used by full screen multi-session applications to
determine if the screen can be re-written without erasing something that the user has not yet read.

Calling Sequence: CALL FSCHEK (retcd)
retcd 4-byte return code field.
0 Termind isin full screen mode
1 MUSIC mode but no data on screen
2 MUSIC mode and screen contains data

PM SG

This routine sets the message flag in the TCB to alow a program to handle the messages or to suppress the
automatic display of messages until the flag is reset.

Calling Sequence: CALL PMSG('op)
op ON : program will handle messages

OFF: normal message processing
PSTCOD
A cadll to thisroutine retrieves and resets the post code. If you want to look at the post code without resetting
it, you can find a copy of it in location X'C64' in low core. The post codeis set by the /POST command, the
WAKEUP subroutine, and a variety of asynchronous system events.

Calling Sequence: CALL PSTCOD(value)

value is a8-byte value of the post code.

QRD

Read data from a spool buffer chain managed by DSPOOL. This can be used to read the message queue, the
intertask communications queue, or the terminal input and output queues.

Calling Sequence: CALL QRD(gid,tcb,buf,len)

Arguments:

qid 1: output
2: input
3: message
4: task

462 MUSIC/SP Administrator's Reference - Part V

tcb TCB number
buf buffer address

len data length

The SY SCOM privilegeis required to access queues owned by another TCB.

QRDX

Read data from a spool buffer chain managed by DSPOOL. This can be used to read the message queue, the
intertask communications queue, or the terminal input and output queues.

Calling Sequence: retcod=QRDX(qid,tch,buf,len)

Arguments:
retcod A return code, set asfollows:
0 operation complete
1 failed (not enough buffer space)
2 no record found (end of file)
3 routine already processing chain
qid 1: output
2: input
3: message
4: task
tch TCB number
buf buffer address
len data length

The SYSCOM privilegeis required to access queues owned by another TCB.

QWR

Write data to a spool buffer chain managed by DSPOOL. This can be used to write to message queue, the
intertask communications queue, or the terminal input and output queues.

Calling Sequence: CALL QWR(qid,tch,buf,len)

Arguments:
qid 1: output
2: input
3: message
4: task
tch TCB number
buf buffer address

Internals - Chapter 22. System Programming 463

len data length

The SYSCOM privilegeis required to access queues owned by another TCB.

QWRX

Write data to a spool buffer chain managed by DSPOOL. This can be used to write to message queue, the
intertask communications queue, or the terminal input and output queues.

Calling Sequence: retcod=QWRX(qid,tcb,buf,len)

Arguments:
retcod A return code, set asfollows:
0 operation complete
1 failed (not enough buffer space)
2 no record found (end of file)
3 routine already processing chain
qid 1: output
2: input
3: message
4: task
tch TCB number
buf buffer address
len data length

The SYSCOM privilegeis required to access queues owned by another TCB.

ROUTE

This routine returns information from the system routing table. See $PGM:$ROUTING.S for the format of
the routing table.

Calling Sequences:

CALL ROUTE(Z,rtname,retcod)
or

CALL ROUTE(rtname)
This returns the default printer name for the user running the program. The routine first
checksif oneis specified in the user profile. It then looks for a device address match in the
routing table. If thesefail retcod isset to 1 and rtname is set to the default route name from
the beginning of thetable. In the call with only 1 argument, no return code is set, but rtname
is set the same way.

CALL ROUTE(2,rtname,retcod)
A request to check whether the specified rtnameisin the table.

CALL ROUTE(3,rtname,userid)
userid returns the 4-char id of the user authorized to run the printer rtname. If theidis

464 MUSIC/SP Administrator's Reference - Part V

longer than 4 chars, only the first 4 are returned. useridisreturned as 1 or 2 (like retcod) if
the route name cannot be found.

CALL ROUTE(4,rtname,retcod,info,buflen)

A request to search the table for route name rtname, and return information from the table
entry in info. Thisinfo isthe table entry except for the 1st 12 bytes. The caller sets buflen to
the length of the info argument (0 or more). The bytes of the table entry after the route name
arereturned in info, as much as will fit in the buffer provided, and the remainder (if any) of
the buffer is set to blanks.

CALL ROUTE(5,rtname,retcod,info,buflen)

Arguments:

rtname

retcod

userid

info

buflen

Notes:

Similar to call type 4, except that the sequential number (1,2,...) of the table entry to be
returned is put into retcod by the caller. The route name from the entry isreturned in
rtname, and the entire table entry is returned in info (12 more bytes than for call type 4, since
the entire entry is returned). Table entry 1 isthe default route name; table entry 2 isthe first
"norma" route name entry; etc. Thistype of call can be used to scan the table, or to get al
the entries one by one.

8-character route name (e.g. a destination name for job output, or the name of an rscs remote
printer). It isoutput (set by thisroutine) for call type 1 and input for the other types.

A return code, set asfollows:

0 OK (device addr or name found in table).

1 Device addr or name not found in table; for call type 1 (or if only 1 arg), rtname is set
to the default route name from the beginning of the table. For call type 5, retcod=1
means the input entry number is out of range.

Thetable could not be loaded. For call type 1, the nameis set to al blanks if retcod=2. For
call type5, retcod is also an input argument, specifying the number (1,2,...) of the desired
entry.

For call type 3, set to thefirst 4 chars of the user id from the table entry.

User's buffer where the remainder of the table entry isreturned (or, for call type 5, the entire
table entry).

The length of the area provided by the caller in the info argument.

1. If thecalling sequenceisincorrect or call type (1st arg) iswrong, the program stops with an invalid
op-code (program interrupt 1) and r8=x'EEEEEEEE".

2. Theinfo returned from the type 4 call isin the following format:

di spl .

0

8

len. contents

8 MUSI C userid authorized to run this printer,
or bl anks.

1 type of table entry:
1 | ocal VM system printer

rscs printer or another virtual nachine
i gnore (throw away) all out put

output to MIJSIC s print queue

nmvs printer (ncgill only)

2
3
4
5

Internals - Chapter 22. System Programming 465

9 1 VM cl ass.

10 2 (reserved)

12 8 target VM userid.

20 8 VM forms name (or bl anks).
28 24 VM tag text (or blanks).

total length of info 52

(For call type 5, the above info is preceded by the first 12 bytes of the table entry, which contain the low
and high address and the route name. For entry #1 i.e. the default route name, entry length and number
of entries are returned instead of low and high address.)

If entry point "ROUTEL" is called instead of "ROUTE", then this routine finds the address of the rout-
ing table itself (by searching the LPA directory), instead of issuing the SLODSVC SVC. For example,
nucleus module SPAM calls ROUTEL, since $LODSV C is not supported in supervisor state. ROUTEL
does not work outside of supervisor state because the pointer (in module LODSVC) to the LPA direc-
tory isin fetch-protected main storage. For ROUTEL, the routing table must be in the FLPA (not
PLPA).

The subroutineis re-entrant (it does not modify itself).

SETSVC

This routine lets programs in high level languages issue the $SETOPT SVC. This SVC is used to move
parameters or set optionsin areas of protected storage. The actual function performed depends on the argu-
ment passed to the routine.

Calling Sequence: CALL SETSVC(arg)

A number of different functions can be performed depending on the contents of the argument string. These
are listed below.

A0

Al

A2

A3

Set a user option bit on or off in the TCB.
ARG DC X A0, AL1(x,Yy, z)
Where x is 0 to set bit off, 1 to set bit on. y isoption byte number (1 to 4). zisbit number (0 to 7).

Wake up MUSIC batch (SPAM) to process a job which has just been put into the submit data set. The
SYSCOM privilege is required.

ARG DC X Al', AL1(N)

Where n is the submit g number (must be 1to 32). The g bitin SBMCOM isturned on, and, if nisthe
current reader class, a$CSTART SVC (reader start) is done.

Force the specified terminal to be signed off. Thisrequiresthe MAINT privilege.
ARG DC X A2', AL3(TCBADR)

Scan the ENQ table for any TCBs enqueued on a specific name and issue the equivalent of a/POST
command to those programs (see WAKEUP). The calling program must have SY SCOM privilege.

ARG DC X A3', CL8' ENQENT', CL8' POSTCMD

466 MUSIC/SP Administrator's Reference - Part V

A4

A5

A6

A8

A9

AA

Set auser defined CVT pointer in location X'10' and a TCBOLD pointer at X'21C'.
ARG DC X A4', AL3(USERCVT), A(USRTCB)

Set the VIP bit on/off in the XTCB for this user thiswill only be done for user who are authorized for
for VIP.

ARG DC X A5','AL3(TCBADDR), X N

n-0 setvip off
n-1 setvipon

Set the debug control block pointer.
ARG DC X A6', AL3(BDGPTR)

get/put from spool buffer chains. The caller must have SY SCOM to access another tasks buffer chains.
(see QRD/QWR).

ARG DC X A8',AL1(OPT),H TCBNUM , A(BUF), A(LEN), A(PTR)
Wakeup atask that has called delay.

ARG DC X A9',H TCBNUM
Set message flag bits on or off (see PMSG).

ARG DC X AA',H TCBNUM, X' YY', X ZZ

yy - 80 or, 00 and
zz - data byte (only 80, 40, and 20 bits can be changed)

UTEST

Tests a userid, a userid pattern or a user type (TSUSER option 15) against arange.

Calling Sequence: CALL UTEST(string,strlen,userid,utype,rc)

Arguments:

string alto 32 character string in the form of t=n1-n2 where nl1 and n2 are an integer range and/or
auserid/userid pattern.

strlen length of string.

userid 16 character userid.

utype integer* 4 value obtained from TSUSER option 15.

rc

isthe return code.
=1 hit (utypeisin therange n1-n2)
=0 no hit (utypeis NOT in the range n1-n2)
=-1 invalid integer for either n1 or n2

Internals - Chapter 22. System Programming 467

VMCMD

Issue aVM CP command via diagnose 8.

Calling Sequence: CALL VMCMD(cmd,lcmd,resp,Iresp,retcod,outlen)

Arguments:
cmd Command string. May contain multiple CP commands separated by x'15'.
lcmd Length of command string, 1 to 240.
resp Response buffer.
Iresp Length of response buffer, 1 to 8192, or O if response buffer should not be used. If Iresp=0,
VM sends the response lines to the MUSIC VM console.
retcod Return code:
0 Command wasissued, and executed successfully.
>0 Command was issued but was not successful. retcod isaVM error number.
<0 MUSIC error code. Command was not issued.
-1 Interfaceis busy; calling program should delay for a short time and retry.
-2 Invaid request.
-3 Not under vm.
outlen Set to indicate length of the response:
>0 If theresponsefit in the buffer: outlen isthe length of the response text. Response
lines are separated by x'15' character.
=0 If lresp=0 or if retcod<O0.
<0 If theresponsedid not all fit in the buffer: outlen=-(number of bytes that would not fit).
Note that this does not affect retcod.
Notes:

1. Theuser or the program must have the "maint" privilege.

2. High-order bit x'80" must be on in the last argument word, to indicate exactly 6 arguments.

3. Thecalling sequenceis similar, but not identical, to that for the mug-mods-tape version of this routine,
whichiscaled "cpcmd'. Return codes are abit different, the 6th argument is added, and Iresp is not
modified.

4. If the SVCisbusy, thisroutine automaticaly retries up to 5 times before setting retcod=-1. Therefore,
the caller should not normally have to worry about testing for busy condition.

5. Thisroutineisre-entrant.

WAKEUP

Issue $SETOPT SV C request to wake up other jobs. The other jobs are identified by an entry in the enqueue
table. The SYSCOM privilege is required.

Calling Sequence: CALL wakeup(name,post)

Arguments:

468 MUSIC/SP Administrator's Reference - Part V

name 8-byte name. Thisis matched with the last 8 bytes of the 10-byte names in the enqueue
table.

post 8-byte post cade to be put into the XTCB of the jobs that are woken up.

REXX Function Packages

These alow MUSIC subroutines to be called directly from REXX programs. Three function packages are
supported by REXX.

RXSYSFN - Provided with MJSI C/ SP.
RXLOCFN - Local function package.
RXUSERFN - User function package.

Only RXSY SFN is actually distributed with the system. If you want to make additional functions or subrou-
tines available to your users, you can do so by creating RXLOCFN or RXUSERFN.

There are three major components to the function packages.

The Function Interface

The program in the file SREX:REXX.RXSY SFN.S is the interface between the standard linkage used in
MUSIC routines and the parameter lists used by REXX. When afunction is called this routine converts the
REXX parameter list to standard linkage form, calls the subroutine or function, and moves any results back
to the appropriate REXX variables.

The Function Table

The parameter conversion is done based on a table that describes the functions and subroutines that are part
of the package. Thistable isdefined by agroup of PARMS macros. The file SREX:REXX.FUNCTABL.S
contains the function table used for the distributed function package. Each subroutine or function and its
calling sequence is defined. If aroutine has variable calling sequences, each one must be defined.
Commentsin the macro ($REX:REXX.PARMS.M) describe how the macro is used.

The Functions

The abject code for standard MUSI C functions and subroutinesis linked in with the interface module and the
function table to form the function package. Not all routines are eligible. For example, routines that use OS
1/0 access methods, have multiple return addresses, pass floating point parameters or use non-standard link-
age, will not work.

Creating a Function Package

1) Create anew function table. Use SREX:REXX.FUNCTABL.S asamodel. Assembleit and save the
object module.

2) Link the new table with the interface module and the subroutines. Thefile

SREX:REXX:RXSY SFN.LKED provides an example of control statementsto do this. Although the
interface object code (SREX:REXX.RXSY SFN.OBJ) should be used you should change the name of

Internals - Chapter 22. System Programming 469

the load module file and load module name to RXLOCFN or RXUSERFN, depending on which
function package you are creating.

3) Put the new function package into the system load library. The file SREX:REXX.RXSY SFN.LD
shows how thisis done.

Segmented Function Packages

When afunction is called from a REXX program the entire function package is loaded into memory. This

causes overhead proportional to the size of the function package. To reduce the overhead it is possible to

break afunction package into segments containing related functions. Only the segment containing the

required function is loaded.

The distributed function package (RXSY SFN) contains five segments.

RXSYSFN - Standard functions (root segment)
REXITCM - Intertask communications routines
REXLDEV - Logical device routines

REXMFIO - MFIO subroutines and control areas
REXSOCK - TCP/IP Socket routines

Creating a segmented function package is slightly more complicated than an unsegmented one since each
segment has to be created as a separate module.

The function table ($REX:REXX.FUNCTABL.S) contains the definitions of all functions in the package.
Those that are not contained in the root segment are identified by the EXTTYP=ENTRY parameter on the
PARMS macro. In addition an entry is added for each extra segment specifying EXTTYP=MEMBER and
defining the name of the segment module. Thisfunction table islinked in with the RXSY SFN code to form
the root segment. See the file $REX:REXX.RXSY SFN.LKED for an example.

Each extra segment consists of a stub module, created using the FHEADER macro, that defines all the
routines in the segment. Thisislinked in with the routines that form that segment of the package. See the
files SREX:REXX.REXLDEV.* for examples. The segment modules must bein the load library.

Calling Functions From REXX

To avoid problemsin parameter substitution, each individual parameter must be quoted and in upper case.
The parameters should be separated by commas. For example:

call TSUSER '4',' TCBNUM

Care must aso be taken in how some of the routines are used. For example, when REXX schedules a
MUSIC command, the system automatically closes all files and terminates any logical devices. This means
that the MFIO and Logical Device routines lose control whenever the REXX program issuesaMUSIC
command. This problem can be avoided by using multi-tasking (NXTCMD routine), to execute MUSIC
commands rather than the standard chaining technique that is used by REXX.

Aswell thefollowing GT and ST take a single parameter, which should be the name of the variable that
containsthe BINARY version of an MFIO control block. REXX thinks that they are characters, so you must
be very careful about inserting and extracting information. Typical calling sequences are:

call GIMFARGX ' MFARGX' (or call GIMFARGX 'GORK' - the nane is

arbitrary)
cal | STMFARGX ' MFARGX'

470 MUSIC/SP Administrator's Reference - Part V

The following subroutines and available in the distributed system function package. Some routines are docu-
mented in the MUSI C/SP User's Reference Guide, others are documented el sewhere in this manual.

CLRIN Clear the INPUT area on the screen.
COPY Copy onefile to another.

COUNT Issue count SVC.

DEBUG Cdll interactive debug routine.
DELAY Stop program for alength of time.
ECHOIN Echo input to screen.

ENQ Cadl enqueue facility

EQJ Set return code and terminate ajob.
FETCH Fetch data from storage.

FILMSG Return file system message.
FSCHEK Check screen status.

FSIO Do full screen I/0.

GETRET Get return code.

GTMEFXXXX retrieves control block information

XXXX can be one of the following:
ARGX, TAG, INFO, HINF, UINF, EOFP, BUPN
PHYS, LIBR, UCTL, EXTN, FSAR, XINF
[TXXXX Intertask communication subroutines
(ITCOM) are described below, they
include: ITSERV, ITRECV, ITSEND, ITFIND.

KEEPIN Preserve terminal input.
LDCUR Logica Device Interface
LDECHO R "

LDENT o "

LDGET o "

LDINIT o "

LDKEY o "

LDLOG R "

LDPUT o "

LDRECV o "

LDSEND o "

LDTERM o "

LDWAIT o "

LDWINT o "

MATCH Pattern matching with wild card characters.
MFACT Open/Close file dynamically.
MFGETU Get file internal unit number.
MFIO Do l/Otofile.

MFSETU Set fileinternal unit number.
NOECHO Don't echo data to screen.
NOSHOW Don't display input data.
NOTRIN Don't trandate terminal input.
NXTCMD Execute multi-tasked or chained command.
PARM Fetch parameter string.
PSTCOD Fetch post code.

PURGE Purgefiles.

QRD Read data from a buffer chain.
QRDX Read data from a buffer chain.
QUERY Call query routine.

QWR Write data to a buffer chain.
QWRX Write data to a buffer chain.
RENAME Rename afile.

ROUTE Get information from routing table.

Internals - Chapter 22. System Programming 471

RXQFOP Quick reading and searching of largefiles.
SHOWIN Cancel call to NOSHOW
SOCKET Socket routines are described in the
section "MUSIC Socket Interface to TCP/IP"
later in this chapter.
STMFxxxx stores control block information
XXXX can be one of the following:
ARGX, TAG, INFO, HINF, UINF, EOFP, BUPN
PHYS, LIBR, UCTL, EXTN, FSAR, XINF

SYSENV Return information about system environment.
TRIN Cancel call to NOTRIN

TSDATE Get current date information.

TSTIME Get time of day information.

TSUSER Get user/terminal information.

VMCMD IssueaVM command.

WAKEUP Wakeup atask and set the post code.

I TCOM: Intertask Communication

This set of subroutines provides a simple intertask communications protocol designed for client/server appli-
cationswithin aMUSIC system. The SY SCOM privilegeis required to use these routines.

In atypical application the server definesitself to the system using the ITSERV routine. The server name
must be unique. The system reserves names beginning with "$S" for applications with the SY SCOM privi-
lege. The server then entersits main processing loop whereit calls ITRECV to wait for incoming requests
from clients.

The client program locates the server application by calling ITFIND. Thisreturnsthe TCB number of the
server whose name is specified in the call. Once the TCB number of the server is known the client can use
ITSEND and ITRECV to exchange data with the server application.

ITSEND and ITRECV are used to exchange data between tasks. Although intended to be used in conjunc-
tion with ITSERV and ITFIND in aclient/server model, they can be used quite independently since they use
only the TCB number to identify the other task.

ITSEND alows a program to send packets of up to 8K to another task. The datais chained in buffers off the
receiving tasks TCB. An eight byte header is added to the buffer to identify the sending task. Thisis used
internally by the subroutines and need be of no concern to the application program since it is stripped off by
the ITRECV routine.

ITRECV received datafrom the "intertask-communications buffer chain". Application designers should note
that this buffer chainis used for a number of different functions (IUCV, TCP/IP) and isreset at sign-off but
not at end-of-job. ITRECV completes when data is available or the specified time out expires. If the datais
from ITSEND, the TCB number of the sender isfilled in, otherwise the return code is set to indicate that the
TCB number isunknown. If the receiving buffer istoo small as much data as possible is returned and the
restislost.

Calling Sequences:

call itserv(nane,rc)

defines a server name to the system

472 MUSIC/SP Administrator's Reference - Part V

name server name for enq (1-24 characters)
rc 0:name defined
-l:namein use
call itfind(nane,tcb,rc)

finds the TCB number of a server

name server name for enq (1-24 characters)
tch tcb number of server
rc O:server found

-1:server not defined
call itsend(data,len,tcb,rc)

sends send data to a specific tch

data data buffer

len length of data (1-8k)

tcb tcb number

rc O:data sent
-L:invalid length

-2:no buffers available
call itrecv(data,blen,rlen,tch,tinme, rc)

sends data to a specific tch

data data buffer

blen buffer length (1-8k)

rlen length of datareceived

tcb tcb number of sender

time time to wait for data

rc O:datareceived, sender's TCB number set
-1:datareceived but sender's TCB number unknown
-2:time out

MUSIC Socket Interfaceto TCP/IP

A number of structures and constants are used in the TCP/IP socket interface. A few of the common ones are
explained below. Others are detailed in the applicable socket calls. Note that the information applies to the
AF_INET domain (internet).

Networ k socket address or name

Thisis used in the calls that establish connections or send data to specific places.

| 0002 | pppp | aaaaaaaa | 0000000000000000
S R Fomm o ST o e e oo +

Internals - Chapter 22. System Programming 473

0002 indicates the AF_INET (internet) domain

pPpPP 16 bit port number

a.a 32 bit internet address of host
0..0 binary zeros

Clientid

Thisis used in exchanging sockets between applications.

4 8 8 20
R e e +----- [----- +
| 00000002 | vvvvvvvvvvvvvvvy | tttttttttttttet | O....... 0
R e e +----- [----- +
0.2 indicatesthe AF_INET (internet) domain
V.V virtual machine name
t.t task name specified when connecting to TCP/IP
0.0 binary zeros

In the descriptions below each subroutine is known by two names. The first one in mixed case is the official
name. The second name is the six character name that can be used to call the routines from languages that
don't support long subroutine names like FORTRAN, ASSEMBLER, and REXX.

Accept/ACCEPT

Accept() isused by a server to complete a connection with aclient. It assigns a new socket number (ns) to
the connection and fillsin the client's network address in the fields provided. If there are no pending connec-
tions accept() will block until one occurs unless non-blocking mode isin effect. The select() routine can be
used to test for pending connections prior to issuing a blocking accept(). Once the accept() is complete the
server can accept subsequent connections on the same socket (s).

ns = accept(s, nane, nanel en)
ns New socket number assigned to the connection
s Origina socket number created by the server
name The port number and network address of the connecting client
namelen The length of the name.

If an error occurs nsis set to a negative value. Common errors are:

EBADF -9 : s is not a valid socket descriptor
El NVAL -22 : listen() was not called
EOPNOT SUPP -45 . s is not a stream socket
EWOUL DBLOCK -35 : non-blocking node with no connections
pendi ng
Bind/BIND

Bind() defines the local network address and port number that is to be associated with a specific socket.
rc = bind(s, name, nanel en)

rc Return code

474 MUSIC/SP Administrator's Reference - Part V

S Original socket number created by the server
name The port number and network address to bind to
namelen The length of the name

Common errors:

EBADF -9 : s is not a valid socket descriptor

EADDRNOTAVAI L -49 . address is not available or invalid

EAFNOSUPPORT -43 . address famly is not supported

EADDRI NUSE -48 . address is currently in use

El NVAL -22 . socket is already bound to an address
Close/CLOSE

This shuts down the socket, frees all resources associated with it and closes the TCP connection.

rc = close(s)

Connect/CONECT

With stream sockets connect() is used by client applications to connect to servers. The server must have set
up a passive open at the other end by issuing bind() and alisten() before the connect() isissued. The server
should respond with an accept() to complete the connection.

In blocking mode the connect() blocks until the connection is established or an error occurs. In hon-blocking
mode EINPROGRESS (-36) is returned and select() must be used to determine when the connection is actu-
ally complete.

Connect() can aso be used with UDP sockets to establish peer. Thisbasically allows the caller to send data-
grams using cals like read() and write() that have no room to specify aremote address. In other words
connect() simply defines a default remote address.

rc = connect(s, nane, nanelen)
rc Return code
S Socket number
name The port number and network address of the server to connect to.
namelen The length of the name

Common errors:

EBADF -9 : s is not a valid socket descriptor
EADDRNOTAVAI L -49 : cannot reach the renote host
EAFNOSUPPORT -43 . address famly is not supported
EALREADY -37 : previous connection has not conpleted
ECONNREFUSED -61 : renote host rejected the connection
El NPROGRESS -36 : connection is in progress

El SCON -56 : socket is already connected
ENETUNREACH -51 : renote host cannot be reached

ETI MEDOUT -60 : connection tined out

El NVAL -22 . addrlen is incorrect

Internals - Chapter 22. System Programming 475

Fentl/FCNTL

Fentl() is used to control whether a socket operates in blocking or non-blocking mode. In blocking mode
(the default) the application does not receive control back from the subroutine until the operation is compl ete.
For exampleif aprogramissues aread() it is stopped (blocked) until some data actually arrives on the
socket. In non- blocking mode an error (EWOULDBLOCK) is given in response to the read() if no datais
present.

rc = fentl (s, cnd, data)

rc Return code

S Socket number

cmd Indicates what to do
data Data depending on cmd

The are currently three possible calls:

rc = fentl (s, 4, 4) . put socket into non-blocking node.
rc = fentl (s, 4, 0) . put socket into bl ocking node.
rc = fentl(s, 3, 0) . rcis set to 4 if socket is in non-blocking

nmode, and is set to O if the socket is in
bl ocki ng node.

Common errors:
EBADF -9 : s is not a valid socket descriptor
El NVAL -22 : datais not a valid flag
GetClientld/GCLNID

Thisroutineis used to find out the client ID by which an application is known to TCPIP. Itisusedin pass-
ing sockets from one application to another through the givesocket() and takesocket() routines.

rc = getclientid(domain, clientid)
rc Return code
domain setto 2 for AF_INET
clientid format is defined previously

Common errors:

EPFNOSUPPORT -46 : dommin in not AF_INET (2)

GetHostld/GHSTID
This returns the default internet address for the host running the application that calls the routine.
id = gethostid()

id 32 bit internet address

476 MUSIC/SP Administrator's Reference - Part V

GetHostName/GHSTNM

This returns the name of the host running the calling application. Note, thisis the actual character name, not
the port number/ internet address combination that are referred to in other calls as the name.

rc = gethostnane(nane, nanel en)
rc Return code.
name The returned name of the host
namelen On input this specified the maximum size of the name buffer. On output it contains the

length of the name.

GetPeer Name/GPRNM

This routine retrieves the name of the remote host. The name contains the port number and internet address.

rc = getpeernane(s, nane, nanel en)
name The port number and network address of the application that the caller is connected to.
namelen The length of the name.

Common errors:

EBADF -9 : s is not a valid socket
ENOTCONN -57 . the socket is not connected
GetSocketName/GSCKNM

This routine retrieves the name associated with the local socket. This contains the port number and internet
address.

rc = getsocketnane(s, nane, nanel en)
name The port number and network address of the application that the caller is connected to.
namelen The length of the name.

Common errors:

EBADF -9 : s is not a valid socket

GetSockOpt/GSCK OP

Thisis used to get the options associated with a particular socket.

rc = getsockopt(s, |level, optnanme, optval, optlen)
S Socket number.
level Set to -1 for sockets.
optname Integer indicating which option to get. See setsockopt() for alist of valid values.
optval The value returned for that option.
optlen The length of the option value.

If an error occursrc is set to anegative value. Common errors are:

Internals - Chapter 22. System Programming 477

EBADF -9 : s is not a valid socket descriptor
ENOPROTOOPT -42 : optname is invalid

GiveSocket/GlI VESK

Thisis used to pass a socket to another application. For a complete discussion of the givesocket() and take-
socket() routines see the commentsin the file $STCP:INETD.S. This shows the steps that must be taken to
start up anew task and pass a socket onto it. The socket should not be closed until the other task has
successfully acquired it using the takesocket() routine.

rc = givesocket(s, clientid)
s The socket number to be given the the other task.
clientid Theclient ID of the task that you wish to give the socket to.

Common errors:

EBADF -9 : s is not a valid socket descriptor
EBUSY -16 : listen() has been called for the socket
El NVAL -22 : clientid does not specify a valid client ID
ENOTCONN -57 . the socket is not connected
EOPNOT SUPP -45 . s is not a stream socket
1oCtI/IOCTL

loctl() provides access to the operating characteristics of the socket.

rc = ioctl(s, cnd, data)
S Socket number.
cmd The command to perform.
data Information passed or returned.

The following table lists the supported requests:

Name Vaue (HEX) Function

FIONBIO 8004A77E Clear or set non-blocking mode.
Data=0 to clear, 1 to set.

FIONREAD 4004A7TF Returns number of byte available for
reading in data.

SIOCATMARK 4004A707 Queriesif current datais out of band.
Data=1if yes, 0 if no

SIOCGIFADDR CO020A70B Gets network interface address.
Data=I FREQ

SIOCGIBRDFADDR CO020A712 Gets network interface broadcast address.
Data=IFREQ

SIOCGIFCONF CO08A714 Gets network interface configuration.

On input data should be set to the length

478 MUSIC/SP Administrator's Reference - Part V

of the output area. On output it will have
an IFREQ structure for each interface.

SIOCGIFDSTADDR C020A70F Gets network interface destination address.
Data=I FREQ

SIOCGIFFLAGS CO020A711 Gets network interface flags.
Data=I FREQ

SIOCGIFNETMASK C020A 715 Gets network interface mask.
Data=I FREQ

The IFREQ structure that is returned has a 16 byte request name followed by the requested information.

Listen/LISTEN

Listen() is used by aserver to indicate it is ready to accept calls from clients.

rc = listen(s, backl og)
S Socket number.
backlog Length of pending connection queue.

Common errors:

EBADF -9 : s is not a valid socket descriptor
EOPNOTSUP -45 . s is not a stream socket
Read/READ

This call reads data from a connected socket. The number of bytesread is returned in the return code (rc). In
blocking mode this call will block until some data becomes available.

rc = read(s, buf, len)
S Socket number.
buf Buffer to receive the data.
len Buffer length.

Common errors:

EBADF -9 : s is not a valid socket descriptor
EWOUL DBLOCK -35 : set in non-blocking nmode if no data to read
Readv/READV

Thiscall issimilar to the read() except that the dataiis read into a group of buffers pointed to by an 1/0O vector
structure. Each entry in the I/O vector contains a buffer address and a length. The buffers arefilled in order.

rc = readv(s, iov, iovcnt)
S Socket number.
iov I/0 vector containing buffer address/ length pairs

Internals - Chapter 22. System Programming 479

iovent Number of entriesin theiov.

Common errors:

EBADF -9 : s is not a valid socket descriptor
EWOUL DBLOCK -35 : set in non-blocking nmode if no data to read
Recv/RECV

This receives data from a connected socket. The return code (rc) is set to the number of bytesreceived. Itis
very similar to read() except for allowing certain flags to be set.

rc = recv(s, buf, len, flags)
S Socket number.
buf Buffer to receive the data.
len Buffer length.
flags Flag value of MSG_OOB (1) or MSG_PEEK (2)

Common errors:

EBADF -9 : s is not a valid socket descriptor
EWOUL DBLOCK -35 : set in non-blocking mode if no data to read
RecvFrom/RECVFM

This receives data from a datagram socket. The return code (rc) is set to the number of bytes received.

rc = recvfrom(s, buf, len, flags, name, nanel en)
S Socket number.
buf Buffer to receive the data.
len Buffer length.
flags Flag value of MSG_OOB (1) or MSG_PEEK (2)
name Port number and network address of the sending application
namelen Length of name.

Common errors:

EBADF -9 : s is not a valid socket descriptor
EWOUL DBLOCK -35 : set in non-blocking nmode if no data to read
Select/SELECT

The select() routineis used to wait for an interrupt from the socket interface and to determine which socket
caused the interrupt. It isused to wait for connections to come and for datato arrive. It isusually used by
applications that field interrupt from a variety of sources or handle a number of different sockets and can't
afford to get into ablocking situation. The select() is used to test in advance for an event before issuing the
socket call to handle that event.

Select() can test agroup of sockets for reading, writing, and exceptional conditions. Reading implies that

datais available and aread() call will not block. Writing implies that the socket is available and is set for
example when a connection comes in for a socket with a pending listen(). Exceptional conditions are events

480 MUSIC/SP Administrator's Reference - Part V

like out of band data.

On input three bit masks are used to select which sockets should be tested. On output the return code (rc) is
set to the number of sockets that have pending conditions and the bits are set in the masks to indicate which
sockets they are. The bit masks are organized into 32 bit words that are counted from the low order end. It's
abit weird.

R S TR +
| word O [] word 1 |
R S TR +
| | |
31 0 63 32
rc = select(nfds,readfds,witefds, excptfds,tineout)
nfds Number of socketsto test
readfds Bit mask for read
writefds Bit mask for write
excptfds Bit mask for exceptional conditions
timeout Timeout value (integer seconds, integer microseconds)

Common errors:

EBADF -9 : one of the descriptor sets is invalid

El NVAL -22 . the tinmeout value is invalid

EMUSI NT -2000 : a non-socket interrupt occurred
Send/SEND

This sends a data to a connected socket.

rc = send(s, buf, len, flags)
S Socket number
buf Buffer containing the data
len Length of the data
flags Option flags. Valid valuesare MSG_OOB (1) and MSG_DONTROUTE (4)

Common errors:

EBADF -9 : s is not a valid socket descriptor
ENOBUF -55 : insufficient buffer space to send the data
SendTo/SENDTO

Used to send packets on a datagram socket.

rc = SendTo(s, buf, len, flags, nane, nanelen)
S Socket number
buf buffer containing the packet
len length of the packet
flags Option flags. Valid optionisMSG_DONTROUTE (4).
name The port number and internet address of the application that you are sending to.

Internals - Chapter 22. System Programming 481

namelen The length of the name

Common errors:

EBADF -9 : s is not a valid socket descriptor
El NVAL -22 : nanelen is invalid
EMSGSI ZE -40 : the nmessage is too big to be sent as a
si ngl e dat agram
ENOBUFS -55 : No buffer space available to do send
SetSockOpt/STSK OP

This sets various options associated with a socket. 1t allows you to control broadcast messages, out of band
data, and tell the socket interface how to handle the close and bind operations.

rc = setsockopt(s, level, optnane, optval, optlen)
S Socket number.
level Protocol level (set to -1 for socket level)
optname Option name
optval Option value
optlen Option length

The following table of lists the supported options. Thislist also appliesto the getsockopt() routine. For
those calls that toggle an option on or off, optval=1 setsit on and optval=0 setsit off. In both cases optlen
should be set to 4.

Name Description

SO_OOBINLINE X'00000100' Toggle reception of out of band data. If
on, out of band datais placed in the normal
input queue.

SO_REUSEADDR X'00000004' Toggle address reuse. Setting this on forces

bind() to reuse an address
SO_LINGER X'00000080 Causesinterface to linger on clos«() if
data remains to be sent. optval consists

of two fullwords. The first oneisatoggle.
The second is the number of seconds to wait.

ShutDown/SHUTDN

This shuts down all or part of afull duplex connection.

rc = shutdown(s, how)
S Socket number
how 0:ends communication from socket

1:ends communication to socket
2:ends all communication with socket

482 MUSIC/SP Administrator's Reference - Part V

Socket/SOCKET

This routine creates a socket and assigns the socket number ().

S = socket (domai n, type, protocol)
domain Set to 2 for the AF_INET domain (internet)
type Type of socket.(1-stream, 2-dgram, 3-raw)
protocol Protocol to use or 0. 0 isthe default and is determined by domain and type. AF_INET and
STREAM implies TCP. Valid valuesinclude:
I COVP 1
TCP 6
ubP 17
Raw I P 255
Common errors:
El BM UCVERR -1004 : error contacting TCP/IP through |IUCV

EPROTONOTSUPPORT -35 : protocol not supported

TakeSocket/TAKESK

Thisis used by aprogram receiving a socket from another program. The subroutine GETSOC performs the
handshaking required to get a socket from another program, including issuing the takesocket() call. For
further details see the commentsin $TCP:GETSOC.S and $TCP:INETD.S.

S = takesocket (clientid, hisdesc)
clientid Theclient ID of the application giving the socket.
hisdesc The socket number used in the application giving the so

Common errors:

EACCESS -13 : the other application did not give this socket
EBADF -9 : hisdec is not a socket owned by the other pgm
El NVAL -22 : clientid does not specify a valid client

EMFI LE -24 . socket descriptor table is full

ENOBUFS -55 . TCP/IP has run out of socket control bl ocks

EPFNOSUPPORT -46 : domain field of the clientid is not AF_INET (2)

Write/lWRITE

This writes data to a connected socket.

rc = wite(s, buf, len)
s Socket number
buf Buffer containing the data
len Length of the data

Common errors:

EBADF -9 : s is not a valid socket descriptor

Internals - Chapter 22. System Programming 483

ENOBUFS -55 : no buffer space for wite

writev/ WRITEV

Thiscall is similar to the write() except that the datais written from a group of buffers pointed to by an 1/0
vector structure. Each entry in the I/O vector contains a buffer address and a length.

rc = read(s, iov, iovcnt)
S Socket number.
iov I/0 vector containing buffer address/ length pairs
iovent Number of entriesin theiov.

Common errors:

EBADF -9 : s is not a valid socket descriptor
ENOBUFS -55 : no buffer space for wite

MUSIC Specific Routines

The following routines are specific to the implementation of the socket interface on MUSIC/SP.

a2e/A2E

Convert ASCII to EBCDIC. Note that the default representation for character data on the internet is ASCI|
whereas |IBM mainframes tend to use EBCDIC.

cal |l a2e(buf,|en)

buf buffer containing ASCII data
len number of charactersin the buffer
CARGCALL

Convert socket routines calling sequences to that defined in the Berkeley sockets header file
"MANIFEST.H".

rc = CARGCALL()

cnvd2x/CNVD2X

Convert adotted decimal character format internet address to a 32 bit binary number. For example
132.206.120.2 is converted to X'84CE7802'".

cal | cnvd2x(daddr, xaddr)

daddr character format dotted decimal address terminated by a
xaddr 32 bit binary internet address

484 MUSIC/SP Administrator's Reference - Part V

cnvx2d/CNV X2D

Convert a 32 hit binary internet address to the dotted decimal character format. For example X'84CE7802' is
converted to 132.206.120.2.

cal I cnvx2d(xaddr, daddr)

xaddr 32 bit binary internet address
daddr 16 character decimal address
e2a/E2A

Convert EBCDIC to ASCII. Notethat the default representation for character data on the internet is ASCI|
whereas |IBM mainframes tend to use EBCDIC.

call e2a(buf,len)

buf buffer containing EBCDIC data
len number of charactersin the buffer
e2e/lE2E

This removes control characters from an EBCDIC character string. Control characters are converted to
blanks. Printables are left asis.

cal | e2e(buf,|en)

buf buffer containing EBCDIC data
len number of charactersin the buffer
Getcon/GETCON

Thisroutineis used by a server application to wait for a connection on a specific port. It supports only one
connection on the port and isintended to be used in debugging servers that would normally be runin the
background by INETD. Thisallows the server to establish a connection without intervention of INETD and
thus be debugged as a foreground task. Usually once the server has been debugged this call would be
replaced by acall to getsoc() and the server would be set up to run under INETD.

s = getcon(port)

s Socket number assigned to connection.
port Port number
Getsoc/GETSOC

This routine used by a server application that has been scheduled by INETD to get the socket passed from
INETD. It automatically handles the protocol to successfully transfer a socket from one application to
another.

s = getsoc()

s Socket number of passed socket.

Internals - Chapter 22. System Programming 485

Common errors:
EMUSBADPARM -2001 : Paraneter passed fromINETD is invalid
EMUSI NUSE -2002 : TASKID is already in use
GtPort/GTPORT

This function gets a unique port number from the system that can be used to create unique port-number/inter-
net-address combination that is referred to as the socket name.

num = gt port ()

num unique port number between 1000-32768

Resolv/RESOLV
Call adomain name server to convert a host name into an 1P address.

cal I resol v(hostnane, i paddr)

hostname character host domain name terminated by a blank.
ipaddr 32 bit internet address.
TrSock

This routine turns on socket level tracing (basically detailing the interface between the socket calls and
IUCV). Two filesare created: $TCP:@TCPIP.LOG, which contains trace records for each socket call, and
$TCP.TCPIP.BUFFERS, which contains the inbound and outbound buffers at the socket level.

call trsock

Note that no parameters are needed.

Errors: none.

XPath/XPATH

This routine defines the TASKID field that is used when connecting the application to TCP/IP. Thisforms
part of the client ID that is used in the givesocket() and takesocket() routines.

call xpath(taskid)

taskid An 8 character string that uniquely identified the task

Socket Errors

The error number is returned as a negative value as the return code of a socket call.

EPERM 1 Not owner
ENOENT 2 No such file or directory
ESRCH 3 No such process

486 MUSIC/SP Administrator's Reference - Part V

El NTR
El O
ENXI O
E2BI G
ENOEXEC
EBADF
ECHI LD
EAGAI N
ENOVEM
EACCES
EFAULT
ENOTBLK
EBUSY
EEXI ST
EXDEV
ENCDEV
ENOTDI R
El SDI R
El NVAL
ENFI LE
EMFI LE
ENOTTY
ETXTBSY
EFBI G
ENOSPC
ESPI PE
ERCFS
EMLI NK
EPI PE
EDOM
EWOULDBLOCK
El NPROGRESS
EALREADY
ENOTSOCK

EDESTADDRREQ

EMSGSI ZE
EPROTOTYPE
ENCPROTOOPT

EPROTONOSUPPORT
ESCCKTNOSUPPORT

EOPNOTSUPP
EPFNOSUPPORT
EAFNCSUPPORT
EADDRI NUSE

EADDRNOTAVAI L

ENETDOWN
ENETUNREACH
ENETRESET

ECONNABORTED

ECONNRESET
ENCBUFS

El SCONN
ENCTCONN
ESHUTDOMN
ETOOVANYREFS
ETI MEDOUT

Interrupted system cal

I/O error

No such devi ce or address
Arg list too long

Exec format error

Bad file nunber

No chil dren

No nore processes

Not enough core

Per m ssi on deni ed

Bad address

Bl ock device required
Mount devi ce busy

File exists

Cross-device link

No such devi ce

Not a directory

Is a directory

I nvalid argunent

File table overfl ow

Too many open files

Not a typewriter

Text file busy

File too large

No space left on device
Il egal seek

Read-only file system

Too many |inks

Br oken pi pe

Domai n error

Operation woul d bl ock
Qperation now in progress
Operation already in
Socket operation on
Destination address required
Message too | ong

Prot ocol wong type for
Prot ocol not avail able
Prot ocol not supported
Socket type not supported
Qperation not supported on
Protocol family not
Address famly not supported
Address already in use
Can't assign requested

Net work i s down

Net wor k i s unreachabl e

Net wor k dr opped connection on
Sof tware caused connection
Connection reset by peer
No buffer space avail able
Socket is already connected
Socket is not connected
Can't send after socket
Too many references
Connection tinmed out

Internals - Chapter 22. System Programming 487

ECONNREFUSED 61 Connection refused

ELOOP 62 Too many | evels of synbolic
ENAMETOOLONG 63 File nane too | ong
EHOSTDOMN 64 Host is down

EHOSTUNREACH 65 No route to host

ENOTEMPTY 66 Directory not enpty

EPROCLI M 67 Too many processes

EUSERS 68 Too many users

EDQUOT 69 Di sc quota exceeded

ESTALE 70 Stale NFS file handl e
EREMOTE 71 Too many levels of renote in
ENCSTR 72 Device is not a stream

ETI VE 73 Ti mer expired

ENOSR 74 Qut of streans resources
ENOVSG 75 No nmessage of desired type
EBADVEG 76 Trying to read unreadabl e
El DRM 77 I dentifier renoved

EDEADLK 78 Deadl ock condition.

ENOLCK 79 No record | ocks avail abl e.
ENONET 80 Machi ne is not on the
ERREMOTE 81 hject is renote

ENOLI NK 82 the I'ink has been severed
EADV 83 advertise error

ESRINT 84 srmount error

ECOVWM 85 Conmruni cati on error on send
EPROTO 86 Prot ocol error

EMULTI HOP 87 mul ti hop attenpted

EDOTDOT 88 Cross mount poi nt

EREMCHG 89 Renot e address changed

El BMBADCALL 1000

El BMBADPARM 1001

El BMSOCKOUTOFRANGE 1002

El BMSOCKI NUSE 1003

El BM UCVERR 1004

EMUSI NT 2000 Sel ect interrupted by non-socket int
EMUSBADPARM 2001 Bad par anet er

EMUSI NUSE 2002 Resource is already in use

MUSIC IUCV Interface

MUSIC supports VM's IUCV interface. This alows communications and data exchange between MUSIC
applications and other virtual machines and aso between MUSIC and CP system services such as:

*BLOCKIO - DASD Block I/O
*IDENT - |dentify

*LOGREC - Error Recording
*MSG - Message System
*MSGALL - Message All System
*RPI - Access Verification
*SIGNAL - Signal Service
*SPL - Spool Service

In addition lTUCV can be used for communication between tasks on the same MUSIC system.

488 MUSIC/SP Administrator's Reference - Part V

Security

In order to use IUCV, the MUSIC virtual machine must have the appropriate authorization. Thisinvolves
specifying the required parameters on the IUCV contral statement in the VM directory entry for MUSIC. In
addition you may also want to allow more than the default number of connections by specifying the
MAXCONN keyword on the OPTIONS statement. Remember that MAXCONN specifies the number of
connections that can be made by the entire MUSIC machine, not the individual users. Asan additional level
of security, MUSIC applications must have the SY SCOM privilege to establish an [IUCV connection.

Interface

The interface is essentially the same as that described in the publication VM/ESA CP Programming Services
for 370 (SC24-5435) or VM/SP System Facilities for Programming (SC24-5288). These manuals should be
consulted to find complete information on how to write [UCV applications.

The ASSEMBLER language interface provides two macros.
The lUCV macro is used to execute [IUCV functions.

I UCV function_name, options
Function_name The name of the specific [IUCV function.
options Optional information that is function dependent.
The following functions are supported:

ACCEPT

CONNECT
DECLARE BUFFER*
DESCRIBE

PURGE

QUERY

QUIESCE

RECEIVE

REJECT

REPLY

RESUME

RETRIEVE BUFFER*
SEND

SET CONTROL MASK*
SET MASK*

SEVER

TEST COMPLETION
TEST MESSAGE

* These functions are supported as ho-ops since MUSIC does not let applications redefine the [UCV inter-
rupt buffer or control interrupts.

The IPARML macro used to map the IUCV parameter lists and interrupt buffers. Thisis copied into the
assembler program.

One difference between the MUSIC and VM implementation isin the processing of interrupts. The interface

module in the MUSIC nucleus gets control when an lUCV external interrupt occurs. The interrupt informa-
tion is then passed to the application through the inter-task queue. The application retrieves the information

Internals - Chapter 22. System Programming 489

using the QRD routine. The format of this datais the same as the regular IUCV externa interrupt buffer
preceded by the 8 byte identifier TUCV .

o m e e e e e e e e e emee s +
0 | I U C V | MJSIC Header
E - T JE Uy +
8 | Path | F | T| |
temmm e Ho- - - - -+ |
10 | |
+ i nterrupt + 1UCV external
18 | dependent | interrupt buffer
+ i nformation +
20 | |
+ +
28 | |
o m e e e e e e e e e emee s +

Path Pathid of the connection causing the interrupt

F Flags indicating the interrupt status

T Indicates the interrupt type

The lUCV external interrupt buffer is mapped by the IPARML macro.

The other difference between MUSIC and VM is how aMUSIC server application identifies itself to the
system. The server program isidentified by a namethat it advertisesin MUSIC's ENQUEUE table. A client
wishing to connect to this application issues a CONNECT function specifying "MUSIC" in the IPVMID
field of the connect parameter and the name of the server in the IPUSER field.

Examples

ThefilesIUCV.SERVER and IUCV.CLIENT provide ASSEMBL E language examples of IUCV applica-
tions. In addition to showing the use of the IUCV macros, they show how to user the DELAY and QRD
routines to handle the interrupts. The SY SCOM privilege is required to run these programs.

Internals

The interface handles the IUCV reguests from MUSIC applications, keeps track of what application owns a
conversation and passes the external interrupts to the appropriate application.

During system initialization, a DECLARE_BUFFER isissued to define MUSIC's IUCV externa interrupt
buffer. Thereisonly one of these for the MUSIC virtual machine. When atask issues a
DECLARE_BUFFER to initiate IUCV, it is basically treated as a NOP operation. When an external interrupt
arrives that applies to that task, the interrupt handler passes the information to task via the inter-task commu-
nications queue. Thisinformation can be retrieved using the QRD routine. This handling of the external
interrupt buffer data makes the MUSIC implementation a bit different from CMS.

When atask issuesa CONNECT function the assigned PATHID is saved with the TCB number the
PATHID_TABLE. When an external interrupt occurs, thistable is used to find the TCB number of MUSIC
task that is to receive the interrupt information.

If an outside task is to initiate a connection with aMUSIC task it must know the resource name associated
with the MUSIC task. The MUSIC task sets the resource name in the ENQ table. So when an interrupt

490 MUSIC/SP Administrator's Reference - Part V

comes in requesting a connection, the TCB number of MUSIC task is retrieved from the ENQ_TABLE.

In addition to executing the IUCV instructions and passing on interrupts this module must also deal with
MUSIC'svirtual storage. The request parameters are copied from the user region to system storage before the
request is made. The results are copied back afterwards. If arequest involves data buffers, these are allocated
in the system area and the virtual addresses replaced by real addresses. Once the request is compl ete, the data
is copied to the user's virtual storage.

M essage Control Blocks (M CB)

These are used to keep track of outbound messages. When a SEND or REPLY isissued an MCB is allocated.
Information about the message, such as the buffer pointers, length and message ID are saved in the MCB.
When IUCYV finishes processing the message, it causes an IUCV external interrupt. The message ID field
from the interrupt is used to locate the MCB. The MCB and any allocated buffers are then freed.

They are mapped by the MCB Dsect and are laid out as follows..

2 2 4
e oo +
| Flag | Moath | Md |
e S N S +
| QAbuf | Mcb | OFlg |
e S N S +
| Mouf | M en |
e oo +
| Abuf | Al en |
e oo +

ABUF and MBUF point to buffer chains. The first buffer is used to contain a buffer list in the format used by
IUCV. Subsequent buffers contain data. This allows a 32K message to span up to 64 buffers.

When an IUCV external interrupt occurs, URMON passes control to the [IUCV external interrupt routinein
the module IUCV. The function of thisroutine isto pass the external interrupt and any associated data to the
appropriate MUSIC task. Since the tasks address space may be inaccessible to us, the interrupt buffer datais
passed viathe inter-task communications queue.

If theinterrupt isfor a connection pending, the ENQ table is scanned for a match on the resource _id from the
interrupt buffer. If amatch isfound the interrupt information is passed to the task that enqueued on the name
and an entry ismade in the PATHID TABLE to permanently associate the PATHID with that task.

Otherwise the PATHID table is used to find out the TCB number of the task. Once the TCB number is
known the interrupt buffer is sent to it via the inter-task communications queue.

Internals - Chapter 22. System Programming 491

Chapter 23. Performance and Tuning

Overview

This section discusses how you can improve the performance of your MUSIC/SP system. The basic steps
involve observing the performance of your system and making changes and seeing the results. MUSIC
comes with a number of performance tools that can help you measure your system's performance. Itis
strongly recommended that you regularly monitor your system's performance and not just at times of poor
performance. Thiswill allow you to see the compare the times of poor performance to those of good
performance and see what has changed.

Basic Resour ces

There are 3 basic resources that are availableto MUSIC. They are:

* Processor cycles. When MUSIC is not run under VM, then thisis simply the speed of your proces-
sor. Under VM, it aso refers to the amount of time available that MUSIC will get from VM.
There are several performance options under VM that relate to how much time MUSIC will get.

* Mainstorage. Thisisthe amount of main storage that MUSIC can use. Under VM, thisisits
"virtual machine size".

» Disk. Thisincludesthe number of channel paths available to the disks as well as the number of
disks.

To tune the system it isimportant to see how MUSIC is using these resources and to deter-
mine which one can be improved and at what cost.

VM Performance Consider ations

Refer to Chapter 2 - Running MUS C/SP Under VM for very important information on how to best configure
MUSIC under VM. In particular note that you must always run a production system in either aV=R or V=V
locked environment. Just locking part of MUSIC's pages WILL NOT WORK correctly. The reason for this
isthat VM will stop the entire MUSIC system on ANY page exception within MUSIC and not process ANY
work for MUSIC until the page exception has been resolved by VM reading in the page from disk. Thiscan
take 50 milliseconds or longer on a busy machine and will cause very uneven performance. Remember
MUSIC is supporting many users in the one virtual machine and not just asingle user asin the case of CMS.
It is therefore quite reasonable to give MUSIC much better performance options that you give to asingle
CMS user.

Note that running MUSIC in aV=R or locked page environment will not give MUSIC preferential treatment
over your other virtual machines. What it will do is save cyclesthat VM would otherwise have to use to
resolve page exceptions on behalf of MUSIC. Inthe V=R case, VM will also save cycles by not having to
translate MUSIC's I/O channel programs. These cycles saved are a benefit to ALL your virtual machines.
Thisis because it gives effectively makes the processor faster. Running MUSIC V=R can sometimes buy
back 10 or 20% of your processor cycles.

492 MUSIC/SP Administrator's Reference - Part V

Dynamic View Your System's Performance

The SSTAT utility is valuable for seeing what is happening to your system now. It can be run by typing
SSTAT as acommand or from the ADMIN facility's "Information and Statistical" menu and selecting
"Display System Status'. Itsdisplay is updated several times per minute. Y ou should run at different times
in the day to view of the load before making any changes based on its output.

The following notes point out key items of interest in performance and tuning work.

The storage size gives the amount of storage MUSIC has availabletoit.

The MAXRRS shows how much storage each user region can get to run applications. The MAXMPL
shows how many regions can be active at one time.

The number of users show how many users are currently signed on. The number of sessions show how
many sessions are active. A single user can have several sessions active at one.

The response time is the response time this program is seeing. It isan indication of the system response
time but is not an average response time people are getting. (The response time people will see depends
on the queue the system has placed them in. This depends in turn on what type of work they are doing.)

The CPU usage gives the % of the CPU MUSIC isusing. Thisincludes any VM overhead on behalf of
MUSIC.

The "running" number shows the number of tasks that are running. Many of them may be waiting for
input from users. That number is shown in the "idle" field. The number actually running in the user
regionsis shown in the "active" field. The number that is waiting to get into auser region isshownin
the "queued" field.

The"in core" field shows how many of the running tasks are in main storage. The "swapped" field
shows how many tasks the system had to swap out to disk.

Thetablein the display shows the total number of specific events that have occurred since your system
was last IPLed. It aso showsthe rate of these events. Therate isthe more interesting number.

The number of 1/0 operations per second is an indication of the how busy your 1/0O devicesare. If you
see this number never gets higher than a certain number at peak times, then this could mean that you
have an 1/0 bottleneck. The IOTIME utility can be used to analyze your /O activity.

The number of page events per second is an indication of how much paging you are doing. It does not
directly show your paging rate in terms of number of pages read or written per second as explained
below.

The "page wr" figure shows the number of page write operations being done per second. Each of these
operations typically writes 8 4K pagesto disk in one disk 1/O operation.

The "page rd" gives the number of page reads done. Page reads are done one at atime. Page reads done
from the PLPA area are shown separately. Large paging rates here are an indication that some users are
running jobs do not fit well in the MAXRRS area. Y ou can increase the size of the MAXRRS area by
doing aNUCGEN but that may increase the amount of swapping done.

PLPA pages are for routines that have been placed in the PLPA area. They are typically reentrant
compilers. PLPA page reads are done one at atime. A high PLPA rate would be an indication that you
should move some itemsinto the fixed link pack area. Consult the section "Link Pack Area Considera-
tions" in Chapter 21 - Load Library and Link Pack Area for information on this topic.

Internals - Chapter 23. Performance and Tuning 493

The number of swap reads and writes shows the rate of swapping. Each swap will typically take severa
I/0O operations. Thisis because each swap pieceis40K in size. Refer to section "Paging and Swap-
ping" in Chapter 18 - System Internals for more information.

Main Storage Usage

Many sites have found that they are not using main storage in an optimal fashion. The output from the
MAPMEM utility shows you how your main storage is used. It can be run by typing MAPMEM asa
command or from the ADMIN facility's "Information and Statistical" menu and selecting "Display Memory
Map". The numbers displayed will not change until some system parameters are changed and the system
re-1PLed.

The following notes point out key items of interest in performance and tuning work.

Thefirst information listed is similar to that shown with the SSTAT utility described above. Take note
of the page pooal size shown on thefirst line. That isthe amount of storage available for user regions.
User regions are the area that user jobsrunin. A specific user job cannot use more any more real stor-
age than shown in the MAXRRS number. The size of the page pool is determined by what is |eft over
when al the other storage areas have been alocated.

The length column in the table of addressesis the most important field for performance and tuning
considerations. The amount used by the BPOOL areaisimportant. Run the BPOOL utility at the end
of atypical day to see the maximum number used. (The system must have been up during your peak
times to have useful numbers here.) Y ou can change the number of buffersin this pool by a parameter
in the NUCGEN uitility. Refer to the topic "Terminal Buffer Pool" in Chapter 18 - System Internals for
more information.

The LPA area shows the amount of storage being used by your fixed link pack area. Increasing this area
reduces the amount of size of the page pool. Consult the section "Link Pack Area Considerations' in
Chapter 21 - Load Library and Link Pack Area for information on this topic.

The RAMDSK area shows the memory reserved for use asa RAM disk. Files are loaded into here when
the system starts up and can be subsequently referenced without any physical 1/0. Usually significant
performance benefits can be gained by reserving about 400K of memory and loading in frequently used
files. See the section "Configuring your RAM Disk" for more details.

Cache dl the Save Library space bit maps in memory, by specifying ULMAPS=1 in the NUCGEN util-
ity.

Thetrace areais set by a parameter in the NUCGEN utility and is usually ho more than 20k.

The nucleus area and low core areas are used by the system for its control code and buffers. These areas
are not changed for tuning reasons.

Ignore the page pool 1 and 2 numbers for tuning purposes. Use the page pool total on the first line
instead.

Tuning Examples

The following are suggestions of what to do to improve specific performance bottlenecks.

494 MUSIC/SP Administrator's Reference - Part V

Poor Response, CPU Usage High (eg 90%)

The demand for CPU cyclesis greater than can be provided by your CPU. If this situation exists consider-
ately throughout the day, you should consider reducing the number of users or upgrading your CPU. If it
occurs periodically it may be caused by a group of users (like a student 1ab) running a specific piece of soft-
ware. Have them use that software during non-prime time or spread its use out over the day rather than
having them all run it at once. Maybe change from alab format to a"work on your own" format.

Poor Response, CPU=40%, Swapping High

In this case the system may be 1/0 bound on the SWAP data sets. The output from the IOTIME program
will indicate the amount of time spent swapping. There are various things that can be done to improve this.
They are listed below in the order that we feel will have most effect.

* Givethe MUSIC machine more main storage. Thiswill enable the system to keep more usersin storage
and therefore reduce the swap load.

» Spread the swap load over more than one channel if possible. It is best to place the swap data sets on
disksthat have very little other activity on them. These disks should be on channels used exclusively by
MUSIC. Some sites have found that some improvement can be obtained if the second (or third) SWAP
data set is placed on a"low usage" VM channel. If thisis attempted monitor the SWAP times very
closely sinceif the channel becomes busy, the "solution” could be worse than the original problem.

» |If you have specified alarge MAXRRS value in the NUCGEN you may want to try reducing it. If alot
of people are using large region sizes making MAXRRS smaller can significantly reduce the amount of
datathat is swapped. Thiswill increase the paging overhead for those using large user regions but will
improve system performance for the majority of users.

* Optimize the location of the SWAP data setsif possible.
MUSIC owned channel (no interference from VM)
Dedicated disk (not minidisk)

Low usage pack if possible

Near center of pack

Poor Response, CPU=5%, |/O Rate L ow

Thisis probably a problem in the I/O configuration or VM environment. MUSIC is spending most of itstime
in WAIT state. The key isto figure out what it iswaiting for. Usually it is either waiting for an I/O interrupt
from atermina or adisk, or an external interrupt from a system timer. Whatever the case this situation
should be reported as a system problem.

Response Ok Except for a Few Users

Look at the paging rates. It will usualy indicate a significant amount of paging activity. The jobsthat take a
long time probably use alarge user region and have aworking set (of pages) larger than the MAXRRS.

They are "thrashing”. That is, spending the majority of time paging and doing very little useful work. Jobs
like this do not serioudly effect the performance of the rest of the system, however it can really be frustrating
for the user since they have no idea of why their job is taking so long due to the exponentia nature of the
effect.

Internals - Chapter 23. Performance and Tuning 495

e.g. Waterloo Script Job (MAXRRS=232K)

100 page document.............. 5 minutes
300 page document.............. 2 hours
600 page document.............. Cancelled after 18 hours.

There are two possible solutions.....

» If thethrashing program is reentrant then placing it in the FLPA will reduce the user region storage
reguirements by the size of the program and thus increase the available working storage.

* Increasethe MAXRRS so that it is larger than the working set of the program. The value of MAXRRS
effects other aspects of system performance. These should be monitored to determine whether the gains
obtained by increasing MAXRRS are not outweighed by losesin other areas.

Increasing MAXRRS will reduce the number of tasksthat can be kept in the page pool thus poten-
tially increase the swap load. If you have sufficient main storage this should not be a problem.

If you have insufficient storage increasing MAXRRS will reduce the MAXMPL (maximum multi-
programming level). Usually aMAXMPL of 3 or 4 is sufficient.

The MAXRRS value indicates the maximum data transfer amount on a SWAP operation. If alot
of users are using large region sizes, increasing MAXRRS will increase the data transfer overhead
for each swap operation. This may be offset however by substantial savingsin paging overhead.

Poor Response at Peak Times

Performance is ok during most of the day except for the peak times. These peaks may last for half an hour or
more. The response time monitor will show that the user region is active 100% of the time during these peri-
ods. CPU and 1/O rates are not excessive and are similar to the ones you normally got from the machine at
peak times before response started getting poor. The current situation is that the number of users (or the jobs
they are running) have exceeded the capacity of your CPU current configuration. Thereis probably no obvi-
ous bottleneck. You must look at output of the performance measuring tools in more detail. The following
isalist of thingsthat you cantry. Thelistisin order of what we feel will give you the most improvement.

* Give MUSIC as much main storage as possible and optimize its use as follows:

Place any high usage processorsin the FLPA. Note the usage of processors such as
VS/FORTRAN, and VS/PASCAL may vary depending on the time of year at academic sites. If
you cannot fit them al in the FLPA, at least put the most used onesthere. If you do not have any
high usage reentrant processors, do not waste the storage by putting infrequently used modulesin
the FLPA. Use the output of the LDCNTS program to see which modules are being used the most.
Use the LDLIST program to see the sizes of the individual modules. Refer to the topic "Link Pack
Considerations" in Chapter 21 - Load Library and Link Pack Area for details on what processor
each module is associated with.

If you have not already done so, reserve about 400K of memory for use asa RAM disk and load
any frequently used filesinto it. Use the RAMREP utility to determineif the files loaded in RAM
are being used frequently enough and replace any low usage files with others that you feel may
have a higher hit count. A properly configured RAM disk should be able to handle 15% - 25% of
file opens.

The number of RCBs effects the swap load. In adding main storage you should hope to increase
the number of RCBs. Try to keep the number of RCBsto at least 25% of the number of active
users. Once the key modules have been placed in the FLPA, additional storage is best spentin

496 MUSIC/SP Administrator's Reference - Part V

additional RCBs. The number of RCBsis automatically determined from the size of the pageable
storage pool. This pool contains the storage that is not allocated to other things like the FLPA,
BPOOL, trace table, etc.

Try to keep the MAXRRS to at least 232K. The system will reduce this value if there isinsuffi-
cient storage left due to trying to put too much in the FLPA.

If storageis at a premium remove any terminals, BTRMs and extra sessions (X SES) that are not
required. Set the size of the BPOOL to be dlightly higher than the high water mark indicated by the
BPOOL program. Never let the BPOOL size be considerately equal to this high water mark.
Reduce the trace table size (MAXTRC) to 8K.

Improve MUSIC's virtual machine environment where possible.

Run MUSIC V=R or lock ALL its pages

Use dedicated disks not minidisks

If disks are on separate real channels, configure than as such on MUSIC.

Put al your MUSIC disks on different virtual channels. For example, if you disks are addresses
130, 131, 132, 134, try defining them to VM as 130, 230, 330, 430. ThisallowsVM to better
service the disks.

Do not use VM's multi-path support to access disks. This has shown to have amajor negative
effect on throughput.

Improve MUSIC's disk configuration by adding channels or disks or moving high access data setsto
channels or disks that are not so busy. If multiple real channels are used the swap and page load should
be spread over all the channels. High access data sets such as SY S1.MUSIC.UIDX should be placed in
the center of low activity disks on low activity channels. The IOTIME utility is useful in determining
1/0 activity on adata set by data set basis.

Force areduction in the user load. Thisis usually the least desirable though often the only resort once
all of the above has been tried. There are two basic methods:

Restrict the usage of certain software to certain users or certain times. Subset environments can be
set up using TMENU or REXX to restrict users to the assigned task and eliminate game playing or
private projects which can consume resources.

Limit the number of users by limiting the number of terminals defined on the system. This may
seem cruel but, when the peak time of the year rolls around and you have tried al of the above and
response is still poor, it is probably better to have 100 people getting work done and 20 waiting for
aterminal than to have 120 sitting at terminals getting work done slowly.

Internals - Chapter 23. Performance and Tuning 497

498 MUSIC/SP Administrator's Reference - Part V

