
 Chapter 10. Utilities

 Chapter 10. Utilities 549

 Summary of Utility Programs
———————————————
This chapter describes various utility programs that are available to the user. First, the programs are listed by
function, with a short description of each. Once you have decided which program you need, use the Index or
Table of Contents to locate the detailed description of that utility.

 Archiving

ARCHIV Archives (dumps) a group of files to tape. Note: it is recommended that FILARC or
 EXARCH be used rather than ARCHIV.
EXARCH Archives (dumps) a group of files to tape for exporting to a non-MUSIC installation.
EXREST Restores one or more files from a dump created by EXARCH.
FILARC Archives (dumps) a group of files to tape. This is the recommended utility to use for creat-
 ing backup copies of files or for transporting files to other MUSIC installations.
FILCHK Reads and checks a dump produced by FILARC. It can produce a list of file names
 contained in the dump.
FILRST Restores one or more files from a dump created by FILARC.
RETREV Restores one or more files from a dump created by ARCHIV.
UDSARC Archives (dumps) a set of UDS files to tape.
UDSRST Restores a UDS file from a dump created by UDSARC.

 Working with Files

AMS Supports the MUSIC/SP Virtual Storage Access Method (VSAM).
ENCRYPT Encrypts (codes) files for added security.
DECRYPT Restores encrypted files back to a readable form.
LBLIST Displays the contents of all the user's files.
VIEW Allows viewing on a full-screen workstation of files of any record length or type and of any
 size.
VMPRINT Prints the contents of files on a specified printer.

 Working with UDS Files

AMS Supports the MUSIC/SP Virtual Storage Access Method (VSAM).
DSCHK Reads and checks a dump produced by UDSARC. It can produce a list of the data set names
 contained in the dump.
DSCOPY Copies from one UDS file to another.
DSLIST Displays a list of the names of all the UDS files you own.
DSREN Renames a UDS file.
UDSARC Archives (dumps) a set of UDS files to tape.
UDSRST Restores a UDS file from a dump created by UDSARC.

550 MUSIC/SP User's Reference Guide

 Sorting

MNSORT Sorts the records of a specified file into ascending or descending order, using various parts
 (fields) of the records as keys. Other sorting facilities are described in the same section.
 These include subroutines DSORT, SSORT and SRTMUS, and sorting in Cobol and PL/I
 programs.

 Batch Utilities

The following utility programs are described in Chapter 3. Using Batch.

OUTPUT Manages print files in the MUSIC print queue.
PQ Displays what is queued to print on the various printers.
PRINT Prints a file on a designated printer.
SUBMIT Submits a job to MUSIC batch or to other processors.

 Miscellaneous Utilities

DEBUG Enables you to debug programs running on MUSIC at the machine language level.
FTP Transfers files with computers on the TCP/IP Internet.
PANEL Provides easy access to full-screen I/O from high-level languages.
POLYSOLVE Can be used as desk calculator and solves polynomial equations.
PROFILE Changes or displays your sign-on userid attributes, passwords, and limits.
TAPUTIL Dumps or summarizes selected files from a tape, and copies files from one tape to another.
TELNET Establishes workstation sessions with computers on the TCP/IP Internet.
UTIL Facility for listing, punching, copying, and merging data records. The records can be in
 sequential files on disk, tape, or cards. Record lengths up to 133 bytes can be processed.
ZERO.FILE Provides an efficient way of writing binary zeroes to all blocks of a file or UDS file.

 Chapter 10. Utilities 551

 MUSIC/SP Access Method Services (AMS)
———————————————
MUSIC/SP Access Method Services (AMS) is a utility program that supports the MUSIC/SP Virtual Storage
Access Method (VSAM). It implements a subset of the command language described in the IBM publication
OV/VS Access Method Services, GC26-3841.

Access Method Services is used to allocate, manipulate, and generally maintain VSAM datasets. VSAM
datasets cannot be created using /FILE statements. As well, the editor and various file utility programs
should not be used to update or modify VSAM files. These functions are provided by Access Method Servi-
ces.

Since MUSIC/SP VSAM does not support VSAM catalogs, AMS does not support commands that manipu-
late the catalog. None of the modal commands are supported in MUSIC/SP AMS. A subset of the func-
tional commands are supported; see below for a complete list.

MUSIC/SP AMS can be run interactively at the workstation, or submitted to MUSIC batch. AMS
commands can be entered directly from the keyboard, or they can be stored in a file and executed.

 Definitions and Basic Concepts

This section defines some common terms used in the processing of VSAM files. Following this, some basic
concepts are explained. These terms and concepts should be understood prior to using Access Method Servi-
ces to manipulate VSAM datasets. Access Method Services allocates VSAM clusters, which are more than
simple datasets. A VSAM cluster is one of the following:

• a key sequenced file (KSDS) consists of a MUSIC dataset for the data component and another MUSIC
 dataset for the index component. These files are maintained by VSAM in logical key sequence and can
 be accessed directly via a logical key.
• an entry sequenced file (ESDS) consists of a single MUSIC dataset for the data component. Entry
 sequenced datasets can be regarded as "sequential" datasets. Records can be accessed by relative byte
 address (displacement from the beginning of the dataset).
• a relative record file (RRDS) consists of a single MUSIC dataset for the data component. These files
 allow you to store information into slots, and to access data by slot number. A slot is the number of a
 fixed length record relative to the beginning of the VSAM file.

A key sequenced cluster has a field designated as the primary key. This key field must contain unique
values; otherwise, VSAM will indicate an error condition. VSAM attempts to keep the data stored in the key
sequenced cluster in the order of this primary key. Due to the patterns of additions and deletions, this may
prove to be impossible. However, VSAM always presents the data in a key sequenced dataset in key-se-
quence order when processed sequentially.

An alternate index cluster is an auxiliary index built over some field in a VSAM base cluster. The base
cluster and the alternate index cluster are logically related to each other by Access Method Services. VSAM
automatically updates an alternate index when updates are made to the associated base cluster. Note that an
alternate index has no meaning if the base cluster over which it is defined has been deleted.

Alternate indexes can be built over both KSDS files and ESDS files, but not over RRDS files. The cluster
with which the alternate index is associated is termed the base cluster.

A path is a small MUSIC dataset that points to an alternate index to be used as if it were the primary key of a
VSAM cluster. That is, when a path is opened, VSAM allows a processing program to make key sequenced

552 AMS - MUSIC/SP User's Reference Guide

requests to the alternate index, and returns to the processing program records from the data component of the
base cluster (refer to the diagram).

 VSAM VSAM VSAM <----alternate index
 Base <---> Alternate <---> key
 Cluster Index Path ---->base cluster data
 record

 A unique key is a key that cannot have duplicate values. Usually, names of people do not result in unique
 key values, whereas Social Insurance Numbers do result in unique key values. VSAM key sequenced data
 sets (base clusters) must have unique keys; this is optional with alternate indexes.

 The upgrade set of a base cluster simply consists of all alternate indexes that have been built over the base
 cluster, and have been flagged for upgrade processing (via the UPGRADE parameter which is the default).
 Whenever a base cluster is opened for output processing, each member of the upgrade set is opened as well.

 To illustrate some of the above concepts, consider a program processing a VSAM path. It may require up
 to 5 MUSIC datasets (more if there are several members to the upgrade set). The following list enumerates
 them:

• A KSDS base cluster requires 2 datasets, one for the data component and one for the index component.
• The alternate index is a special type of KSDS and thus requires 2 datasets, one for the data component
 and one for the index component.
• A path requires 1 MUSIC dataset.

File sharing involves some special considerations. To allow any user to have READ access to a VSAM file,
the SHARE attribute must be specified when the file is defined. To allow any user to have WRITE access to
a VSAM file, the WRITE attribute must be specified when the file is defined. To actually OPEN a file for
WRITE access by two or more users simultaneously, the WSHR option must be specified on the /FILE state-
ment defining the file.

For more information on file sharing with VSAM files, refer to Chapter 4. File System and I/O Interface
"MUSIC/SP Virtual Storage Access Method".

 Command Language Syntax

Each Access Method Services command has the following general syntax:

 command positional-parameter keyword1 keyword2 ... keywordn

 Positional parameters may or may not be required. This is dependant upon the particular command.
 Keyword parameters are usually optional. However, certain information may be required by a particular
 command. As well, keywords which do not require a value do not have parentheses.

 A command may be continued onto a subsequent line by using a continuation character. In Access Method
 Services, the hyphen ("-") is used as a continuation character. It must be placed after the text on a line,
 surrounded by blanks, and indicates that the command is to be continued on the next line. Note that values

 Chapter 10. Utilities - AMS 553

 may not be continued. Therefore, complete any name or other value on the same line that it starts. A maxi-
 mum of 50 continuation lines is allowed.

 Comments may be inserted anywhere within an Access Method Services command. Comments must be
 surrounded by the "/*" and "*/" sequence, similar to PL/1. Thus the string "/* comment */" is treated as a
 valid comment. Comments are treated as "white space" and may appear anywhere that a blank may appear.
 If a comment is not ended on a line, it is considered to continue onto the next line. Comments are contin-
 ued until terminated by a "*/".

 For example, the DELETE command requires a positional parameter, which is the dataset name to be
 deleted. If an alternate index is to be deleted, then this must be indicated via the AIX or
 ALTERNATEINDEX keyword. Since this keyword has no value (simply providing information to AMS),
 parentheses are not used, and the command is specified as shown. Note that the comment can be placed in
 the middle of the command.

 DELETE -
 filename /* this is a comment */ -
 AIX

 Invoking Access Method Services

Access Method Services is invoked by entering AMS when in *Go mode. On workstations that can accept
3270 data streams, Access Method Services displays a full-screen menu. On workstations that cannot
support full-screen applications, a conversational interface is presented.

The full-screen interface has the ability to save the generated AMS commands in a file. By pressing a func-
tion key, these commands can be re-executed. An option is available to either append generated commands
to this file, or to replace the current file each time a command is generated.

If for some reason you do not want to use the full-screen interface, you can suppress it by using the parame-
ter NOFS when you invoke AMS. For example, the command AMS NOFS entered in *Go mode never
invokes the full-screen interface to AMS.

You can directly execute a file of AMS commands by typing:

 AMS filename

where filename is the name of the file containing your AMS commands. Doing this implies that the full-
screen interface to AMS will not be invoked.

Note that AMS command stream files may also be submitted to MUSIC/BATCH.

Standard input is on logical unit 5, and standard output is on logical unit 6. Either unit number may be re-de-
fined to refer to files as required, using /FILE statements.

In particular, to save the output of AMS to a file, use the following control lines:

 /FILE 6 NAME(your-file) NEW(REPLACE) RECFM(VC)
 /INCLUDE AMS
 /INCLUDE your-AMS-commands-stream

554 AMS - MUSIC/SP User's Reference Guide

 Access Method Services Commands

The following Access Method Services commands are supported:

 ALTER: modifies various attributes of a VSAM file.

 BLDINDEX: constructs an alternate index for a base cluster.

 DEFINE CLUSTER: defines a VSAM cluster.

 DEFINE ALTERNATEINDEX: defines a VSAM alternate index.

 DEFINE PATH: defines a VSAM path.

 DELETE: deletes VSAM objects.

 LISTCAT: displays the attributes of a VSAM cluster, and any associated files.

 REPRO: copies VSAM or non-VSAM files to VSAM or non-VSAM files.

The following sections describe each command and the parameters that are supported. Many parameters
described in the OS/VS Access Method Services are not supported. If these are specified, Access Method
Services issues warning messages. Additionally, parameters specific to MUSIC/SP have been added.

ALTER

Usage

 ALTER entryname
 [FREESPACE(CI-percent)]
 [INDEXBUFFERS(number)]
 [INDEXPOINTER(newname)]
 [NEWNAME(newname)]
 [PRIVATE|SHARE|PUBLIC|COMMON]
 [RECORDSIZE(average maximum)]
 [RESETUPGRADELIST]
 [UNIQUEKEY|NONUNIQUEKEY]
 [UPGRADE|NOUPGRADE]

 The ALTER command allows you to modify some of the attributes of a VSAM file. A single positional
 parameter specifying the name of the file to be altered is required. All other parameters are optional. Note
 that ALTER writes to the VSAM file, and thus changes the date that the file was last written.

 The table in Figure 13.1 indicates all of the options available with ALTER, and the types of VSAM object
 that they can be used with.

 Abbreviation: ALT

 Chapter 10. Utilities - AMS 555

 ALTERNAME INDEX CLUSTER PATH
 Data Index Data Index

 COMMON X X X X X

 FREESPACE X X

 INDEXBUFFERS X X

 INDEXPOINTER X

 NEWNAME X X X X X

 NONUNIQUEKEY X

 NOUPGRADE X

 PRIVATE X X X X X

 PUBLIC X X X X X

 RECORDSIZE X X

 RESETUPGRADELIST X

 SHARE X X X X X

 UNIQUEKEY X

 UPGRADE X

 Figure 10.1 - Alter Keywords Used with VSAM Objects

The following describes each of the parameters.

entryname specifies the name of the VSAM file to be altered.

COMMON (COM) specifies that the entryname should be placed in the common index.

FREESPACE (FSPC) specifies the percentage of a controlinterval's space that VSAM will main-
 tain as freespace in future insertions. Note that this parameter does not cause every
 control interval in the data component to have the designated percentage of free-
 space.

INDEXBUFFERS (IDXBUFS) specifies the number of index buffers that VSAM allocates when the
 VSAM dataset is opened. This parameter can affect performance. By maintaining
 more of the index in memory, more virtual storage may be required, but the prob-
 ability that VSAM must access DASD to locate an index block may be lessened.

INDEXPOINTER (IDXPTR) specifies that the newname is to replace the index pointer name contained
 in the first block of the data component. When you rename an index component,
 you must also update the index pointer field within the associated data component
 file. Note that the index component is required if the data contained within a

556 AMS - MUSIC/SP User's Reference Guide

 key-sequenced data set is to be retrieved.

NEWNAME (NEWNM) specifies that the VSAM object is to be renamed to newname. If the
 new name is invalid, then the rename operation is not performed. Associated
 VSAM objects are updated as required with the new name.

NONUNIQUEKEY (NUNQK) specifies that duplicate values should be allowed in the key field of an
 alternate index.

NOUPGRADE (NUPG) specifies that the alternate index should not be opened and updated to
 reflect changes made to the base cluster when it is opened for output processing. In
 other words, the alternate index is removed from the upgrade set of the base cluster.

PRIVATE (PRIV) specifies that the attribute flags for this file should be changed to PRIVATE
 (only the userid's owner can access the file).

PUBLIC (PUBL) specifies that the attribute flags for this file should be changed to PUBLIC
 (any user with any userid can access the file).

RECORDSIZE (RECSZ) specifies the maximum recordsize for this file. Note that the average
 recordsize value is ignored and may be specified as zero.

RESETUPGRADELIST
 (RESETLST) specifies that the upgrade list within a VSAM cluster is to be emptied.
 This means that those objects are logically not to be associated with the base cluster,
 although they may still exist physically.

 The intended use of this parameter is in the situation where VSAM files are being
 copied from one userid to another userid, perhaps by an archival and restore process.
 In this case, rather than change all pointers in all datasets (all of which may have
 different names due to the restore process), the recommended procedure is the
 following.

 Delete all alternate indexes and paths, using the MUSIC/SP PURGE command.
 Then the list of members of the upgrade set contained in the data component of the
 base cluster should be emptied by using this parameter. Finally, the required VSAM
 objects previously deleted should be DEFINEd and any required indexes constructed
 using BLDINDEX. Refer to Example 2 for an illustration of this.

UNIQUEKEY (UNQK) specifies that duplicate values should not be allowed in the key field of the
 alternate index. Note that this parameter is not allowed if the alternate index is non-
 empty.

SHARE (SHR) specifies that the attribute flags for this file should be changed to SHARE
 (file can be accessed with the userid and name by anyone).

UPGRADE (UPG) specifies that the alternate index is to be placed in the upgrade set of the asso-
 ciated base cluster. Note that this parameter is not allowed if the alternate index is
 not empty. Thus, this parameter should be specified with an ALTER command prior
 to performing a BLDINDEX function upon it.

ALTER Examples

Example 1: Renaming a VSAM KSDS.

 Chapter 10. Utilities - AMS 557

 ALTER xxx NEWNAME(yyy)

Example 2: A VSAM KSDS and alternate index have been copied to another userid. The following
 steps will render the files usable from this userid (if these steps are not performed, VSAM
 OPENs will fail).

 DELETE xxx.aix ALTERNATEINDEX
 ALTER xxx RESETUPGRADELIST
 DEFINE AIX(NAME(xxx.aix)...)
 BLDINDEX IDS(xxx) ODS(xxx.aix)

Example 3: Changing the maximum recordsize and freespace parameters.

 ALTER xxx RECORDSIZE(4089) FREESPACE(5)

BLDINDEX

Usage

 BLDINDEX INDATASET(entryname)
 OUTDATASET(entryname)

 The BLDINDEX command builds an Alternate index over a VSAM base cluster. Both the input file and
 the output file must be specified. The INDATASET parameter must name a valid VSAM base cluster, and
 the OUTDATASET parameter must name a valid VSAM alternate index.

 BLDINDEX constructs an alternate index by reading all of the data records in the base cluster, then sorting
 them, and finally writing sorted alternate index data records to the alternate index.

 The cost of running BLDINDEX can be minimized in several ways. First, since BLDINDEX performs a
 virtual storage sort if possible, specifying a larger REGION size on the /SYS statement can avoid access to
 DASD for temporary storage. Avoiding unnecessarily large key sizes will reduce overhead, since only the
 prime and alternate keys are used in constructing a temporary sort record.

 BLDINDEX uses two work files for sorting the alternate key/primary key pairs. They are SORTWK1 and
 SORTWK2. You can over-ride the default files (SORTWK1 and SORTWK2) with job control statements.

 Abbreviation: BIX

 The following describes each of the parameters.

INDATASET (IDS) specifies the name of the VSAM base cluster over which the alternate index is
 to be built. This must be a KSDS or ESDS VSAM cluster. Note that this base clus-
 ter may not be a UDS file; alternate indexes over UDS files are not supported.

OUTDATASET (ODS) specifies the name of the VSAM alternate index which is to contain the alter-
 nate key information. Note that this file must previously have been defined using
 the DEFINE ALTERNATEINDEX command.

558 AMS - MUSIC/SP User's Reference Guide

BLDINDEX Examples

Example 1: Building an alternate index using defaults

 /INCLUDE AMS
 BLDINDEX -
 INDATASET(BASEFILE.DAT) -
 OUTDATASET(BASEFILE.AIX)

Example 2: Building an alternate index, using files, and specifying alternate work files

 /FILE SORTWK1 UDS(XXXXWK1) OLD VOL(MUSIC1)
 /FILE SORTWK2 UDS(XXXXWK2) OLD VOL(MUSIC1)
 /INCLUDE AMS
 BLDINDEX -
 IDS(BASEFILE.DAT) -
 OUTDATASET(BASEFILE.AIX)

 Chapter 10. Utilities - AMS 559

DEFINE ALTERNATEINDEX

Usage

 DEFINE ALTERNATEINDEX
 (NAME(entryname)
 RELATE(entryname)
 [CYLINDERS(primary[secondary])|
 RECORDS(primary[secondary])|
 TRACKS(primary[secondary])]
 [CONTROLINTERVALSIZE(size|4096)]
 [FREESPACE(CI-percent[CA-percent]|0 0)]
 [KEYS(length offset|64 0)]
 [PRIVATE|COMMON|SHARE|PUBLIC|WRITE]
 [RECORDSIZE(average maximum|4089 4089)]
 [REPLACE]
 [SPACE(primary|40)]
 [SECSPACE(secondary|0)]
 [UNIQUEKEY|NONUNIQUEKEY]
 [UPGRADE|NOUPGRADE])

 [DATA
 ([CONTROLINTERVALSIZE(size|4096)]
 [CYLINDERS(primary[secondary])|
 RECORDS(primary[secondary])|
 TRACKS(primary[secondary])]
 [KEYS(length offset)]
 [NAME(entryname)]
 [RECORDSIZE(average maximum|4089 4089)]
 [SPACE(primary|40)]
 [SECSPACE(secondary|0)]
 [UNIQUEKEY|NONUNIQUEKEY])]

 [INDEX
 ([CONTROLINTERVALSIZE(size|512)]
 [CYLINDERS(primary[secondary])|
 RECORDS(primary[secondary])|
 TRACKS(primary[secondary])]
 [NAME(entryname)]
 [SPACE(primary|10)]
 [SECSPACE(secondary|0)])]

 The DEFINE ALTERNATEINDEX command creates a VSAM alternate index associated with an already
 existing base cluster. This consists of a data component and an index component.

 Keywords that occur in both the ALTERNATEINDEX clause and the DATA clause apply only to the
 DATA clause. Those keywords need not be specified in both clauses. If a keyword appears in both
 clauses, the keyword in the DATA clause is used. The reason for this is that if AMS command streams
 from other systems are used, the specification intended for the data component will be used for the data
 component. Abbreviation: DEF AIX

560 AMS - MUSIC/SP User's Reference Guide

 The only required parameters are the NAME and the RELATE subparameters in the CLUSTER keyword.
 The following describes each of the parameters.

COMMON (COM) specifies that the file names for the alternate index are to be placed in the
 common index.

CONTROLINTERVALSIZE
 (CISIZE) specifies the controlinterval size to be used for the DATA and/or INDEX
 component of the VSAM alternate index (default: 4096 for data component, 512 for
 index component).

CYLINDER (CYL) specifies the allocation of space for the data component in terms of cylinders
 of a 3330 disk pack (this is 19 tracks of 20 512-byte blocks each).

FREESPACE (FSPC) specifies the freespace percentages for control intervals. Note that although
 the control area freespace percentage is scanned, it is ignored.

KEYS specifies the length and offset of the key of the VSAM alternate index. Note that the
 offset is relative to 0, so that if the key starts in column 1, the value that you provide
 should be 0.

NAME (NA) specifies the name of the VSAM alternate index. When used in the
 ALTERNATEINDEX keyword, it specifies both the name of the VSAM data
 component and the default root for the index component of the alternate index. Note
 that the data component name is the one used when opening the file or when using
 the file name on a /FILE statement. In the special case of a name specified in the
 ALTERNATEINDEX keyword as "name.DAT", Access Method Services provides
 a default name for the index component of "name.IDX". Otherwise, Access Method
 Services appends ".IDX" to the name of the data component by default.

NONUNIQUEKEY (NUNQK) specifies that the alternate index key can have repeating values in the
 base cluster data records (this is the default).

NOUPGRADE (NUPG) specifies that the alternate index being defined should not be placed in the
 upgrade set for the associated base cluster.

PRIVATE (PRIV) specifies that the VSAM objects are to be given a file attribute of PRIVATE,
 and therefore cannot be shared with other users (this is the default).

PUBLIC (PUBL) specifies that the VSAM objects are to be given the file attributes of COM
 and SHR, meaning that non-owners can read from the file, and that the owner's
 userid need not be prefixed to the file name.

RECORDS (REC) specifies the space allocated to the data component in terms of the maximum
 logical recordsize (default: CISIZE - 7) and a secondary allocation in terms of the
 maximum logical record size.

RECORDSIZE (RECSZ) specifies the average logical recordsize and the maximum logical record-
 size for the data component. Note that the average logical recordsize is scanned but
 ignored.

RELATE (REL) specifies the base cluster over which the alternate index is being defined (note
 that this file must exist).

REPLACE (REPL) specifies that if the VSAM objects being defined already exist, then they are
 replaced (note that this is NOT the default; in other words, if the VSAM objects

 Chapter 10. Utilities - AMS 561

 being defined exist, the DEFINE command terminates with an error condition).

SECSPACE (SECSP) specifies the MUSIC secondary space allocation in units of 1024 bytes (K)
 for the data or index component. If 0 is specified (the default), this means that a
 secondary space allocation will be 50% of the current file size.

SHARE (SHR) specifies that the VSAM objects being created are to be given the SHR attri-
 bute, meaning that non-owners can read from and write to the alternate index.

SPACE (SP) specifies the MUSIC primary space allocation, in units of 1024 bytes (K) for
 the data or index component.

TRACKS (TRK) specifies the primary and secondary space allocations in terms of 3330 disk
 pack tracks (twenty 512-byte blocks per track).

UNIQUEKEY (UNQK) specifies for alternate index keys that repeating values are not allowed in
 the base cluster.

UPGRADE (UPG) specifies that the alternate index being defined is to be placed in the upgrade
 set of the associated base cluster.

WRITE (WR) specifies that the alternate index is to be given the WSHR attribute, meaning
 that non-owners can read from and write to the alternate index.

DEFINE ALTERNATEINDEX Examples

Example 1: Defining an alternate index, specifying the alternate key position as length 15 and offset 5,
 and the related base cluster "BASE.ESDS". Note that "BASE.ESDS" must previously have
 been defined.

 /INCLUDE AMS
 DEFINE ALTERNATEINDEX -
 (NAME(AIX1.DAT) RELATE(BASE.ESDS) -
 KEYS(15 5))

Example 2: Defining an alternate index specifying that key values can repeat (NONUNIQUEKEY) and
 that when changes are made to the base cluster, they should not be reflected in the alternate-
 index.

 /INCLUDE AMS
 DEFINE AIX -
 (NAME(AIXFILE) REL(BASEFILE) NOUPGRADE NONUNIQUEKEY)

562 AMS - MUSIC/SP User's Reference Guide

DEFINE CLUSTER

Usage

 DEFINE CLUSTER
 (NAME(entryname)
 [CYLINDERS(primary[secondary])|
 RECORDS(primary[secondary])|
 TRACKS(primary[secondary])]
 [CONTROLINTERVALSIZE(size|4096)]
 [FREESPACE(CI-percent[CA-percent]|0 0)]
 [INDEXED|NONINDEXED|NUMBERED]
 [KEYS(length offset|64 0)]
 [PRIVATE|COMMON|SHARE|PUBLIC|WRITE
 [RECORDSIZE(average maximum|4089 4089)]
 [REPLACE]
 [SPACE(primary|40)]
 [SECSPACE(secondary|0)])

 [DATA
 ([CONTROLINTERVALSIZE(size|4089)]
 [CYLINDERS(primary[secondary])|
 RECORDS(primary[secondary])|
 TRACKS(primary[secondary])]
 [KEYS(length offset)]
 [RECORDSIZE(average maximum)]
 [SPACE(primary|40)]
 [SECSPACE(secondary|0)])]

 [INDEX
 ([CONTROLINTERVALSIZE(size|512)]
 [CYLINDERS(primary[secondary])|
 RECORDS(primary[secondary])|
 TRACKS(primary[secondary])]
 [NAME(entryname)]
 [SPACE(primary|10)]
 [SECSPACE(secondary|0)])]

 The DEFINE CLUSTER command creates a VSAM cluster. This consists of a data component, and in the
 case of a key sequenced data set, an index component.

 User Data Set files are supported only for the data components of base clusters. A base cluster with a UDS
 for the data component may not have alternate indexes built over it (this restriction is enforced simply by
 not recognizing the UDS specification in the DEFINE ALTERNATEINDEX command).

 To use a UDS as the data component of a base cluster, you must include a /FILE statement that defines the
 UDS file. In the the NAME keyword of the DATA clause, instead of the file name, you specify "/FILE#",
 where "#" is the unit number of the /FILE statement that defines the UDS file (for example, /FILE1). Note
 that a valid cluster name may still be included in the NAME parameter in the CLUSTER clause. This will
 then determine the form of the name for the index component, if that name is not explicitly specified.

 Chapter 10. Utilities - AMS 563

 Keywords that occur in both the CLUSTER clause and the DATA clause apply only to the DATA clause.
 These keywords need not be specified in both clauses. If a keyword appears in both clauses, the keyword
 in the DATA clause is used. The reason for this is that if AMS command streams from other systems are
 used, the specification intended for the data component will be used for the data component.

 Abbreviation: DEF CL

 The only required parameter is the NAME subparameter in the CLUSTER keyword. The following
 describes each of the parameters.

COMMON (COM) specifies that the file names for this VSAM object are to be placed in the
 common index

CONTROLINTERVALSIZE
 (CISIZE) specifies the controlinterval size to be used for the DATA and/or INDEX
 component of the VSAM file (default: 4096 for data component, 512 for index
 component)

CYLINDER (CYL) specifies the allocation of space for the data component in terms of cylinders
 of a 3330 disk pack (this is 19 tracks of 20 512-byte blocks each)

FREESPACE (FSPC) specifies the freespace percentage for control intervals. Note that although
 the control area freespace percentage is scanned, currently it is ignored.

INDEXED (KSDS) specifies that the VSAM cluster is a key sequenced data set (KSDS). Note
 that this is the default

KEYS specifies the length and offset of the key of the VSAM object. Note that the offset is
 relative to 0, so that if the key starts in column 1, the value that you provide should
 be 0.

NAME (NA) specifies the name of the VSAM object. When used in the CLUSTER
 keyword, it specifies both the name of the VSAM data component and the default
 root for the index component. Note that the data component name is the one used
 when opening the file.

 In the special case of a name specified in the CLUSTER keyword of "name.DAT",
 Access Method Services provides a default name for the index component of
 "name.IDX". Otherwise, Access Method Services appends ".IDX" to the data
 component name by default.

NONINDEXED (ESDS) specifies that the VSAM cluster is an entry sequenced dataset. Note that in
 this case, no index component exists.

NUMBERED (RRDS) specifies that the VSAM cluster is a relative record data set.

PRIVATE (PRIV) specifies that the VSAM objects are to be given a file attribute of PRIVATE,
 and therefore cannot be shared with other users (this is the default).

PUBLIC (PUBL) specifies that the VSAM objects are to be given the file attributes of COM
 and SHR, meaning that non-owners can read from the cluster and need not prefix the
 file name with the owner's userid.

RECORDS (REC) specifies the space allocated to the data component in terms of the maximum
 logical recordsize (default: CISIZE - 7) and a secondary allocation in terms of the

564 AMS - MUSIC/SP User's Reference Guide

 maximum logical record size.

RECORDSIZE (RECSZ) specifies the average logical recordsize and the maximum logical record-
 size for the data component. Note that the average logical recordsize is scanned but
 ignored.

REPLACE (REPL) specifies that if the VSAM objects being defined already exist, they are
 replaced (note that this is NOT the default; in other words, if the VSAM objects
 being defined exist, the DEFINE command terminates with an error condition).

SECSPACE (SECSP) specifies the MUSIC secondary space allocation in units of 1024 bytes (K)
 for the data or index component. If 0 is specified (the default), this means that a
 secondary space allocation will be 50% of the current file size.

SHARE (SHR) specifies that the VSAM objects being created are to be given the SHR attri-
 bute, meaning that non-owners can read from the cluster.

SPACE (SP) specifies the MUSIC primary space allocation, in units of 1024 bytes (K) for
 the data or index component.

TRACKS (TRK) specifies the primary and secondary space allocations in terms of 3330 disk
 pack tracks (twenty 512-byte blocks per track).

WRITE (WR) specifies that the cluster is to be given the WSHR attribute, meaning that
 non-owners can read from and write to the cluster.

 In general, this attribute is not recommend for the average application because it
 places heavy responsibility upon the application program to guarantee the integrity
 of the data.

DEFINE CLUSTER Examples

Example 1: Defining a cluster using all of the defaults. Note that this is not recommended since the
 default key size and offset (64 and 0) is unlikely to meet the requirements of your applica-
 tion.

 /INCLUDE AMS
 DEFINE CLUSTER -
 (NAME(BASEFILE.DAT))

Example 2: Defining a key-sequenced cluster, specifying the space in terms of K bytes (multiples of
 1024 bytes), that it should replace any existing file of the same name, that the maximum
 recordsize should be 80 bytes, that the controlinterval size for the index component should
 be 1024 bytes, that the files created should be SHR (other users can access them), and that
 the keysize and offset should be 20 and 10, respectively. Note that the name of the index
 component defaults to: "BASEFILE.IDX".

 /INCLUDE AMS
 DEFINE CLUSTER -
 (NAME(BASEFILE) REPLACE SHR) -
 DATA(RECORDSIZE(1 80) KEYS(20 10)) -
 INDEX(CONTROLINTERVALSIZE(1024))

Example 3: Defining a key-sequenced dataset, specifying explicit names for both the data component
 and index components.

 Chapter 10. Utilities - AMS 565

 /INCLUDE AMS
 DEFINE CLUSTER (INDEXED) -
 DATA (NAME(DATAFILE)) -
 INDEX (NAME(INDEXFILE)) -

Example 4: Defining a relative record data. Note that the abbreviations KSDS, ESDS, and RRDS may be
 used for INDEXED, NONINDEXED, and NUMBERED, respectively. The space here is
 specified in tracks of a 3330 disk, which is converted into a space allocation in the
 MUSIC/SP file system.

 /INCLUDE AMS
 DEFINE CLUSTER (NAME(BASEFILE.DAT) RRDS) -
 DATA (TRACKS(10 1))

DEFINE PATH

Usage

 DEFINE PATH
 (NAME(entryname)
 PATHENTRY(entryname)
 [PRIVATE|COMMON|SHARE|PUBLIC|WRITE]
 [REPLACE])

 The DEFINE PATH command creates a path between an alternate index and its associated base cluster.
 The only required parameters are the NAME and the PATHENTRY subparameters of the PATH keyword.

 Abbreviation: DEF PATH

 The following describes each of the parameters.

COMMON (COM) specifies that the path filename is placed in the common index

NAME (NA) specifies the name of the VSAM path. This parameter is required.

PATHENTRY (PENT) specifies the alternate index which is used to access the base cluster. This
 parameter is required. Note that this file must have been previously defined.

PRIVATE (PRIV) specifies that the path is to be given a file attribute of PRIVATE, and there-
 fore cannot be shared with other users (this is the default)

PUBLIC (PUBL) specifies that the path is given the file attributes of COM and SHR, meaning
 that non-owners can read from the file, and need not prefix the file name with the
 owner's userid.

REPLACE (REPL) specifies that if the path being defined already exists, it is replaced (note that
 this is NOT the default; in other words, if the path being defined exists, the DEFINE
 PATH command will be terminated with an error condition)

WRITE (WR) specifies that the path is to be given the WSHR attribute, meaning that
 non-owners can read from and write to the file.

566 AMS - MUSIC/SP User's Reference Guide

DEFINE PATH Example

Defining a path, specifying that it is to be public. Note that all associated files (base cluster and alternate
indexes) need not be public for access to be successful, but they must at least be SHR (for write access they
must be WSHR).

 /INCLUDE AMS
 DEFINE PATH (NAME(DATA.PATH1) PATHENTRY(BASE.AIX1) PUBL)

DELETE

Usage

 DELETE entryname|[(entryname ... entryname)]
 CLUSTER|ALTERNATEINDEX|PATH|NONVSAM

 The DELETE command deletes a file (VSAM or non-VSAM). A single positional parameter specifying
 the name of the file to be deleted must be specified.

 Abbreviation: DEL

 The following describes each of the parameters.

entryname specifies the name of the VSAM file to be deleted. If no other parameter is speci-
 fied, then an attribute of CLUSTER is assumed.

 If the file to be deleted is a VSAM cluster, then the following occurs. For each alter-
 nate index associated with the cluster, all paths are deleted, and then the index and
 data components of the alternate index are deleted. When all alternate indexes have
 been deleted, then the index and data components of the base cluster are deleted.

 If the file to be deleted is a VSAM alternate index, then the following occurs. All
 paths are deleted, and then the index and data components of the alternate index are
 deleted. The name of the alternate index is removed from the base cluster.

 If the file to be deleted is a VSAM path, then it is deleted. The name of the path is
 removed from the associated alternate index.

 If the file to be deleted is a non-VSAM file, then it is opened and deleted. Note that
 by saying NONVSAM, you mean that the file is not a component of a VSAM clus-
 ter. If the file happens to be a VSAM object, the delete will not be performed. Thus
 if for some reason only a portion of a VSAM cluster needs to be deleted, the AMS
 DELETE command cannot be used. In this case, use the MUSIC/SP PURGE
 command in *Go mode.

CLUSTER (CL) specifies that the entryname refers to a VSAM cluster. This parameter is the
 default.

ALTERNATEINDEX (AIX) specifies that the entryname refers to an alternate index. This parameter is
 optional.

 Chapter 10. Utilities - AMS 567

NONVSAM specifies that the entryname refers to a non-VSAM file. This parameter is optional.

PATH specifies that the entryname refers to a path. This parameter is optional.

DELETE Examples

Example 1: Deleting two VSAM clusters. Note that all associated files will be deleted as well.

 /INCLUDE AMS
 DELETE (XXX1 XXX2) CLUSTER

Example 2: Deleting a VSAM alternate index. Note that paths defined over this alternate index will be
 deleted as well.

 /INCLUDE AMS
 DELETE XXX1.AIX ALTERNATEINDEX

Example 3: Attempting to delete a non-VSAM file and a VSAM cluster within the same command. In
 this case, only the non-VSAM file will be deleted.

 /INCLUDE AMS
 DELETE (XXX.KSDS XXX.NONVSAM) NONVSAM

LISTCAT

Usage

 LISTCAT ENTRIES(entryname) -
 [ALL]

 The LISTCAT command displays the attributes of a VSAM file. The names of files that are logically asso-
 ciated with this file are reported. Physical attributes for both the DATA and INDEX components (where
 applicable) are reported.

 Abbreviation: LISTC

 The following describes each of the parameters.

ENTRIES specifies the name of a VSAM object whose attributes are to be displayed.

ALL specifies that all information pertaining to the object specified by ENTRY is to be displayed.
 The default is that only the associated files are listed.

LISTCAT Examples

Example 1: Listing the type of VSAM cluster as well as the names of any associated files. No other attri-
 butes will be listed.

 /INCLUDE AMS

568 AMS - MUSIC/SP User's Reference Guide

 LISTCAT ENTRIES(XXX.CLUSTER)

Example 2: Listing all of the information available for the VSAM cluster.

 /INCLUDE AMS
 LISTCAT ENTRIES(XXX.CLUSTER)

REPRO

 REPRO INDATASET(entryname)|INFILE(ddname)
 OUTDATASET(entryname)|OUTFILE(ddname)
 [COUNT(number)]
 [NOREPLACENONVSAM]
 [RELEASENONVSAMSPACE]
 [SKIP(number)]

 The REPRO command copies one file to another. The function performed is essentially that of the
 MUSIC/SP COPY command. The two commands are different in that the REPRO command performs
 VSAM I/O whenever a dataset is a VSAM file.

 The COPY command is recommended for copying non-VSAM files whenever you are in *Go mode.
 When in AMS, the REPRO command may be used with similar results. Note that the REPRO command
 does not prompt for permission to replace existing non-VSAM files.

 The INDATASET parameter must name an existing VSAM or non-VSAM file containing data. Note that a
 VSAM PATH file is not valid. As well, specifying the name of an index component of a KSDS or an alter-
 nate index is invalid. (To copy these datasets separately, use the MUSIC/SP COPY command.)

 The OUTDATASET parameter is required. If a VSAM file is specified, a valid base cluster (KSDS, ESDS
 or RRDS) file must be named.

 Abbreviation: REP

 The following describes each of the parameters.

COUNT specifies the number of logical records that are to be written to the output file. After
 this number of records has been written to the output file, the REPRO operation is
 terminated.

INDATASET (IDS) specifies the name of a VSAM base cluster or non-VSAM dataset to be copied
 to the output file.

INFILE (INF) specifies a DDNAME which is used to obtain the input. This is useful if read-
 ing from a UDS file.

OUTDATASET (ODS) specifies the name of a VSAM base cluster or non-VSAM file into which the
 contents of the input file are to be copied.

OUTFILE (OUTF) specifies a DDNAME which is used to write the output from REPRO. This
 is useful if the output file is a UDS file.

NOREPLACENONVSAM

 Chapter 10. Utilities - AMS 569

 specifies that REPRO is not to replace a non-vsam target file. Without this parame-
 ter, the file is replaced if it exists.

RELEASENONVSAMSPACE
 specifies that unused space in the non-vsam target file is to be released when the file
 is closed. The default is not to release unused space.

SKIP specifies the number of logical records from the input file that are skipped before
 starting to write records to the output file.

REPRO Examples

Example 1: Copying input data into an output file. Note that REPRO automatically determines whether
 the input and output files are VSAM or non-VSAM, and therefore this information is not
 needed.

 /INCLUDE AMS
 REPRO INDATASET(INPUT.DATA) OUTDATASET(OUTPUT.DATA)

Example 2: Copying input file to output file, skipping the first 100 input records and limiting the number
 of records written to the output file to 500.

 /INCLUDE AMS
 REPRO -
 IDS(INPUT.DATA) SKIP (100) -
 ODS(OUTPUT.DATA) COUNT(500)

570 AMS - MUSIC/SP User's Reference Guide

 ARCHIV/RETREV
———————————————
 Archiving and Retrieving User Files

Note: The FILARC, FILRST, and FILCHK utilities described later in this chapter are the recommended
 programs to be used for dumping and restoring files, and they should be used rather than ARCHIV
 and RETREV. FILARC can dump any type of file, and does so faster and more compactly than
 ARCHIV. FILRST can restore directly to the Save Library. ARCHIV and RETREV are included in
 this manual for the benefit of those users who may still have dump tapes created by ARCHIV, since
 such tapes are not compatible with FILRST.

The user can cause all his own files to be copied to a magnetic tape by using the ARCHIV program. The
referenced files are not altered by this copy operation. Options are available to copy only those files that
have not been used for some time. Each file is written on the tape in the form of a /SAVE job so that it can
be reloaded at a later time. This program features the ability to write to two tapes simultaneously thus giving
you two complete copies of your files on the two tapes. (To archive User Data Sets (UDS) files, refer to the
writeup on the utility UDSARC.)

To retrieve a file or a set of files from the tape, you can use the RETREV program.

The user should note that both the archive (ARCHIV) and the retrieve (RETREV) programs are run from
batch since they use magnetic tape.

 ARCHIV Program

Files with record format U (undefined format) will not be copied to tape. This would be the case if, for
example, the file is a VS APL workspace. Files with record length longer than 80 bytes will be truncated to
80 bytes.

The following illustrates the control statements set up for the ARCHIV program:

 /FILE n TAPE ... etc.
 /INCLUDE ARCHIV
 parameter statement (see below)

 Parameter Statement:

 TAPE=n[,PURGES=n][,UDATE='ddmmmyy']

TAPE=n is the MUSIC I/O unit number to be used. n must be 1 or 2 for a magnetic tape, or 7 for the
 card punch. If two tapes are to be written, the control statement would be TAPE=1,2 (up to
 two unit numbers can be specified on the control statement). A /FILE statement must be
 present for each tape to be used. Note that the record size (RSIZ) must be specified as 80
 and the blocksize (BLK) must be a multiple of 80. A sample /FILE statement is given
 below:

 /FILE 1 TAPE BLK(800) RSIZ(80) VOL(mylib)

 Chapter 10. Utilities - ARCHIV/RETREV 571

PURGES=n Causes a /PURGE job to be written on unit n (normally 7) for each file which is archived.
 This facilitates the purging of archived files. (Note: only the MUSIC Systems Administra-
 tor is normally authorized to run purge jobs from batch.)

UDATE='ddmmmyy'
 Causes only those files with the last used date of the specified date or earlier to be archived.
 The date is given as a 7-character day, month, year string such as UDATE='01JAN74'.

 Retrieving Files: RETREV

Files can be retrieved from the tape prepared by the ARCHIV program and punched on cards or written on a
magnetic tape or disk data set by running the following batch program.

 /FILE statements as required
 /INCLUDE RETREV
 ... parameter statement (see below)
 ... list of file names starting in col 1, 1 per card

 Parameter Statement:

 INPUT=n[,OUTPUT=m][,PRINT][,SELECT='ALL']

INPUT=n This parameter specifies the MUSIC I/O unit number to be used to read the archive tape.
 Unit 1 is assumed if INPUT=n is not specified. A /FILE statement defining the tape must
 be present and its unit number must be n. You must make sure that the BLK parameter
 on this /FILE statement matches the one used when the tape was created. The RSIZ must
 be specified as 80 on the /FILE statement.

OUTPUT=m This parameter gives the MUSIC I/O unit number where the retrieved files are to be writ-
 ten. The default of OUTPUT=0 is taken to mean that no output is to be generated. To
 punch the files, use OUTPUT=7. If you just want the files to be printed, you should use
 the PRINT option documented below.

PRINT This option causes all retrieved files to be printed. Normally the retrieved files are not
 printed. This option is independent of the OUTPUT option. For example, you can say
 OUTPUT=0,PRINT to just print the files.

SELECT='ALL' This option will cause all the files on the input tape to be retrieved. The list of file names
 will not be required in this case.

572 ARCHIV/RETREV - MUSIC/SP User's Reference Guide

 Debug Facility
———————————————
The Debug facility enables you to debug programs running on MUSIC at the machine language level. You
can scroll up and down through main storage. The Program Status Word, any of the 16 general purpose
registers, and main storage can all be modified. You can single step through your program or set breakpoints
and run continuously. You can set watchpoints and cause your program to be stopped when they are altered.

Debugging a program consists of being able to monitor the execution of the program, controlling the input to
the program, observing the results, and possibly altering memory while the program is in progress to affect
the manner in which it executes.

Debugging at the machine language level gives you complete access to the machine resources. A disadvan-
tage, of course, is that high-level languages that have been translated to machine language by compilers
become unrecognizable. Many compilers, however, have the capability of displaying the machine language
code that they are generating. You may find that Debug is most effective when used to debug Assembler
language programs. An exception is VS/FORTRAN. Debug runs co-operatively with TESTF, a
VS/FORTRAN debugger. In this mode, Debug displays the current VS/FORTRAN statement being
executed in the message area. For more information, refer to the topic entitled "TESTF - MUSIC/SP
VS/FORTRAN Debugger" in Chapter 8. Processors.

Another function of Debug is to give you executable access to MUSIC's main memory and registers. With
this, you can look at various locations in memory, and set up sample instructions to discover how they work.
Debug provides an excellent vehicle to teach, and learn about, /370 architecture.

Some of the facilities of Debug (described below) are: single-stepping your program instruction by instruc-
tion: altering memory and values in both the general purpose and floating point registers; altering the
Program Status Word; searching for hexadecimal or character strings in memory; setting break-points (places
where your program is halted and control is returned to the Debug facility); entering TRACE mode (where
you receive an instruction-by-instruction tracing of your program's execution); and setting watchpoints
(monitored storage that causes your program to be interrupted when it changes).

Keep in mind that some of MUSIC's main storage is read-protected. Thus some memory locations are inac-
cessible to you, unless you have the required high-level privileges. (These are granted only to the systems
programmers at your site for necessary systems work.) Write-protected storage cannot be altered, unless you
again have the required high-level privileges. For example, you cannot change anything below location
X'1000' (hexadecimal 1000). Although you can type over these memory locations in the memory display,
your changes are not applied to the actual storage locations.

 How Debug Works

To understand how to use Debug, and appreciate its limitations, you may wish to understand a little bit about
how Debug does what it does. If not, then skip to the next section.

A Supervisor Call (SVC) instruction, in the /370 architecture, causes a transfer to the Operating System, and
usually the execution of some function or module within the operating system. This is done via the media-
tion of both the /370 hardware and the control program (in this case, MUSIC/SP). An SVC may involve a
switch to supervisor state from problem state, or it may not. Generally speaking, your program interfaces to
the Operating System (MUSIC/SP) via these Supervisor Call instructions, (SVCs).

Debug uses a special SVC defined in the MUSIC system. When you single-step your program, Debug
inserts this SVC just after the instruction to be executed, remembering what was there previously. Then, it

 Chapter 10. Utilities - Debug 573

transfers control to the instruction to be executed. Your instruction is executed normally, and then following
that, the Debug SVC instruction is executed. When this Debug SVC is executed, Debug re-gains control,
and re-displays the memory display panel, after restoring the contents of memory where the Debug SVC was
placed.

When a conditional BRANCH instruction is to be single-stepped, there are two possible target addresses:
when the BRANCH is "taken" (successful), and when it is not. Debug checks both of these addresses and
places a Debug SVC at both locations, so that when your program reaches one of them, it will re-gain
control.

Recalling that some of MUSIC's main storage is Write-protected, you can appreciate that if one of the possi-
ble targets of a BRANCH instruction is in protected storage, then Debug cannot alter that location to place a
Debug SVC there. Consequently, Debug issues a message stating that the branch location is in protected
storage. At this point, you cannot single-step your program any more, and must issue the GO command.

How can you re-gain control after issuing the GO command? There are two ways: first, by pressing PA1
when Debug is executing and second, by placing "break-points" within your program.

In the first case, when the execution of your program is suspended by MUSIC to give other users of the
system a chance to do some work, it will not be given control again at the place where it was interrupted.
Instead, Debug will gain control. Effectively, you have "broken out" of whatever your program was doing
by pressing PA1, and re-entered Debug. This can be useful in the case of so-call "infinite" loops, or similar
circumstances.

In the second case, you must plan ahead. You set break-points using the BREAK command (see below).
You indicate in this command an address that Debug will remember (and display in the module map on the
memory display panel). Whenever you issue the GO command to Debug, it takes all of the break-points
from its list and places Debug SVCs at those locations, remembering the previous contents of memory.
Then, whenever control reaches one of those locations, the Debug SVC is executed, and Debug re-gains
control.

 Invoking Debug

Debug can be invoked in several ways, depending what you want to do with it. It can be invoked in "stand-a-
lone" fashion, or as an option on certain /LOAD processors. You may have a program that you wish to debug
using Debug, or you may simply wish to gain access to MUSIC main storage and registers.

Command Line Invocation

Simply typing Debug at the *Go prompt will start up the facility with the memory display initially positioned
at hexadecimal location x'4800'. Obviously, this is arbitrary, and you can display any other location in
memory to which you have access.

To Debug a program in object module format, you can specify a MUSIC file name as a parameter. For
example,

 debug program.obj

will invoke Debug with the program contained in "PROGRAM.OBJ" loaded into memory. The memory
display will be positioned at the first Control Section (CSECT) found in the object module.

There are additional parameters that you can specify in order to further control how Debug loads your
program. These are keyword parameters (not dependant upon the order on the command line) which require

574 Debug - MUSIC/SP User's Reference Guide

a value. Specify the value in parentheses, like this: PARMS(hello). Note that to specify parameters without
specifying an object module, type a period (".") in place of the object module name. For example:

 debug . parms(hello)

The parameters for Debug are:

EPNAME the CSECT (entry-point) name where the memory display should be positioned. Note that
 this is where the program will be started when you issue a STEP or a GO command, so be
 careful when you specify the name (you can change the starting address manually within
 Debug, of course).

PARMS a parameter string that will be passed to the program via an address in register 1. Note that
 this follows standard calling conventions

REGION a numerical value which is the region size to be used when your application program is
 loaded with Debug. Sometimes for larger programs, a region size that is larger than the size
 normally used by your program alone is required, since the code for Debug resides in the
 user region as well.

FILES a MUSIC file name containing /FILE definitions to be used by your program. Debug scans
 this file and extracts /FILE Job Control Statements at the beginning of the file. Other control
 statements are not used, but /FILE statements are replicated when your program is loaded
 with Debug.

TRACE a MUSIC file name which is used to capture output on unit 6; specifically, output from
 instruction tracing. This enables you to debug full-screen applications more easily, as well
 as providing an easy way to view long trace sequences.

Invoking XMON

OS mode load modules can be debugged "as-is" by specify Debug as an option on the parameter statement,
when using /LOAD XMON. An example follows:

 /FILE LMOD NAME(PROGRAM.LMOD) SHR
 /LOAD XMON
 PGMNAME LMOD DEBUG

Invoking Debug from /SYS

Usually when your program is executed, quite a number of other modules have already been loaded into your
user region and called in the process of starting and running your job. However, for some reason you may
wish to give Debug control as the the first user program in your user region.

You can do this by specifying a /SYS statement like this:

 /SYS Debug

This tells MUSIC/SP that Debug is to be brought into memory and given control before any other program
gains control in the user region. Note that your user region has already been set up for execution to
commence at the first instruction (usually at hexadecimal location x'1000'). Keep in mind that if you are
running a compiler, not only has the compiler not been started but OS simulation has not even begun.

In most cases, this method of invoking Debug is not very useful, as too much remains to be done before your

 Chapter 10. Utilities - Debug 575

application program gets loaded into memory.

The command "DBG" in *Go mode uses /SYS DEBUG. Running DBG causes Debug to be brought into
memory very quickly. It is equivalent to typing "DEBUG" except for the start-up speed.

Invoking a Compiler

When using a compiler you can Debug your program by specify Debug as an option on the /JOB statement.
After your program is compiled and loaded into memory, but prior to the execution of your program, Debug
is invoked. An example follows.

 /LOAD ASM
 /JOB GO,Debug
 IEFSRBR CSECT
 SR 15,15
 BR 14
 END

 Screen Display

The following diagrams illustrate the two major display modes of Debug. F4 (Flip) is used to go from one
display to the other.

 --------------------------- Debug Facility -------------------------------

 Command ==> _

 Program Status Word:FF250000 40004800 Condition Code:00 Prev Addr:000000

 R0:00000000 00005334 00000000 00000000 00000000 00000000 00000000 00000000

 R8:00000000 00000000 00000000 00000000 00000000 00005500 00004A60 00004800

 Instruction: STM Oper 1: 000000 Oper 2: 00482C

 004800 : 900FF02C 4100F00C 47F0F014 C4C5C2E4 : ..0. ..0. .00. DEBU :

 004810 : C7404040 1B110A08 18EF18F0 980DE02C : G0 q.\. :

 004820 : 50F0E028 47F0EO70 000048C8 000025D0 : &0\. .0\. ...H ...] :

 004830 : 00000C1C 000048C7 00080000 000025D0 :Gu :

 004840 : 00080000 000048C7 00004800 00001120 :G :

 004850 : 0000466C B08813AC 00880850 00000000 : ...% .h.. .h.& :

 004860 : 000042D8 400041C0 00004800 00000000 : ...Q ..[.... :

 004870 : 1B1105EF 0AFF0000 00000000 00000000 : :

 1 : : :

 5 : : :

 9 : : :

 13 : : :

 -------------1:Help 3:End 7:UpMemory 8:DownMemory 4:Flip PA1:Watch-- --------

 2:Run 5:StepPast 12:Step 10:PtData 11:PtInst 9:SetBreak 6:PrevScr

 Figure 10.2 - Debug Memory Display

576 Debug - MUSIC/SP User's Reference Guide

 --------------------------- Debug Facility -------------------------------

 Command ==> _

 Program Status Word:FF250000 40004800 Condition Code:00 Prev Addr:000000

 R0:00000000 00005334 00000000 00000000 00000000 00000000 00000000 00000000

 R8:00000000 00000000 00000000 00000000 00000000 00005500 00004A60 00004800

 Address Instruction Storage Operand 1 Operand 2

 ---> 004800 STM 900FF02C 000000 00482C

 004804 LA 4100F0DC 000000 00480C

 004808 BC 47F0F014 00000F 004814

 00480C ???? C4C5

 00480E ???? C2E4

 004810 ???? C740

 004812 STH 40401B11 000004 005E45

 004816 SVC 0A08 000000 004808

 004818 LR 18EF 00000E 00480F

 brk> 00481A LR 18F0 00000F 004800

 00481C LM 980DE02C 000000 004A8C

 004820 ST 50F0E028 00000F 004A88

 004824 BC 47F0E070 00000F 004AD0

 -------------1:Help 3:End 7:UpMemory 8:DownMemory 4:Flip PA1:Watch-- --------

 2:Run 5:StepPast 12:Step 10:PtData 11:PtInst 9:SetBreak 6:PrevScr

 Figure 10.3 - Debug Instruction Display

COMMAND: Command Line

The Command Line field is used to enter Debug commands, as well as MUSIC commands. MUSIC
commands are distinguished from Debug commands by prefixing them with a slash. Thus, DISPLAY F will
display memory at hexadecimal location 00000F, but /DISPLAY F will attempt to display a file called "F"
on the screen.

PSW: Program Status Word

The Program Status word is used in /370 architecture to keep track of the address of the next instruction, as
well as various flags such as the condition code, etc.

 Program Status Word

 CtlMode Inter- Address of

 Channel Extr PSW MachChk rupt ILC Cond Prog Next

 Mask Mask Key WaitStat Code Code Mask Instruction

 ProbStat

 0->6 7 8->11 12->15 16->31 32->33 34->35 36->39 40->63

 Bit Positions

When a program interrupt occurs, usually the address in the PSW points to the address of the instruction
FOLLOWING the offending instruction. Thus the Instruction Length Count (ILC) can be used to determine
how far backwards to step. The ILC is 1 for a 2-byte instruction, 2 for a 4-byte instruction, and 3 for a 6-byte
instruction.

 Chapter 10. Utilities - Debug 577

Condition Code Field

This field displays the condition code found in the PSW (Program Status Word).

The condition code is set by a variety of /370 instructions, particularly those that are intended to perform
comparisons. Generally speaking, the condition code reflects the completion status of the instruction that set
it. Not all instructions set the condition code, and when one of these instructions are executed, the condition
code remains unchanged.

Instructions that operate on the condition code settings are typically BRANCH instructions. Within these
instructions, there is usually a mask field that corresponds to the various condition code settings.

Previous Address Field

This field displays the previous address that was known to Debug. Various Debug commands cause this
field to be updated. Note that it is not necessarily the address of the previous instruction. However, it it is
sometimes useful, as the POINT command can be used on this field to re-position the memory display.

General Purpose Registers

These fields display the contents of the 16 general purpose registers. These registers are used for arithmetic,
addressing, comparisons, etc. You can change the values in the registers. You can use values in the registers
to "point" (see below) to memory to be displayed. As well, the value in a register can be treated as an
address, and a "break-point" can be assigned to that address using a function key.

When your program is given control the contents of the registers will be set to the updated values. Any
address calculations performed by various instructions are displayed when the instruction is displayed, as in
the Instruct Display mode. Note that R0 is never used in an address calculation.

Memory Display Partially Decoded Instruction

This field displays an instruction that has been partially decoded. The operation code is displayed, and oper-
ands 1 and 2 are shown. Whenever the operand is a register, then register number is displayed. When the
operand is an address reference, then the computed address is displayed.

Note that the displayed address prior to execution may not be the one that is actually used. The address that
is actually used depends upon the contents of any registers involved in the address calculations, and if these
values change, then of course the address will, too.

Memory/Character Display

These fields are used to display main storage and the character equivalent of main storage. Each line repre-
sents 16 bytes of main storage, with 8 lines in total. Thus there are 128 bytes of storage represented on the
display.

The column of hexadecimal numbers on the left-hand side represents the starting address for each line of
data. The 16 bytes are broken up into words of 4 bytes each. The right-hand side of the display shows the
EBCDIC character equivalents of the hexadecimal information in the middle. This, too, is broken up into 4
character chunks for easy alignment.

The location of the next instruction is highlighted, if it is within the 128 bytes of main storage displayed on
the screen. This instruction is determined by the value in the PSW.

578 Debug - MUSIC/SP User's Reference Guide

Note: You cannot modify the character representation of the data, but you can modify the hexadecimal
 representation. Only valid Hex digits are acceptable. If you are viewing memory that you are not
 allowed to modify, any changes that you make to the screen will be ignored.

Map Table Entries

These fields display the Map Table entries. Each entry is a name/address pair that can be used with the Point
function key to position the Memory Display to that address.

Entries can be made in several different ways. First, at start-up time, symbols known to the Loader are
placed into the Map Table. Running from object modules results in all external symbols being placed into
the Map Table, while using the Debug option with XMON results in only the main entry point being placed
into the Map Table.

Second, whenever modules are loaded using the LOAD SVC, their name and address are placed into the Map
Table. This is done automatically by Debug.

Third, you can make explicit entries into the Map Table with the ENTRY command.

Floating Point Registers

These fields display the contents of the 4 floating point registers. These registers are used for floating point
arithmetic exclusively, and since most machine language programs rarely use them, their display is optional.
They are displayed in place of the Map Table, when the FLOAT command is issued.

As with the general purpose registers, you can alter the values in the floating point registers. When your
application program resumes, the updated values will be placed in floating point registers.

Note that whatever values are placed here are NOT normalized. In order to do this, you must input them as
such, or use an instruction that does this, if you so desire.

Instruction Display

These display partially disassembles instructions and displays them, one per line. As well, operands 1 and 2
are displayed. In the case of a storage to storage instruction, the source and target addresses of the instruc-
tion are displayed. You can alter the instruction, and pressing ENTER will display the new instruction. This
display mode is ideal for learning about instructions at the machine level, and stepping through a program
instruction by instruction.

An arrow points to the next instruction to be executed. If a breakpoint is visible on the display, it is indicated
by "brk>" (see figure 10.3).

 Other Topics

Hex Addresses and Numbers

Hexadecimal numbers consist only of the hexadecimal digits 0 through 9 and A through F. Using any other
characters in a hexadecimal parameter constitutes an error. Leading zeros need not be used. Floating point
and general purpose registers must, however, be completely filled with hexadecimal digits. This also applies
to memory fields. No leading or embedded blanks are acceptable.

 Chapter 10. Utilities - Debug 579

Hexadecimal addresses have a maximum length of 6 digits, due to the 370 architecture. Examples:

 0b312f and 000100 are valid addresses
 but 0x0359 is not valid: 'x' is not a hexadecimal digit
 0067359 is not valid: it is greater than 6 digits in length

Commands where hexadecimal parameters are used: Break, Delete, Display, Entry, Find, and Go.

Calculator Function

Debug has a built-in hex calculator function. As well as maintaining a separate arithmetic symbol table, it
will search the Map Table, and use any symbols there in calculations. Addition, subtraction, multiplication
and division are supported. Decimal to hexadecimal conversion can also be performed. You can use
constants or symbols, and can create new symbols. The Program Status Word and registers are automatically
entered in the calculator symbol table, so that you can use them in calculations. (Note that only the address
portion of the PSW is used.)

You can either use the CALC command (described below) or simply enter an arithmetic expression. If
Debug doesn't recognize text entered on the command line as a command, it checks to see if it is a valid
arithmetic expression or assignment statement. If so, it will perform the indicated operation.

This function can be extremely handy. You can calculate an address and store it. With a number of
commands that refer to memory, you can use a stored symbol instead of a hexadecimal constant.

PI: Program Interrupts

Program interrupts are error conditions that the machine cannot handle. For example, an operation exception
means that the operation code wasn't recognized by the processor. Here are the program interrupts that
Debug recognizes:

01- operation exception 09- fixed point divide exception
02- privileged operation exception 10- decimal overflow exception
03- execute exception 11- decimal divide exception
04- protection exception 12- exponent overflow exception
05- addressing exception 13- exponent underflow exception
06- specification exception 14- significance exception
07- data exception 15- floating point divide exception
08- fixed point overflow exception

The causes of PIs are sometimes easy to determine, and sometimes difficult Usually, a protection exception
is easy, since the instruction obviously references protected memory. Debug displays the offending instruc-
tion. However, an operation exception may be more difficult, as you may have branched to location 0
(usually a bad address in your program).

Format of Integer Numbers

The general purpose registers are used to store the 2's complement representation of integer numbers. On
/370 computers, integers are represented in a binary code that incorporates the sign of the number. The lead-
ing bit is termed the "sign bit" and is 0 for a non-negative number and 1 for a negative number. The remain-
ing 31 bits determine the absolute value of the number, in 2's complement.

580 Debug - MUSIC/SP User's Reference Guide

 sign
 bit binary representation of the number

For example, the number "-1" is represented in hexadecimal by "FF FF FF FF", while the number 1 is repre-
sented by "00 00 00 01".

Format of Floating Point (Real) Numbers

The floating point registers are used to store the binary representation of real numbers. On /370 computers,
real numbers are represented in a manner akin to scientific notation, whereby the significant digits are repre-
sented in fixed precision and the position of the decimal point is determined by an exponent.

 sign 7 bit 56 bit mantissa giving
 bit
 exponent the significant digits

If the number is negative, the sign bit is 1; otherwise it is 0. The 7-bit exponent is a biased exponent with 64
or x'40' being the zero point. When the exponent is x'40' then no shift in the position of the decimal point
occurs. For example, 40 10 00 00 00 00 00 00 represents the number '1'.

The mantissa is usually normalized leftwards to the nearest hex digit although there exist instructions which
perform unnormalized arithmetic.

Command Files

A Debug "command file" is simply a file containing Debug commands. Debug can read these files and
execute the commands automatically. Debug can have an initial command file for running at start-up and
other command files can be executed during debugging.

Comments are denoted by an asterisk in the first column. Debug commands can be in either upper or lower
case. MUSIC commands may be issued as well.

Although you cannot change the memory display in this mode, you can assign values to registers (eg. R2 =
AOA), change the PSW, and alter memory via the REP command (see below).

Initial Command File
 When Debug starts up, it checks for a /FILE statement with a ddname of "DBGCMD". If found,
 commands read from this file are executed prior to passing control to the user. Thus, this file can be
 used to perform a number of repetitive tasks prior to the user gaining control.

Command Files
 Debug can execute a file containing Debug commands as well as executing them at start-up. At
 start-up, if Debug finds a DDNAME "DBGCMD", it reads this file and executes each command,
 before passing control to the user. With the command file facility, you can cause Debug to go out to
 a MUSIC file and dynamically execute the commands contained in that file. You instruct Debug to
 do this by prefixing the file name with a percent sign ('%') as follows:

 Chapter 10. Utilities - Debug 581

 Command ===> %gork

 This causes Debug to read and execute the commands contained in GORK.

 Function Keys

F1: Help provides context sensitive and field sensitive help

F2: Run execute program: break-points are honoured, and errors are intercepted and
 displayed

F3: End immediate exit back to *Go mode: the program that is currently being debugged is
 terminated, and all files are closed.

F4: Flip flips display mode from INSTRUCT to MEMORY

F5: StepPast the instruction pointed to by the PSW is executed, but the BAL and BALR instruc-
 tions are not treated as branches. The effect is that all instructions in a subroutine
 executed using StepPast are not traced. Break-points are honoured, and errors are
 intercepted and displayed. Placing the cursor on an instruction in the Instruction
 Display causes the application program to run until it reaches that point.

F6: PrevScr displays the previous user program screen. Pressing Enter returns to the Debug
 display.

F7: MemUp previous page of memory locations is displayed

F8: MemDown next page of memory locations is displayed

F9: Break a break-point is installed at the indicated storage location or at the indicated address
 if the cursor is placed on a register; if a break-point is already set for that address it
 is deleted

F10: Point Data value at the cursor position becomes the start of the display, in the Memory Display
 mode

F11: Point Instruction value at the cursor position becomes the start of the display, in the Instruction
 Display mode

F12: Step the instruction pointed to by the PSW is executed

PA1: Attn When your program is running (when you are not displaying a Debug panel) your
 workstation enters Attention Mode. By pressing PA1 again, your application
 program is suspended and Debug is given control. However, the exact point at
 which your program will be interrupted is unpredictable.

PA1: Watch when in Debug, this switches to the watch display. See the discussion on Watch
 Variables for more about this.

582 Debug - MUSIC/SP User's Reference Guide

 Debug Commands

Most Debug commands provide some sort of message. Commands are not remembered unless you prefix
them with an asterisk ("*"). In this case, the command remains on the command line and can be re-issued
repeatedly.

The following lists Debug commands in alphabetical order.

Attn This command allows you to enable or disable the PA1 interruption facility of Debug.
 ATTN causes Debug to honour PA1 interruptions and to seize control from the application.
 NOATTN disables this, so that if your program is looping, you cannot re-gain control in
 Debug.

Break This command allows you to specify where execution of your program should be inter-
 rupted, with control being passed to the Debug facility. You specify the address of the
 BEGINNING of the instruction; prior to executing this instruction you are placed into the
 Debug display. At this point, you can alter storage, PSW, and registers, if you wish. To
 resume execution, use the GO , Step , or the StepPast commands.

 In the Instruction Display, the characters Brk> are displayed next to a breakpoint. Usage:

 break xxxxxx

 where xxxxxx is the hexadecimal address or symbol where execution is to be interrupted, or a
 Map Table label.

 You can set a break-point by placing the cursor at the memory location and pressing F9. As
 well, the value in a register can be used to set a break-point via F9. In this case, the address
 value in the register is used.

Calc Hexadecimal calculations can be performed using the CALC command. Additionally, vari-
 ables can be set and used in calculations. Pre-defined variables for the PSW and registers
 are: PSW, R0, R1, ..., R15. Expressions can be evaluated and the results displayed.

 The syntax of a hex calculation is simple. An expression consists of 1 or 2 operands. The
 allowed operators are: +, -, *, /. A decimal value can be indicated by a number sign (#) for a
 decimal constant. No parentheses are allowed. You can assign either a constant, a variable,
 or an expression to a variable. Note that either or both operands in an expression may be
 variable. Examples of valid commands are:

 calc PSW = 5000 + R15
 calc R2 + #100
 calc R14 = R2 + R3
 calc 48F0 + CD

 In some cases you can leave out "calc". Debug recognizes that you are requesting a calcula-
 tion when you use an equal sign (=) or an arithmetic operator (+, -, *, /) in the correct posi-
 tion. In all of the above examples, "calc" was not necessary.

Delete This command allows you to remove a breakpoint that you have set using the Break
 command. This is useful when you no longer wish control prior to executing the instruction
 at this address; for example, you may have stopped execution within a loop and now wish to
 stop after the loop has been completed. Usage:

 delete xxxxxx

 Chapter 10. Utilities - Debug 583

 where xxxxxx is the hexadecimal address of the breakpoint to be removed.

Display This command allows you to view memory starting at the address that you specify in the
 command. Depending up the display mode that you are in the Debug display will present
 you with either a memory/character display, or a partial disassembly display. When you
 request that storage be displayed for which you are not allowed to see (typically system stor-
 age after your user region), then the message "Display address out of range" will be
 presented. Usage:

 display xxxxxx

 where xxxxxx is the hexadecimal address of the beginning of storage to be displayed, or a
 Map Table label or symbol.

Down This command allows you to scroll the memory display down by 4 bytes. That is, the start-
 ing address will be incremented by 4 and the display updated. This can be useful in conjunc-
 tion with the * operator; placing an asterisk (*) in front of the any command causes that
 command to remain in the command area. In this case, it allows you to step through
 memory 4 bytes at a time.

Dump This command allows you to display storage, registers, or a traceback in line-by-line mode,
 suitable for capturing via the /RECORD command. The "instruction" option generates a
 partial disassembly of storage instead of a storage dump. Usage:

 dump regs
 traceback
 address length (instruction)
 address1-address2 (instruction) - optional

End This command causes Debug to return control immediately to *Go mode in MUSIC. This is
 equivalent to pressing F3 (Exit).

Entry This command allows you to enter a named address into the Map Table. You associate a
 name of 8 characters or less and a hexadecimal address together, and this pair is placed in
 the Map Table. You can use the Locate command to search for the name, as well as the
 Point function key to display that address in the memory display. Once entered into the Map
 Table, it cannot be removed. Usage:

 entry nnnnnnnn xxxxxx

 where nnnnnnnn is the name (max 8 characters) of the hexadecimal address xxxxxx to be
 entered into the Map Table.

Find This command searches for character or hexadecimal strings in memory. The default search
 is carried out over 4096 bytes of memory, starting from the first address displayed. If you
 wish, you can specify a length for the search (which can be greater or shorter than 4096
 bytes). Character search strings must be enclosed in quotes; for example, find 'program'. If
 the search parameter is not enclosed in quotes, then it is assumed to be a hexadecimal string.
 Usage:

 find 'ssssss' length
 or find xxxxxx length

 where xxxxxx is the hexadecimal search string, 'ssssss' is the character search string, and
 length is an optional specification that controls how many bytes are searched

584 Debug - MUSIC/SP User's Reference Guide

First This command displays the first page of entries in the Map Table. You can also page up and
 down using the MapUp and MapDown commands, but these commands are usually used
 from the function keys. Use the Last command to go to the bottom of the Map Table.

Fixup By default, if a program interruption occurs, Debug adjusts the Program Status Word to
 point to the instruction in error. However, the /370 hardware architecture has the next
 instruction address in the Program Status Word pointing after the instruction in error. In
 most cases, you would want Debug to perform the address fixup for you.

 In case you don't wish this to be so (teaching /370 architecture, for example) issue the
 FIXUP command. This command toggles the address fixup for program interruptions
 between the default mode (Debug performing the address fixup in the PSW) and the /370
 hardware architecture mode (the address in the PSW is of the instruction after the instruction
 in error).

Flip This command toggles the display mode from the Memory Display (which shows the
 contents of main memory, the EBCDIC equivalents, and the Map Table), and the Instruction
 Display (which shows a partial disassembly of machine language instructions), at the current
 starting position. This is usually used via a function key.

 The individual commands that specify screen modes are: Memory, Instruct, and Float.

Float This command removes the Map Table and displays instead the floating point registers.
 These may be altered just as the general purpose registers can be, but they may not be used
 for addressing with Point. To restore the Map Table, use Map or Memory .

GetMap This command retrieves the symbols from a Linkage Editor map file, and places the symbols
 into the Map Table. You specify the filename and optionally an offset value which will be
 added onto the address of each symbol entered into the Map Table. The default value is 0 if
 no offset is specified. Usage:

 getmap aaaaa nnnn

 where 'aaaaa' is the filename to be read and 'nnnn' is the offset value. Note that you should
 save the map file from the linkage edit by using a /FILE statement for unit 6 (see "Linkage
 Editor" in Chapter 8 for more information about the Linkage Editor).

Go This command starts executing instructions either at the current address in the Program
 Status Word, or at an address that you can optionally specify on the command. Instructions
 are executed without intervention from Debug, so that your program can "get away" from
 you if you have not carefully set break-points. (However, you can always re-gain control by
 using PA1.) All break-points are set prior to returning control to your application. Usage:

 go xxxxxx

 where xxxxxx is an optional hexadecimal parameter indicating where execution is to
 commence, the default being the current instruction pointed to by the PSW

Instruct This command switches the display mode to the Instruction Display, featuring a list of
 partially disassembled instructions instead of the hexadecimal/character memory display.
 Although you can issue this command explicitly, it is usually easier to toggle the display
 mode using the program function key defined for it.

IntPSW This command allows you to specify whether the current instruction should be displayed on
 the screen. It works slightly differently depending upon the display mode that you are in.
 See the ScrUpd command as well, as this interacts with IntPSW.

 Chapter 10. Utilities - Debug 585

 In the Memory Display IntPSW causes the current instruction pointed to by the PSW to be
 partially disassembled, and placed on the line above the display of memory. NoIntPSW
 causes the first storage location display to be interpreted as an instruction, partially disas-
 sembled, and placed on the line above the display of memory.

 In the Instruction Display IntPSW causes the current instruction pointed to by the PSW to
 be shown on the screen, when Debug initially re-gains control from the program being
 debugged. NoIntPSW causes the screen to remain "as-is". Usage:

 intpsw
 or nointpsw

Last This command displays the last page of entries in the Map Table. You can also page up and
 down using the MapUp and MapDown commands, but these commands are usually used
 from the function keys. Use the First command to go to the top of the Map Table.

LdLibDir This command sets the starting address of the memory display to the in-core System Load
 Library directory. Note that the CREAD privilege is required. If you do not have this privi-
 lege, the message "Illegal Command" will be issued.

Locate This command searches for a named address (symbol) in the Map Table. If found, the start-
 ing position of the Map Table is adjusted so that this name/address pair is in the top left-hand
 position of the Map Table display. Note that you can use Point on any symbol in the Map
 Table. As well, to make new entries in the Map Table use the Enter command. Usage:

 locate cccccccc

 where cccccccc is the symbol name (max 8 characters) to be searched for in the Map Table

LPADir This command sets the starting address of the memory display to the in-core Link Pack Area
 directory. Note that the CREAD privilege is required. required. If you do not have this
 privilege, the message "Illegal Command" will be issued.

MapDown This command moves the Map Table display down by 1 page. This is useful to scroll down
 among the map entries, break-points and ENTRY labels in the Map Table display.

MapUp This command moves the Map Table display up by 1 page. This is useful to scroll up among
 the map entries, break-points and ENTRY labels in the Map Table display.

MemDown This moves the Memory Display down by 128 bytes. In other words, hexadecimal 0x80 is
 added onto the starting memory display address. This command is used to scroll down
 through main memory.

Memory This command switches the display mode to the Memory Display, featuring a hexadecimal/
 character display of main storage, as well as the Map Table at the bottom of the display.
 Although you can issue this command explicitly, it is usually easier to toggle the display
 mode using the program function key defined for it.

MemUp This moves the Memory Display up by 128 bytes. In other words, hexadecimal 0x80 is
 subtracted from the starting memory display address. This command is used to scroll up
 through main memory.

NextInstr This command scrolls the display down by 1 instruction. This can be either 2, 4 or 6 bytes,
 depending upon the current instruction in the starting position of the display. This is useful
 when "stepping through" a program without actually executing instructions.

586 Debug - MUSIC/SP User's Reference Guide

NucMap This command sets the starting address of the memory display to the in-core Nucleus Map.
 Note that the CREAD privilege is required. If you do not required. have this privilege, the
 message "Illegal Command" will be issued.

PITrap A PI (Program Interrupt) occurs due to some condition that the machine is unable to handle,
 such as a division by 0, an invalid operation code (bad instruction), or invalid address.
 PITRAP sets a mode of operation that causes MUSIC/SP to transfer control to Debug when-
 ever a program interruption occurs. Note that with some programming languages, this may
 inhibit error recovery or localization, since the programming language may have its own
 interruption handler (eg. VS/FORTRAN).

 In this case, the NOPITRAP command should be used once at start-up. This causes Debug
 to tell MUSIC/SP to pass control to any application interrupt handler, whether from a high
 level programming language or not, when a program interruption occurs. Note that the
 address for such a routine is usually specified via a SPIE (Specify Program Interrupt
 Element) or STAE (Specify Task Abnormal Exit) Assembler macro instruction. to store and
 keep its address there.

 With judicious setting of break- points, you can debug an interrupt handler routine using
 Debug. Simply set a breakpoint at the beginning of the interrupt handler, and specify
 NOPITRAP. When your interrupt handler gains control, specify PITRAP again in order to
 recover from any program interruptions within the interrupt handler.

Point This command is an extremely effective method of following address pointers to their
 targets. The Point command requires that the cursor be placed upon a "pointable" item, such
 as a general purpose register, the PSW, the Previous Address field, a word in the memory
 display, an address in the column of addresses, or a Map Table entry. The address at the
 field where the cursor is positioned is used as the starting address for the Memory display.
 In other words, the address is used to "point" to the next address to be displayed.

ReadBuf This enables the refresh of the previous user program screen (by default, this is enabled).
 NOREADBUF disables this mode of operation. Use these commands in cases where you
 need to control when this function is preformed (typically, on devices where this is not
 supported or is slow).

REFLECT This command affects the manner in which Debug deals with SVC (Supervisor Call) instruc-
 tions. "REFLECT" refers to a performance feature in OS simulation called "fast
 REFLECT". This feature inhibits presenting SVCs numbered 126 and higher to the OS
 simulation module, as these SVCs are not standard OS SVCs but rather are MUSIC/SP
 SVCs. The REFLECT command sets this mode of operation.

 NOREFLECT disables this mode of operation. In this operating mode, all SVCs are
 presented to the OS simulation module, which in turn may decide to issue a MUSIC/SP
 SVC. Basically, this means that all SVCs on MUSIC/SP can be seen by Debug, as opposed
 to only OS SVCs during OS simulation. This mode (NOREFLECT) is the default.

 This command interacts with the TrapSVC command (see below).

REP This command allows you to alter storage, starting a specified location. The syntax is:

 REP xxxxxx sss...ss

 where xxxxxx is the address in hexadecimal of where storage is to be altered, and sss...ss is a
 hexadecimal string that will be placed in storage. Examples:

 rep 4800 0700

 Chapter 10. Utilities - Debug 587

 rep 005000 47000000

 Both examples insert NO-OP instructions at locations 4800 and 5000 respectively.

Screen Displays the previous user program screen, with a few restrictions. First, it will not display a
 Debug screen. Second, if you are single stepping through your program, actions that your
 program takes that alters the screen will not be preserved. This last restriction is intended to
 avoid congesting the channel, and to keep Debug's response time low for single step mode.
 If you TRACE your program, the last page full of traced instructions can be viewed. Press-
 ing Enter returns to the Debug display. See also ReadBuf.

ScrUpd This command allows you to control the manner in which the screen is updated. The default
 is that ScrUpd is false; in other words, the memory display is altered only with the Display
 or Point commands, in Memory Display mode. In the Instruction display, however, the
 screen is updated when the current instruction is no longer on the screen. (However, the
 IntPSW command also interacts with the ScrUpd command.)

 When ScrUpd is specified, Debug calculates the first memory display position as the address
 in the PSW (Program Status Word). Therefore, when you are using Step or StepPast to step
 through your program, the current instruction is always at the top of the memory or instruc-
 tion display. This can be useful, but under most circumstances, the default settings are more
 desirable.

Step This command allows you to single step through an application program being debugged.
 Pressing the Step function key causes the instruction currently pointed to by the PSW to be
 executed, with control immediately returning to Debug.

 In certain cases, you need to understand how Debug does this. After the instruction to be
 executed, Debug inserts a special SVC. When that SVC instruction is executed, Debug
 intercepts it and recognizes that a break-point has been encountered. This approach can
 cause your application program being debugged to fail strangely, in the case where it
 depends upon data immediately following the instruction. Note that if the instruction can
 cause branching, Debug puts these SVCs at both the success and failure targets of the
 branch.

StepPast This command allows you to single step through an application program being debugged.
 Pressing the StepPast function key causes the instruction currently pointed to by the PSW to
 be executed, with control immediately returning to Debug. In certain cases, you need to
 understand how Debug does this. After the instruction to be executed, Debug inserts a
 special SVC. When that SVC instruction is executed, Debug gains control and recognizes
 that a break-point has been encountered. This approach can cause your application program
 being debugged to fail strangely, in the case where it depends upon data immediately follow-
 ing the instruction.

 If you place the cursor on an instruction on the Disassembly Display panel, StepPast will
 execute up until that instruction. Thus, multiple instructions can be skipped, in addition to
 subroutine calls. This can be regarded as setting one temporary break-point. Note that
 control has to reach that instruction, since placing the cursor in that position does not make
 the program that you are debugging go there, if it would not normally go there. Thus you
 should be careful when subroutine calls and conditional branches are among the instructions
 that you are skipping.

 A situation where this is useful is when you wish to pass quickly over debugged code.
 Another situation might be the case of a long loop which you wish to skip over; placing the
 cursor at the instruction after the loop and issuing the StepPast command allows you to do
 this.

588 Debug - MUSIC/SP User's Reference Guide

 Note that StepPast is similar to Step, except in dealing with BAL and BALR instructions.
 These instructions are used for subroutines calls; Debug places breakpoint SVCs only after
 the instruction (or where you place the cursor). Thus the subroutine is executed before
 control returns to Debug.

Top scrolls the map display up to the 1-st entry

Trace This command initiates "instruction tracing", which basically displays a message about each
 instruction as it executes on the workstation. This is useful in the case where you wish to see
 the instructions that are being performed, but don't wish to use Step or StepPast due to the
 number of instructions to be executed. An optional parameter allows you to specify how
 many instructions are to be traced; the default is 20 instructions (a screen-full). If you spec-
 ify 0, then there is no limit to instruction tracing and it will halt only on a PI (Program Inter-
 rupt) or when control transfers to protected storage (and therefore a break-point cannot be
 set!).

 An useful approach is to trace instructions with /RECORD NEW or ON. This provides you
 with the opportunity to display the instruction trace and compare it with the program that
 generated it. Usage:

 trace nnnn

 where nnnn is the number of instructions to trace. Use the TRACE parameter of the Debug
 command to suppress the display of traced instructions on the display screen.

TrapSVC This command intercepts SVCs (Supervisor Call instructions), and causes Debug to display
 the current debugging screen with the message 'SVC Intercepted'. It functions only when
 SVC trapping is operating (normally when OS simulation is active).

 There are basically two forms of SVC trapping: selective and complete. Selective trapping
 allows you to indicate that specific SVCs only are to be trapped. Complete trapping inter-
 cepts almost all SVCs. Note that the REFLECT/NOREFLECT command interacts with this
 command in that it controls which SVCs can be seen by user region programs such as
 Debug.

 The TrapSVC command accepts various parameters. They are

 trapsvc nn causes hexadecimal SVC number "nn" to be intercepted. In the case where
 "nn" might not be interpreted as a hexadecimal number, prefix it with a lead-
 ing zero (eg. "0nn"). Note that you can specify as many SVCs as you wish
 to be trapped; all of these selections will remain valid until you reset them.
 This command implies "trapsvc on" and "trapsvc select".

 trapsvc all causes all SVCs to be trapped. Note that "trapsvc on" is implied. See also
 "trapsvc select".

 trapsvc on causes SVC trapping to be turned on. This enables SVC trapping for all
 SVCs. This implies "trapsvc all".
 trapsvc off causes SVC trapping to be turned off. Any SVCs that were previously
 selected remain selected, although they will not be trapped (your list of
 SVCs to be trapped is still valid). To re-enable trapping of these SVCs,
 specify "trapsvc on". To completely reset trapping for all SVCs, specify
 "trapsvc reset". The start-up state can be restored by specifying: reset, all,
 off.

 trapsvc select causes SVC trapping to be performed only for previously specified SVC

 Chapter 10. Utilities - Debug 589

 numbers. You can switch between trapping all SVCs (trapsvc all) and trap-
 ping only SVCs that you have individually specified (trapsvc select). Note
 that this implies "trapsvc on".

 trapsvc reset causes the list of previously selected SVCs to be cleared. Note that this does
 not affect whether SVC trapping is enabled or note. To turn SVC trapping
 off, specify "trapsvc off".

Up This command allows you to scroll the memory display up by 4 bytes. That is, the starting
 address will be decremented by 4 and the display updated. This can be useful in conjunction
 with the * operator; placing an asterisk (*) in front of any command causes that command to
 remain in the command area. In this case, it allows you to step up through memory 4 bytes
 at a time.

VIP This command informs Debug that it can take advantage of the user's VIP privilege. Note
 that this privilege must be acquired prior to starting Debug. However, Debug will not allow
 stores into protected storage until you specifically tell Debug to do so via this command.
 This protects you from accidentally altering sensitive areas in storage without realizing it.

 Normally, you enable VIP, perform your alterations, and disable VIP again by re-issuing the
 VIP command. Debug tells you whether you are enabling or disabling VIP mode explicitly,
 after you issue the command.

Watch This command switches the display to the WatchPoint panel. See the discussion on watch-
 points for more information.

 WatchPoint Facility

A "watchpoint" is an area in storage that is monitored, even when your program is running. When it is
altered, your program is interrupted. Debug has the ability to monitor watchpoints and to interrupt execution
when one changes. You access the Display WatchPoints screen (Figure 10.4) via PA1 when in Debug's
instruction or data displays. You can change the watched storage, in one of 3 formats: CHAR, INT, and
HEX. You can add, delete, and toggle the watchpoints between active and inactive. You provide any name
for the watchpoint; Debug uses this name when it reports a change to the watchpoint.

Whenever Debug gains control, it automatically checks the watchpoints and informs you of the first watch-
point to have changed. Thus, Debug checks this on breakpoints, SVCs, and traced instruction boundaries.
Execution of your program is suspended if it was in progress.

In order to check on a watchpoint, Debug must be in control. The process of being passed control and check-
ing the watchpoint may require several hundred machine language instructions (at least). This can have a
significant effect on the execution speed of your program.

If you elect to check watchpoints after every instruction, then you will be slowing down your program by a
factor of several hundred or so. However, you will identify the exact instruction that changed the watch-
point.

If you elect to check watchpoints after ever branch instruction, given that branches occur on average every 5
to 10 machine instructions, your program may run 5 to 10 times faster than the preceding case. The disad-
vantage, of course, is that you cannot identify precisely where the change to the watchpoint occurred (but it
will be within a few instructions).

Checking watchpoints at every SVC has essentially no impact on execution speed. However, you may find
that this is of little help in pinpointing where the watchpoint changed. Keeping in mind that tens of

590 Debug - MUSIC/SP User's Reference Guide

thousands of instructions may be executed between SVC instructions, you can see that this option is some-
times useless.

The following screen is displayed when you press PA1 from the main Debug display:

 -------------------------Debug: Display WatchPoints -------------------------

 Command ==> _

 Inspect Watchpoints at each Instruction (one of: Instruction/Branch/SVC)

 Name Location Length Type Contents of Memory Location

 | | | | |

 | | | | |

 | | | | |

 | | | | |

 | | | | |

 | | | | |

 | | | | |

 | | | | |

 | | | | |

 | | | | |

 | | | | |

 | | | | |

 | | | | |

 | | | | |

 -- ---------------------------

 2:Exit/Run 3:Exit 9:Inspect 6:Del WP 10:Add WP 7:Up 8:Down 4:Act/Inact

Figure 10.4 - Displaying Watchpoints

On the Display WatchPoints screen (figure 10.5) you can view and change the information that is displayed.
Up to 200 watchpoints can be added.

Function Keys

F2: Exit/Run executes your instructions immediately.

F3: Exit returns to the main Debug display.

F9: Inspect instructs Debug when to check watchpoints; at each instruction, branch, or SVC. In terms of
 CPU and elapsed time, the Instruction and Branch choices slow down your program signifi-
 cantly.

F6: Del WP deletes the watchpoint that your cursor points to.

F10: Add WP goes to the Add Watchpoint panel for adding new watchpoints.

F7: Up moves up by one screen.

F8: Down moves down by one screen.

F4: Act/Inact leaves a watchpoint definition there, but renders it inactive. To re-activate it press F4 again.
 Active watchpoints are highlighted on the screen, while inactive ones are not. When there
 are no active watchpoints, Debug does not stop your program to check on them; and so

 Chapter 10. Utilities - Debug 591

 execution speed is not affected by inactive watchpoints.

Adding a WatchPoint

 ------------------------Debug: Add WatchPoints ---------------------------

 Command ==> _

 Type in values and press ENTER

 Required:

 Variable Name ===> (name of the area of storage to watch)

 Location ===> (address of the storage area in hexadecimal)

 Optional:

 Length ===> (length of WatchPoint, in decimal or hex(xlac))

 Type ===> (data type: INT, HEX, or CHAR)

 Defaults: Hexadecimal, length 8

 -- ---------------------------

 Enter:Process new entry 3:Exit Enter WatchPoint

 Figure 10.5 - Adding Watchpoints

 To add a watchpoint, enter an arbitrary name (Debug uses this to report the status of the watchpoint) and
 an address. Length and type are optional; the default is hexadecimal type of length 8. The length may be
 entered in hexadecimal; in this case, preface the hex length with an x (i.e. x1AC). Press ENTER after you
 have typed all of your specifications.

 Repeat this for as many watchpoints as you require. Then press F3 to exit this panel, and return to the
 Display Watchpoint panel (Figure 10.4), where you should see the watchpoints that you have just entered.
 By default, they are set to "active" status.

592 Debug - MUSIC/SP User's Reference Guide

 DSCOPY
———————————————
 Copying one UDS File To Another - DSCOPY

The DSCOPY utility program copies from one User Data Set (UDS) file to another. Both UDS files should
have the same record size (RSIZ). Use the UTIL program to do the copy if the record sizes are not the same.

The input data set is defined on unit 1 and should be specified as SHR. The output data set is defined on unit
2 and must be specified as OLD or NEW.

The program is invoked by:

 /FILE 1 UDS(fromdsname) VOL(volume) SHR
 /FILE 2 UDS(todsname) VOL(volume) OLD
 /INCLUDE DSCOPY

The copy operation is done rapidly by copying multiple blocks of the file at a time, rather than record by
record. Normally the two data sets are equal in size. If the receiving data set is smaller, a warning is issued
and as many blocks as possible are copied. (A block is 512 bytes.)

 Chapter 10. Utilities - DSCOPY 593

 DSLIST
———————————————
The DSLIST program is used to produce an alphabetical list of all the User Data Set (UDS) files that you
currently own. The listing can be displayed on your workstation or it can be written on unit 10 for subse-
quent saving as a file. (You can use the LIBRARY command to get a listing of the files that you currently
own.)

The program is invoked by:

 DSLIST

or through a file like the following, called SAMPLE

 /INCLUDE DSLIST
 OUTPUT=n

where n is the output unit number. (For example, OUTPUT=10.)

 Examples

 dslist
 *In progress

 DATA SETS FOR CODE ABCD 31JUL73 3 DATA SETS 40 TRACKS

 DSNAME VOLUME LRECL TRKS NREC CREATED LASTREF

 ABCDFIL1 MUSIC1 80 20 2400 25JUL73 31AUG73
 ABCDFIL2 MUSIC2 80 10 1200 01JUL73 15DEC74 BACKUP
 ABCDLMOD MUSIC2 128 10 800 31JUL73 07APR75

 *End
 *Go
 /input
 /inc dslist
 output=10
 /endrun
 *In progress

 DATA SETS FOR CODE ABCD 31JUL73 3 DATA SETS 40 TRACKS
 *End
 *Go
 save mylist,sv
 *In progress
 SAVED, 3 RECORDS
 *End
 *Go
 list mylist
 *In progress
 ABCDFIL1 MUSIC1 80 20 2400 25JUL73 31AUG73
 ABCDFIL2 MUSIC2 80 10 1200 01JUL73 15DEC74 BACKUP

594 DSLIST - MUSIC/SP User's Reference Guide

 ABCDLMOD MUSIC2 128 10 800 31JUL73 07APR75
 *End
 *Go

 Chapter 10. Utilities - DSLIST 595

 DSREN
———————————————
 UDS Rename Program

The DSREN program allows users to change the name of their UDS files. This rename function for UDS
files is similar to the RENAME command that applies to your files. For system security reasons, you must
run this program from a workstation and NOT from batch. Additionally, you can only rename files that
belong to you.

The contents of the UDS file is not altered by the rename function. The new name that you assign to your
file must conform to the usual UDS naming conventions discussed under the /FILE statement. The rename
operation will be rejected if one of your files already exists with that name and is located on the same disk
volume.

 Using DSREN

The rename program is invoked by simply typing DSREN when your workstation is in command (*Go)
mode. (Some installations may require you to type in the full command form of /EXEC DSREN.)

The DSREN facility will ask you to specify the disk volume name, and the old and new data set names.
These three items must be enclosed in single quotation marks as in the example shown below:

 VOL='MUSIC1',OLDNAM='dsname',NEWNAM='dsname'

After the rename operation is completed, you may enter information for another rename operation. When
you are finished all the rename operations simply enter a blank line or type /CANCEL.

 Non-Conversational DSREN

Normally you run the DSREN program conversationally, that is, the rename information is typed in when the
program is running. You may also use this facility with a previously prepared list of rename operations as
shown below:

 /INCLUDE DSREN
 VOL='MUSIC1'.... etc
 VOL='MUSIC1'.... etc

The above control statements may be saved in a file for more convenient usage at a later time.

You may also use a INPUT=n option to direct the rename program to read the rename data from MUSIC I/O
unit number n. This INPUT specification may be entered at the time you would normally enter the rename
information. This option is useful when the rename data is to be read from a UDS file. An appropriate
/FILE statement must appear before the /INCLUDE DSREN control statement if the input is being taken
from a UDS file.

596 DSREN - MUSIC/SP User's Reference Guide

 ENCRYPT/DECRYPT
———————————————
ENCRYPT and DECRYPT are two programs that respectively encrypt (code) and decrypt (de-code) files to
provide added security. When you encrypt your files you are prompted for a 1 to 8 character password. To
decipher the encrypted data you must use the identical password. You must therefore keep careful track of
which password is associated with each file.

The ENCRYPT program randomly exchanges characters resulting in an unintelligible document. To restore
your file to its original form, use the DECRYPT program along with the encryption password for that file. If
you forget or lose the password for an encrypted file, you have essentially lost the contents of that file.

The files can have a fixed or variable record format fixed and can be compressed or uncompressed. The
record length of the file can be from 1 to 32760 bytes.

 Parameters

infile is the input file to be encrypted.

outfile is the output file to which the encrypted data is written.

PW(password) is the encryption/decryption key used to perform the respective function. The same pass-
 word must be used for ENCRYPT and DECRYPT.

REPLACE(xx) where xx is ON or OFF. When REPLACE is on, the output file is replaced without verifica-
 tion, if it exists. If no output file is specified then the input is replaced. The default is
 REPLACE (OFF).

 Note: For the replace keyword any abbreviation is acceptable, for example all of these are
 correct:

 r(on), re(on) repl(on), replace(on) etc...

Examples

1. In this example WORK is the input file and WORK1 is the encrypted output file.

 ENCRYPT work work1

 After entering the above, you are prompted for a password, and if WORK1 already exists you are asked
 if it should be replaced.

2. This example deciphers the data in WORK1 and creates WORK2. You will be prompted for the
 encryption password, but will not be asked if you wish to replace WORK2 should it exist.

 DECRYPT work1 work2 REPL(ON)

3. In this example an output file name is not provided and the password is added. In this case, you are not
 prompted for a password, but you will be asked if you wish to replace the input file WORK.

 ENCRYPT work PW(tpsecret)

 Chapter 10. Utilities - ENCRYPT/DECRYPT 597

Return Codes

In order to assist you in using ENCRYPT and DECRYPT from programs such as REXX the following codes
are returned upon termination of the respective program.

 0= normal return
 1= error in opening input file or RECFM is U
 2= error invalid parameter specification.
 3= error in the encryption/decryption routine.

598 ENCRYPT/DECRYPT - MUSIC/SP User's Reference Guide

 EXARCH and EXREST
———————————————
EXARCH and EXREST are two programs that can be used to copy all or some of your MUSIC files to and
from tape. Both programs must specify RECFM(U) on the /FILE statement. Use of these programs is
primarily for exporting MUSIC files to non-MUSIC installations. They are NOT substitutes for FILARC
and FILRST, which are used for archiving and restoring files for use solely on MUSIC installations.

 EXARCH

To copy your MUSIC files to tape use EXARCH.

General Form

 /FILE 1 TAPE VOL(vvvvvv) RECFM(U)
 /INCLUDE EXARCH
 options
 filename1
 filename2
 .
 .
 .

vvvvvv is the volume name of your tape (up to 6 characters).

options list of options, separated by comma:

 CODE='userid' where userid is your ownership id (userid without subcode), in quotes.
 Specify this option only if you wish to archive all the files belonging to your
 userid.

 HEADER=T to have header records at the start of each file on the tape. T is the default.

 HEADER=F suppresses the header records.

 If HEADER=T, then a header record containing the file name, logical record
 length, and length of file is written. This is needed in order to run EXREST;
 EXREST reads the information on this record, enabling it to restore the
 desired files.

filename1,filename2,etc...
 are the filenames of your MUSIC files, one file name per line. Used when not all files are to
 be archived.

Examples:

1. This example copies your entire library (all files) to tape with header records.

 /FILE 1 TAPE VOL(MYTAPE) RECFM(U)
 /INCLUDE EXARCH
 CODE='ABCD',HEADER=T

 Chapter 10. Utilities - EXARCH/EXREST 599

2. This example copies files FRED, TESTPROG and TRY99 to tape without header records.

 /FILE 1 TAPE VOL(MYTAPE) RECFM(U)
 /INCLUDE EXARCH
 HEADER=F
 FRED
 TESTPROG
 TRY99

Notes:

1. Each run of EXARCH writes over any previous files on the tape.

2. Each file saved is a separate file on the tape.

3. If EXARCH is successful the files will be copied in the order they are listed.

4. The difference between EXARCH and FILARC is that the latter does not produce tapes compatible with
 non-MUSIC installations, and each file is in a compressed form on the tape.

5. This procedure does not delete your files from MUSIC.

6. After running EXARCH, a printout of what is on the tape is produced. It is important to attach this to
 the tape when transporting it to another installation as it contains vital information (blocksize, logical
 record length and record format) needed to read it. All tapes are created as non-labelled. Normal data
 files are dumped in standard MVS type tape formats (VB or FBS). Details of these formats can be
 found in OS/VS2 MVS Data Management Services Guide, IBM Form #GC26-3875.

7. If a MUSIC load module (created by the Linkage Editor) is to be dumped by EXARCH, it should be
 created with RECFM(U) or RECFM(F), and for RECFM(F) the record length must be a divisor of 512,
 for example LRECL(128). LRECL(80) must not be used.

 EXREST

In order to copy your MUSIC files from tape use EXREST. EXREST can only be used for files if copied on
to tape through EXARCH, and if HEADER was not specified as F.

General Form

 /FILE 1 TAPE VOL(vvvvvv) RECFM(U) SHR
 /INCLUDE EXREST
 NAME='name1',TO='name2',options
 NAME='name1',TO='name2'

vvvvvv is the volume name of your tape (up to 6 characters).

name1 is the name of the file on the tape.

name2 is the desired MUSIC file name.

name1 can be the same as name2, and can take on the following forms:

600 EXARCH/EXREST - MUSIC/SP User's Reference Guide

 'name'
 'userid:name'
 'userid:prefix*'
 'prefix*'

If the last character is an asterisk (*), all files whose names start with the specified prefix will be restored. If
the plus sign is used, name1 must have the "*" as well as name2, and all files with such a prefix will be
restored. I.e.:

 NAME='ABCD:TT*',TO='ABCD:TEMP*'

This restores all files of the form ABCD:TTxxx to ABCD:TEMPxxx, where xxx is any character string.

options list of options, separated by commas, specified on the first parameter statement only:

 ALL=T to copy all files from the tape. The files would be restored with the same
 file names they have on the tape.

 ALL=F is used when the name parameter is used. This is the default.

 Repl=T to replace existing files.

 Repl=F is specified if files are not to be replaced. This is the default.

 FIXUP='x' FIXUP is used for identifying FILES restored whose names already existed
 as MUSIC files. x is the character for fixup. The default fixup character is
 "$". This is useful when REPL=F yet you want the file to be restored. Iden-
 tification of the file will be by the file name with the FIXUP character added
 to the end. To disable the fixup character, use FIXUP=' '. If the fixup char-
 acter was disabled, REPL=F was specified, and the file already existed, then
 the file to be restored will not be copied into a MUSIC file, and the old
 MUSIC file will be the only one that exists.

 FILES=n1,n2,...
 n1,n2,... are the tape file sequence numbers of those files you wish to restore
 (in addition to those specified by name). The maximum number of file
 numbers which can be specified is 200.

Examples:

1. This example restores all your tape files to MUSIC files, replacing any MUSIC files that
 have the same name as those on the tape.

 /FILE 1 TAPE VOL(MYTAPE) RECFM(U) SHR
 /INCLUDE EXREST
 ALL=T,REPL=T

 Chapter 10. Utilities - EXARCH/EXREST 601

2. This example restores files with the prefix T, changing the prefix to AT, and restoring one
 file (FRED) having the same name that was on the tape. If any of the file names exist
 they are not replaced, but rather the character $ is added to the end of the name of the file
 being restored.

 /FILE 1 TAPE VOL(MYTAPE) RECFM(U) SHR
 /INCLUDE EXREST
 NAME='T*',TO='AT*',FIXUP='$'
 NAME='FRED'

3. This example restores a tape file (FRED) under a different name (WORK) than what was
 on the tape.

 /FILE 1 TAPE VOL(MYTAPE) RECFM(U) SHR
 /INCLUDE EXREST
 NAME='FRED',TO='WORK'

602 EXARCH/EXREST - MUSIC/SP User's Reference Guide

 FILARC/FILRST/FILCHK
———————————————
 Dumping and Restoring MUSIC Files

The programs FILARC and FILRST may be used to archive (dump) a group of files to cards or tape and later
restore one or more of the dumped files. The FILARC program copies files to cards or tape, preserving all
attributes of the files such as record length, record format, and tag field. The original files are NOT deleted
by the archive program. The FILRST program restores specified files to the user's library, using as input the
dump produced by FILARC. FILRST can rename files as they are restored. A third program, FILCHK,
reads and checks a dump produced by FILARC. FILCHK is useful for ensuring that a good dump exists
before purging the files, and also for finding what files are on an archive tape.

The archive is in the form of card images (record length 80), but files of any record length may be archived
and restored. The data is dumped in a special format which only the MUSIC system can use. For this
reason, FILARC must not be used for transporting files to non-MUSIC systems. A dump produced by
FILARC is usable only by the FILRST program. If you wish to transport files to a non-MUSIC installation,
use the UTIL program to dump them to tape in sequential, logical record form.

 Control Statements

The sequential file containing the archive dump is defined by a /FILE statement for unit 1. The logical
record length of this file is 80. Tape, a UDS, or a file may be used. The control statements shown below use
tape.

The /FILE statement is followed by a /INCLUDE for the desired program (FILARC, FILRST, or FILCHK),
then by a parameter statement which specifies the program options to be used. Options on the parameter
statements must be separated by commas, and are of the form KEYWORD=VALUE, where VALUE is a
number, or a character string enclosed in single quotes, or T (for true), or F (for false). Most options have a
default value, which is the value used by the program if the option does not appear on a parameter statement.

 File Archive (FILARC)

 /FILE 1 TAPE VOL(vvvvvv) LRECL(80) BLK(nnnnn)
 /INCLUDE FILARC
 parameters separated by commas (see below)
 filename DUMPNAME=dname)
 filename DUMPNAME=dname) optional additional file names
 ...)

CODE='userid' This specifies that all files of this userid are to be archived. userid must be the ownership id
 (userid without subcode) of the user running the program. If the UDATE parameter is used,
 only files satisfying the date requirement are archived. A list of additional files to be
 archived may follow the parameter statement. Each file name must start in column 1, and
 may be of the form userid:name or name. If userid: is omitted from a file name, the user's
 userid is assumed. If you only want to archive some of your files, omit the CODE parameter
 and supply a list of the file names.

 Normally, a file is copied onto tape using the name it has on the system. If this is not

 Chapter 10. Utilities - FILARC/FILRST/FILCHK 603

 desired, then the DUMPNAME parameter can be given to specify another name. In any
 case, the file's name is not changed on the system.

UDATE='ddmonyy'
 This specifies a date in the form: 2-digit day, 3-character month abbreviation, and 2-digit
 year (for example 08FEB89), to be used in conjunction with the CODE parameter. Only
 files whose last-read and last-written dates are both less than or equal to UDATE are
 archived. This gives a means of archiving old files. The parameter CODE='userid' should
 be specified when UDATE is used. The UDATE parameter does not apply to any specific
 file names specified.

NAMES=n This requests the names of all archived files to be written to unit number n. This is useful if
 you wish to later purge the files. If this parameter is omitted, the names are only displayed.

TAPFIL=n When archiving to tape, this parameter specifies the file sequence number to be written to on
 the tape. The default is TAPFIL=1. Note that writing to file n does not disturb existing files
 1 through n-1, but destroys any following files on the tape.

 File Restore (FILRST)

 /FILE 1 TAPE VOL(vvvvvv) LRECL(80) BLK(nnnnn) SHR
 /INCLUDE FILRST
 first parameter statement (see parameters below)
 second parameter statement
 ...

Each parameter statement gives the name of a file (or group of files) to be searched for in the archive dump,
and optionally gives the name of the file (or group of files) to which the file (or group) is to be restored. The
NAME and TO parameters are used for this. The first parameter statement has the first NAME/TO combina-
tion and also any other options to be used during the entire restore job (TAPFIL, REPL, etc.). The second
and following parameter statements specify additional NAME/TO combinations. See below for examples.

NAME='userid:name' or NAME='userid:prefix*'
 This specifies the full file name (including user code) to be searched for in the archive. If
 the last character is an asterisk (*), all files whose names start with the specified prefix will
 be restored. NAME= may be abbreviated N=. Up to 2000 NAME parameters can be speci-
 fied per job.

TO='userid:name' or TO='userid:prefix*'
 The full file name (including user code) to which the file is to be restored. The user code
 must be specified, and must match the code of the user running the program. If the TO
 parameter is omitted, the original file name will be used. If the last character is an asterisk
 (*), then the NAME parameter must also have +, and the indicated name changes are made.
 For example, NAME='ABCD:TT*',TO='ABCD:TEMP.*' restores all files of the form
 ABCD:TTxxx to ABCD:TEMP.xxx, where xxx is any character string. Resulting names are
 truncated if too long. TO= may be abbreviated T=.

TAPFIL=n The tape file sequence number containing the archive dump to be used. The default is
 TAPFIL=1. This parameter is needed only when reading from a multi-file tape.

REPL=T or REPL=F
 REPL=T causes the "TO" file to be replaced if it already exists. If REPL=F is used, the
 existing file is not replaced and the restore program may try to use a different name (see
 FIXUP below). The default is REPL=F.

604 FILARC - MUSIC/SP User's Reference Guide

FIXUP='x' This specifies a character x to be used for generating an alternate file name when the "TO"
 file already exists (and should not be replaced), or cannot be written to. The fixup character
 is added to the end of the filename, or replaces the last character if the name is already the
 maximum length. At most three tries are made. The default fixup character is the dollar
 sign ($). To prevent fixup attempts, specify a blank, as in FIXUP=' '.

 Dump Checkout (FILCHK)

 /FILE 1 TAPE VOL(vvvvvv) LRECL(80) BLK(nnnnn) SHR
 /INCLUDE FILCHK
 parameters separated by commas (see below)

NAMES=T or NAMES=F
 Use the NAMES=T parameter if you want a listing of all the file names contained on the
 archive tape. The default is NAMES=F.

INFO=T or INFO=F
 Use the INFO=T parameter to print the information line for each file contained on the
 archive tape. The information line has the file name, logical record length, record format
 (e.g. FC for Fixed Compressed), access control options, total space allocated (units of 1k =
 1024 bytes), the number of 512-byte blocks dumped, and the time and date the file was
 archived. The default is INFO=F.

TAPFIL=n Use the TAPFIL=n parameter to specify that tape file n is to be checked for the archive
 output. The default is TAPFIL=1, meaning the first file on the tape is to be checked. This
 parameter is used only when reading from a multiple file tape.

Examples:

1. This example archives three files to tape. The files are assumed to be under the userid of
 the user running the program.

 /FILE 1 TAPE VOL(ARCTAP) LRECL(80) BLK(4000) OLD
 /INCLUDE FILARC
 <--- (blank line, no parameters)
 PROG1.SOURCE
 PROG1.OBJECT
 DATA.TEST1

2. This example is a batch job to archive all files for the userid ABCD which have not been
 referenced since March 31, 1988. The names of these files are written to file
 ARC.NAMES.

 /FILE 1 TAPE VOL(MYTAPE) LRECL(80) BLK(4000) OLD
 /FILE 2 NAME(ARC.NAMES) NEW
 /INCLUDE FILARC
 CODE='ABCD',UDATE='31MAR88',NAMES=2

 Chapter 10. Utilities - FILARC/FILRST/FILCHK 605

3. This example archives two files to punch cards. The files must be public files, or MM15
 must be the userid of the person running the batch job. Note that the punched cards would
 have to be copied to tape or to a UDS or file before they could be used by FILRST.

 /FILE 1 PUN
 /INCLUDE FILARC
 <--- (blank line, no parameters)
 MM15:DOC1
 MM15:DOC2

4. This example reads and verifies an archive tape. The file names will be printed.

 /FILE 1 TAPE VOL(MYTAPE) LRECL(80) BLK(4000) SHR
 /INCLUDE FILCHK
 NAMES=T

5. This example restores all files for userid ABCD, and renames the files by putting the charac-
 ters "OLD." at the beginning of the names. Any existing file ABCD:OLD.xxx will not be
 replaced, since REPL=F is specified.

 /FILE 1 TAPE VOL(MYTAPE) LRECL(80) BLK(4000) SHR
 /INCLUDE FILRST
 REPL=F,NAME='ABCD:*',TO='ABCD:OLD.*'

6. This example restores four files from an archive tape. File PROG6 will be restored under
 the new name PROG6X. The other files will be restored under their original names, and
 any existing files will be replaced (REPL=T).

 /FILE 1 TAPE VOL(MYTAPE) LRECL(80) BLK(4000) SHR
 /INCLUDE FILRST
 N='ABCD:FILE35',REPL=T
 N='ABCD:DATA.FILE'
 N='ABCD:PROG6',T='ABCD:PROG6X'
 N='ABCD:FILE13'

606 FILARC - MUSIC/SP User's Reference Guide

 FTP and TELNET from MUSIC
———————————————
FTP and TELNET are now available from MUSIC. TELNET allows you to establish sessions with comput-
ers on the TCP/IP Internet. FTP allows you to transfer files. Many computers on the network maintain
libraries of public files that you can access through FTP. These files include public domain software, graph-
ics and games. Check with your installation to see if this facility is available at your site.

 Connection

Each computer in the network is assigned a name which is used on the FTP, GOPHER, or TELNET
command to establish a connection. For example the command

 TELNET VM1.MCGILL.CA

will create a session on the VM1 system at McGill. The command

 FTP VM1.MCGILL.CA

will create a file transfer connection.

The NET command is useful in locating the names of computers connected on the Internet. This displays a
list of computers that offer various services such as FTP access to public files. You can browse through the
list and locate specific items. An FTP, GOPHER, or TELNET connection can be established directly from
NET by typing an F, G, or T in the margin beside the particular entry.

There are two MUSIC commands that can help you check the connection between you and the remote site.
They are:

FINGER The FINGER command allows you to send a one-line query to a remote Internet site, and
 receive back information on who is logged into that remote site.

PING The PING (Packet Internet Groper) command measures round-trip-times to internet sites. It
 does this by sending an ICMP/IP echo request to the remote site, which IP is obliged to
 respond to if it receives the packet.

See Chapter 5 - MUSIC Commands for details about FINGER and PING.

 Login

Once you are connected to the remote computer you usually have to login by entering a userid and a pass-
word. Many FTP sites accept the special userid of "anonymous", allowing you to connect and access their
public file library without having a userid assigned on their system. You can usually enter anything for the
password.

 Chapter 10. Utilities - FTP & TELNET 607

 Documentation

MUSIC uses the VM TCP/IP product to provide FTP and TELNET services. Complete FTP and TELNET
documentation are in the book IBM Transmission Control Protocol/Internet Protocol for VM (GC09-1204).

For complete details about FTP and TELNET refer to the MUSIC/SP Communications Guide.

608 FTP & TELNET - MUSIC/SP User's Reference Guide

 LBLIST
———————————————
 Printing Save Libraries

The LBLIST program can be used to display the contents of all the user's files that exist on the Save Library.
(Execute-only files and files with record format U (undefined format) will, however, not be displayed.) Files
with record length longer than 100 bytes will be truncated to 100 bytes on the printout. This program is
normally run from batch, due to the large amount of output that will usually be produced. The following
gives the control statement set up:

 /INCLUDE LBLIST
 ...Parameter statement (see below)

 Parameter Statement:

 CODE='xxxx'[,NONEWPAG][,ALLOBJ]

CODE='xxxx' This parameter specifies the 1-16 character ownership id (userid without subcode). It must
 agree with the ownership id on the /ID statement.

NONEWPAG This parameter is used to suppress page skips between files. If this parameter is omitted,
 then each file will start at the top of a new page.

ALLOBJ This parameter causes all object module statements to be printed. If this parameter is omit-
 ted, then TXT and RLD statements will not be printed. Since TXT and RLD statements
 contain, for the most part, unreadable information, it is unlikely that you will want to print
 them.

 Chapter 10. Utilities - LBLIST 609

 PANEL
———————————————
 Fullscreen Panel Generator

Using the IBM 3270 type workstation, it is possible to display an entire screen full of information and have
the user enter multiple data items with only a single I/O operation. This is referred to as full-screen I/O. The
PANEL system has been written to allow easy access to full-screen I/O from high-level languages. All that
is needed is some understanding of the basic concepts of screen formatting. No knowledge of 3270 protocol
is required.

A formatted screen image, hereafter called a panel, is composed of fields. A field may contain, for example,
explanatory text or a prompting message or it may be used to accept input data from the user. Fields may be
placed anywhere on the screen, although they may not overlap and they must start and end on a single line.
A single line on the screen may contain multiple fields.

Each field is immediately preceded by one character that is used to define the attributes of the field. This
attribute character controls various features of the field which are discussed later. Attribute characters are
invisible; the fact that they must be present means that there must always be at least a one-character gap
between fields.

A field may be displayed in normal or in intensified display (highlighting), or it may be hidden. Hidden
fields are normally used for entering sensitive information, such as passwords. A field may be either modifi-
able or protected from modification by the workstation user. If the user tries to enter data in a protected
field, the workstation will reject the input by locking out the keyboard.

An application program must use panels which have been previously designed and stored, and can make use
of as many different panels as it needs. A panel is essentially a subroutine stored as an object deck in a file.
Only one panel per file is allowed. When the subroutine is called by an application program, it will display
the defined fields on the user's screen in their proper positions and with the desired characteristics. Data
passed from the calling program will be mapped into the proper fields on the screen.

After the panel has been displayed, the user can enter data into any unprotected field on the screen. When
the user presses an action key such as ENTER or a Program Function key, then the data entered can be
passed back to the calling program.

 Services Provided by PANEL

The following is a summary of the services performed automatically by the PANEL utility.

• Basic full-screen I/O
 Any call to a panel normally results in screen I/O. The screen image and the data supplied by the call-
 ing program are written to the workstation. Data subsequently entered by the user will be passed back
 to the calling program.

• Action key translation
 When user input is returned to the application program, a two byte code is also returned indicating
 which action key the user pressed. See the discussion entitled "Accessing Panels" for a complete list of
 the codes.

• Cursor Positioning

610 PANEL - MUSIC/SP User's Reference Guide

 When a panel is displayed, the application program may specify where on the screen the cursor should
 initially be positioned. If this positioning is not specified explicitly, then a default position will be used.

 After screen I/O is complete, the application program receives a code indicating where on the screen the
 cursor was positioned when the action key was pressed.

• Audible alarm
 Some 3270s have an audible alarm (beeper) built in. An application program has the option of sounding
 this alarm when a panel is written to the screen. This can be useful in drawing the user's attention to the
 fact that the user has made a mistake.

• Translation of input to upper case
 Like most workstations, 3270s are capable of transmitting both lower and upper case letters. Most users
 enter all their data in lower case, while most programs use the corresponding upper case text. The
 PANEL system will normally convert user input to upper case, but the option can be disabled for any
 panel.

• Function Keys 13-24
 Not all 3270 keyboards have 24 Program Function keys. Since most applications have no need for as
 many as 24 function keys anyway, it is usually convenient to define the keys 13 through 24 as being
 equivalent to 1 through 12. An option is available to cause the keys 13-24 to be translated as though the
 corresponding key 1-12 had been pressed. Thus the application program would never be aware that a
 key 13-24 was used.

• Automatic panel printing
 Sometimes it is useful to be able to get a copy of a screen image on paper, or in a file. An option exists
 which allows a user to print the panel using the F12 key. The panel is written to a file with ddname
 FMTPRINT.

• Automatic HELP facility
 An excellent way of helping users to use an online system is to build in a HELP function. PANEL's
 HELP facility allows a HELP panel, or a series of HELP panels, to be associated with any given panel.
 A HELP panel is simply another panel, presumably containing explanatory text on the use of the appli-
 cation.

 Developing Panels

To invoke the PANEL program, simply type PANEL when in Command (*Go) mode. You will be
requested to enter the name of a file into which the panel subroutine is to be saved (the OUTPUT FILE), and
optionally, the name of an INPUT FILE. You can also type the file name as a parameter on the PANEL
command, for example, "PANEL mypanfile".

If you are creating a new panel, the OUTPUT FILE should be a new file, or if it exists, it should be empty.

If you are modifying an existing panel the OUTPUT FILE should be the name of the file containing the
existing panel. At the end of the modification process, the modified panel will overwrite the old panel in the
same file.

Alternately, if you are modifying an existing panel, you may specify the file containing the existing panel as
the INPUT FILE and specify a different file for the OUTPUT FILE. At the end of the modification process,
the modified panel will be saved in the OUTPUT FILE with the original panel unchanged in the INPUT
FILE. This is a useful technique for producing a number of similar panels from a single skeleton panel.

To display a panel file without changing it, use the command "SHOPAN filename" (or "CHOPIN filename").

 Chapter 10. Utilities - PANEL 611

Each accessible field is numbered and filled with a ruler.

 Creating a New Panel

Once the initial file information has been correctly entered, a blank screen will be displayed. (This will not
occur if you are modifying an existing panel; instead refer below to "Modifying an Existing Panel".)

Two kinds of fields can be created: accessible fields and text fields. Accessible fields are those which are
used for communication between the calling program and the 3270 screen. An accessible field may be
protected or unprotected from user modification. A protected accessible field is usually used by the program
to send messages to the user; an unprotected accessible field usually receives information from the user that
is to be passed back to the calling program. (See the description of the PROTECT and UNPROTECT keys
under "Modifying an Existing Panel" below.) Text fields, on the other hand, are displayed on the screen, but
are never modified by the user or the calling program. Titles, headings and the like would normally be text
fields.

To specify an accessible field in your format, type in underscores (___) in the appropriate place on the
screen. The length of the field is determined by the number of underscores entered.

To specify a text field, simply type the text in the desired place on the screen. A text field may not contain
underscores.

Note that, as stated previously, at least one space must precede each field. This space is used by PANEL to
insert the attribute character for the field. Note also that no field may be split between two screen lines.

Returning now to the blank screen that PANEL has presented, you are now ready to place the text and acces-
sible fields on the screen. Use the cursor positioning keys (right, left, up, and down) to move the cursor to
the start of a field. DO NOT press the ENTER key or any function key until you have completed the first
draft of the panel. Pressing these keys takes you out of the creation phase and into the panel modification
phase.

While entering the various fields of the new panel, should you wish to correct mistakes or change the order
of field appearance, simply blank out the mistake and retype the field. Once the initial layout is complete,
press the ENTER key. The layout will be processed as follows:

• all text fields will be protected
• all accessible fields will be high-lighted and left unprotected

The panel will then be echoed back to your screen and you may then proceed to modify it.

 Modifying an Existing Panel

You are now ready to modify the panel in order to finalize its appearance and characteristics. If you were
modifying an existing panel, rather than creating a new one, you would have arrived immediately at this
stage, bypassing the initial creation stage.

Modifications to panels are accomplished by using Program Function keys. The keys PF1-PF12 have desig-
nated functions as listed below. The keys PF13-PF24, found on some workstations, have meanings identical
to the keys 1 through 12. That is, PF13 and PF1, PF14 and PF2, PF24 and PF12, are equivalent.

For most functions, the cursor position at the time the function key is pressed is crucial. For instance, if F9
(PROTECT FIELD) is pressed, then the field at which the cursor is positioned is the one which will become

612 PANEL - MUSIC/SP User's Reference Guide

protected.

 Modification Function Keys

Function keys for use in modifying panels:

 1/13 2/14 3/15
 HELP HIDE or
 & set F2 CURSOR or END
 NOSKIP

 4/16 5/17 6/18
 CREATE or DELETE or Flip Field
 SPLIT TRUNCATE INTENSITY
 field field

 7/19 8/20 9/21
 Move Fields Move Fields PROTECT
 UP DOWN Field

 10/22 11/23 12/24
 Move Field Move Field UNPROTECT
 LEFT RIGHT Field

 Figure 10.6 - Function Keys for PANEL

F1 HELP This key will cause a HELP panel to be displayed. The HELP panel gives a short
 summary of the functions of each of the modification function keys. It also allows
 you to change the function of F2 from HIDE (the default) to CURSOR or to
 NOSKIP. Pressing F3 will return you to the original panel.

F2 The F2 key can have one of three possible functions: HIDE (the default), CURSOR
 or NOSKIP. To change the function of this key, simply display the HELP panel by
 pressing F1, and type the desired function into the F2 square.

F2 HIDE A field on the screen may be hidden (invisible). Although any kind of field (i.e. text
 or accessible, protected or unprotected) may be hidden, the only field it would
 normally make sense to hide is an accessible, unprotected field. This attribute is
 usually reserved for entering sensitive data such as a password.

F2 CURSOR When a program calls upon a panel to be displayed, it may specify where the cursor
 is to be positioned, or it may allow the cursor to be positioned by default. You can
 indicate which field is to be the default by moving the cursor to the start of a field
 and pressing the F2 key. If you do not use the CURSOR function, the default will
 be the first unprotected field on the panel.

F2 NOSKIP When a user types data into the last character of a field, the cursor normally will skip
 to the start of the next input field. To prevent this skipping, you can set noskip on
 any input field by moving the cursor to that field and pressing the F2 key. When a

 Chapter 10. Utilities - PANEL 613

 user types data into the last character of a noskip field, the cursor jumps 2 characters
 to the right.

F3 END When you are satisfied with the appearance of the panel, press F3 to end modifica-
 tion and proceed to the termination stage. If you have made any changes to the
 panel you should press ENTER before pressing F3. Pressing ENTER causes
 PANEL to echo the screen ensuring that all changes have been correctly stored.

F4 CREATE This key may be used either to create a new field, or to split an old one in two. In
 either case, the position immediately to the left of the cursor must be a space, or the
 operation will fail. The space is required in order that an attribute byte may be
 inserted for the new field.

 If the CREATE key is pressed when the cursor is not positioned at an existing field,
 a new field will be created. It will be an unprotected, normal intensity field and will
 extend to the end of the screen line, or up to the start of the next field if one exists on
 the same line.

 If the CREATE key is pressed when the cursor is at an existing field, that field will
 be split into two, i.e., an attribute byte will be inserted at the space to the left of the
 cursor. (Remember that a space must exist to the left of the cursor when you press
 the CREATE key.) The display intensity of the field to the right of the split will be
 opposite of the display intensity to the left of the split (as though F6 had been
 pressed), but other attributes will remain the same.

F5 DELETE This key is used to either truncate a field or to delete the entire field depending on
 where the cursor is when F5 is pressed. If the cursor is at the first byte of the field,
 then the entire field will be deleted. If the cursor is somewhere in the middle of the
 field, then the field will be truncated at that point. The cursor position marks the
 first character to be truncated, NOT the last one to be kept.

 If you have just created a text field, make sure you press PROTECT before you
 press TRUNCATE.

 Note that truncation of a field MUST be done using the DELETE key. Blanking out
 underscores in an accessible field does not have any effect on the actual length of the
 field.

F6 INTENSITY The Flip Field INTENSITY function changes the display intensity of a field:
 ` a normal-display field will be highlighted
 ` a highlighted field will become normal
 ` a hidden (invisible) field will become normal

F7 UP The UP key moves all the lines, from the line where the cursor is positioned down to
 the bottom of the screen, up one line. This is accomplished by deleting the entire
 line immediately above the cursor. The line above the cursor is deleted even if it
 contains a field. While this is a convenient way of deleting unwanted fields, beware
 of inadvertent destruction.

F8 DOWN The DOWN key moves all the lines, from the cursor down, down one line, and
 inserts a blank line ABOVE the cursor. The operation will fail if the last line on the
 screen (line 24) is not empty.

F9 PROTECT This key will protect a field - that is, make it impossible for the workstation user to
 type over it. This is normally used to define a text field, although you may protect
 an accessible field. Protecting an accessible field makes it available to the calling

614 PANEL - MUSIC/SP User's Reference Guide

 program while ensuring that the user cannot modify its contents. This is normally
 done for fields used by the program to present error messages to the user.

 The correct use of this key is important when a new text field is to be created. To do
 this, you must first CREATE an accessible field, then type the desired text into that
 field. Then, ensuring that the cursor is still positioned somewhere in the field, press
 the PROTECT key. The field will become a protected text field, and only then may
 be truncated, high-lighted, etc. The PROTECT key must be used IMMEDIATELY
 after the text has been typed into the field.

F10 LEFT This is used to shift a field one column to the left. Note that the action applies only
 to a single field, not to a group of fields. There must be room available to move the
 field to the left or the operation will fail.

F11 RIGHT This is used to shift a field one column to the right. Similar rules apply to RIGHT as
 to LEFT.

F12 UNPROTECT Used to make a field accessible and unprotected. All unprotected fields must be
 accessible fields, so any text in a field which you unprotect will be discarded and
 replaced by underscores. Information that the user types into an unprotected field on
 a panel is passed back to the calling program.

 Examples of Modifying a Panel

PANEL requires a specific sequence of actions for creating new fields, or modifying existing ones:

• To CREATE a new TEXT field:

 Move the cursor to the desired position of the start of the field and press the CREATE key (F4).

 Type out the text.

 Press the PROTECT key (F9).

 Press the TRUNCATE key (F5).

• To CREATE a new ACCESSIBLE field:

 Move the cursor to the desired position of the start of the field and press the CREATE key (F4).

 Type out the length - (using digits 1 through 0 makes it easier to count out the desired length.)

 Press the TRUNCATE key (F5).

• To change a TEXT field into an ACCESSIBLE field:

 If you are completely replacing the field then move the cursor to the field and press the UNPROTECT
 key (F12).

 If you are splitting a field, then move the cursor one character to the left of where the new field is to
 begin (leaving a space for the attribute character) and carry out the following steps:

 Press the TRUNCATE key (F5).

 Chapter 10. Utilities - PANEL 615

 Move the cursor 1 character to the right; otherwise the next action will be ignored.

 Press the CREATE key (F4).

 Type out the length as above.

 Press the TRUNCATE key (F5).

 Storing Panels

When the END key (F3) is pressed to terminate panel modification, you will be presented with a termination
panel. On this you should specify

1. The name that is to be given to the panel, i.e., the name of the subroutine that an application program
 will call to have the panel displayed.

2. The options to be used when displaying the panel such as translating user input to uppercase, translating
 function keys 13 through 24 into function keys 1 to 12, using PA2 as automatic panel reshow, or using
 F12 to automatically print the panel in a file having a data definition name (ddname) of FMTPRINT.

3. The HELP panel subroutine name to be associated with this panel (if any). The specified HELP panel
 will be linked to the present panel and be available to the user if the user needs assistance while viewing
 the present panel. If this is a HELP panel you are storing, you can enter the subroutine name of the next
 HELP panel (if any). Each HELP panel is developed and stored separately, but one HELP panel may be
 linked to another in this manner, thus allowing an unlimited number of HELP panels to be displayed
 when a user needs assistance. The user can scroll through these HELP panels using F1, F10 and F11.

 When the user presses the F1 key, the first HELP panel associated with the user's current panel will be
 displayed. Using the F11 or ENTER keys (show next HELP panel) and the F10 key (show previous
 HELP panel), the user can scroll through the entire series of HELP panels associated with the original
 panel. Pressing F3 will get the user out of help mode and back to the original panel. Figure 10.7 shows
 this flow in a diagrammatic form.

 —— F1—>
 HELP — F11—> HELP —— F11—>... —> HELP
 PANEL PANEL PANEL PANEL
 1 <— F10— 2 <— F10——... —— n
 ←
 ↑

 ↑ ↓ ↓ ↓
 ← ← ← ← ← ← ← ← F3 F3 F3 ... F3

 Figure 10.7 - Flow of Panels

 Once you have filled in the options, press ENTER to complete the creation of the panel object deck. You
 will now be returned to the initial screen, from which you may commence creating or modifying another
 panel. To exit PANEL, press the F3 (END) key.

616 PANEL - MUSIC/SP User's Reference Guide

 Accessing Panels through a Program

Once you have created your panel, it can be called from an application program exactly the same way as any
other subroutine. Two arguments may be supplied, although only the first one is required.

Calling Sequence: CALL panel-name(io-area,supplemental)

where panel-name is the subroutine name given to a panel when it was stored.

The IO-AREA Parameter

The first parameter is called the I/O area. It contains some basic control information plus the data to be
passed between the calling program and the panel. It is a block of data whose length in bytes must be no less
than the total length of all accessible fields in the panel, plus 6.

For example, suppose there are four accessible fields of lengths 5, 5, 10 and 24. To call this panel, an I/O
area no less than 50 (5 + 5 + 10 + 24 + 6) bytes long must be passed. The I/O area is laid out as follows:

Bytes Function

1-2 Attention ID (AID)
 This two character code represents the action key which the user pressed after the data was
 entered. It is set by the panel display service before control is returned to the application
 program.

 The codes for the various action keys are as follows:

 '01' - F1 'EN' - Enter
 '02' - F2 'A1' - PA1
 . 'CL' - Clear
 . 'CS' - Cursor Select
 '24' - F24

 Notes:

 1. If a HELP panel is available then '01' will never be returned.

 2. If the automatic print panel was selected then '12' will never be returned.

 3. If automatic translation of function keys was selected then codes '13' through '24' will
 never be returned.

3-6 Cursor Position
 These four bytes contain two integer halfwords declared in Fortran as INTEGER*2, in
 COBOL as PICTURE S99 COMPUTATIONAL-1, or in PL/1 as FIXED BINARY(15,0).

 These two halfwords can be used to determine where the cursor will be positioned when a
 panel is first displayed. When control is passed back to the calling program, these halfwords
 indicate where the cursor was positioned when the action key was pressed.

 Depending on the contents of the SUPPLEMENTAL parameter (discussed below) the cursor
 position can be given by either the panel field number or the panel row and column number.

 Panel Field Number:
 When specifying cursor position by panel field number, bytes 3 and 4 of IO-AREA should

 Chapter 10. Utilities - PANEL 617

 contain the accessible field number on the panel; bytes 5 and 6 should contain zero.

 Row and Column Number
 When specifying cursor position by row and column number, bytes 3 and 4 of IO-AREA
 should contain the row number (1-24); bytes 5 and 6 should contain the column number
 (1-80).

7 to end Accessible Fields
 The remainder of the IO-AREA is in one-to-one correspondence with the accessible fields of
 the panel. Each accessible field, starting with the first one and proceeding left to right, top to
 bottom through the panel, has a number of bytes equal to its own length reserved for it in this
 portion of the IO-AREA. It is through these fields that information filled in by the user can
 be passed back to the calling program.

The SUPPLEMENTAL Parameter

This second argument may optionally be passed to a panel subroutine. It contains supplementary orders
which give access to the alarm and cursor override services.

The orders are contained in a 16-byte field, of which currently only the first 4 bytes are meaningful. The
layout of the orders is as follows.

Bytes Function

1 Panel Function
 Normally, this byte is set to a blank. The following codes are available for this field:
 P If the Function field is set to P, then the panel is written to the screen, but no read from
 the workstation is done. This is useful for display only panels - control is returned to
 the program immediately after the panel is written to the screen.
 G If the Function field is set to G, then a read is performed without displaying the panel.
 A Code A will do a write followed by an asynchronous read. The program regains control
 immediately after the write is complete. When the user presses an action key the data is
 read and the application woken up with the POST-CODE set to ATTN. The application
 can retrieve the data using the R (Read only) request. If the application issues a subse-
 quent PANEL request (other than R), the asynchronous read is cancelled.
 R Code R reads data from asynchronous read request.

 Note: Setting the Function field to any value other than a blank, P, G, A, or R will prob-
 ably cause your program to abend.

2 Alarm.
 Set this to 'A' to sound the 3270's alarm when the panel is displayed. This can be useful in
 drawing the user's attention if the user has made a mistake.

3 Cursor Position as Field Number
 To explicitly specify cursor positioning as using a field number move "C" to this position,
 and set the cursor position code in the IO-AREA to the desired field number. "L" means
 leave cursor alone.

4 Cursor Position as Row and Column
 To specify cursor position as using row and column numbers, place an 'X' in this position
 and put the row number in the first half-word and the column number in the second half-
 word of the cursor position in the IO-AREA parameter.

5-16 These positions should be left blank.

618 PANEL - MUSIC/SP User's Reference Guide

Modifying Panels Under Program Control

Subroutines MODOPT and MODFLD can be used in your program to dynamically modify panel options and
data field attributes. See MODOPT and MODFLD in Chapter 11. System Subroutines.

 Coding examples

Example of a panel:

 SAMPLE PANEL

 ENTER CUSTOMER NUMBER ==> _____
 PURCHASE ORDER ===> _____
 INVOICE AMOUNT ===> __________

 MESSAGE: ________________________

 Figure 10.8 - Sample Panel

 Note that, in the sample panel above, the underscore characters are accessible fields which will appear
 when modifying the panel, but will not be present when the panel is displayed under program control.

 COBOL example:

 01 FMT-IO-AREA.
 02 FMT-AID PIC XX.
 02 FMT-CURSOR.
 03 FMT-CRS-FLD PIC S99 COMP.
 03 FILLER PIC S99 COMP.
 02 FMT-CUST-NO PIC X(5).
 02 FMT-PUR-ORDER PIC X(5).
 02 FMT-INV-AMOUNT PIC X(10).
 02 FMT-MESSAGE PIC X(24).
 . . .
 PROCESS.
 MOVE SPACES TO FMT-CUST-NO
 FMT-PUR-ORDER
 FMT-INV-AMOUNT.
 MOVE 'FILL IN AND PRESS ENTER' TO FMT-MESSAGE.
 CALL 'SAMPLE' USING FMT-IO-AREA.
 * FINISH PROCESSING WHEN USER PRESSES F3
 IF FMT-AID = '03'
 GO TO PROCESS-EXIT.
 MOVE FMT-CUST-NO TO OUTPUT-CUST-NO.
 MOVE FMT-PUR-ORDER TO OUTPUT-PUR-ORDER.
 MOVE FMT-INV-AMOUNT TO OUTPUT-INVOICE-AMOUNT.
 WRITE OUT-REC FROM OUTPUT-RECORD.
 GO TO PROCESS.
 . . .

 Chapter 10. Utilities - PANEL 619

 FORTRAN example:

 INTEGER*2 AID,CURSOR(2),ENTER/'EN'/,PF3/'03'/
 LOGICAL*1 CUSTNO(5),PURCH(5),AMOUNT(10),MESSAG(24)
 . . .
 COMMON /IOAREA/ AID,CURSOR,CUSTNO,PURCH,AMOUNT,MESSAG
 C
 C the common block groups the variables together into a
 C "structure" so that all the variables are contiguous and
 C in the required order. Thus passing the first variable in the
 C common block results in the whole structure being passed.
 . . .
 10 CALL FILL(CUSTNO,44,' ')
 CALL LMOVE('FILL IN AND PRESS ENTER',MESSAG,23)
 CALL SAMPLE(AID)
 C FINISH PROCESSING WHEN USER PRESSES F3
 IF (AID.EQ.PF3) GO TO 999
 WRITE(1,100) CUSTNO,PURCH,AMOUNT
 GO TO 10
 . . .

 PL/I example:

 DCL IO_AREA CHAR(50),
 1 IO_STRUCTURE DEFINED(IO_AREA),
 2 AID CHAR(2),
 2 ROW FIXED BIN(15,0),
 2 COLUMN FIXED BIN(15,0),
 2 DATA,
 3 CUSTOMER_NUMBER CHAR(5),
 3 PURCHASE_ORDER CHAR(5),
 3 INVOICE_AMOUNT CHAR(10),
 2 MESSAGE CHAR(24);
 DCL SAMPLE ENTRY(CHAR(50)) OPTIONS(ASSEMBLER INTER);
 . . .
 CUSTOMER_NUMBER, PURCHASE_ORDER, INVOICE_AMOUNT = ' ';
 MESSAGE = 'FILL IN AND PRESS ENTER';
 DO WHILE(AID •= '03');
 CALL SAMPLE(IO_AREA);
 SELECT(AID);
 WHEN('03');
 WHEN('EN') DO;
 PUT FILE(OUT) LIST(CUSTOMER_NUMBER,
 PURCHASE_ORDER,INVOICE_AMOUNT);
 CUSTOMER_NUMBER, PURCHASE_ORDER, INVOICE_AMOUNT = ' ';
 MESSAGE = 'FILL IN AND PRESS ENTER';
 END;
 OTHERWISE MESSAGE = 'HIT ENTER TO ENTER DATA';
 END;
 . . .

620 PANEL - MUSIC/SP User's Reference Guide

 Usage

After you have created your panels, you must ensure that they and the Panel Display Service subroutines
(stored in the file PANEL.SERVICE) are accessible to the linkage editor when compiling your application
program, just as you do for any other subroutines.

Consider an example of a FORTRAN application program using a panel stored as a subroutine called
SAMPLE in the file called SAMPLE.OBJ:

 *Go
 list sample.obj
 *In progress
 /LOAD VSFORT
 . . .
 CALL SAMPLE(AID)
 . . .
 END
 /INCLUDE SAMPLE.OBJ
 /INCLUDE PANEL.SERVICE
 *End
 *Go

 Panel Printing

If the automatic print option was specified when a panel was stored (see the topic "Storing Panels" above) a
user can have a copy of the displayed panel printed to a file. The calling program must have a /FILE state-
ment specifying a file with a ddname of FMTPRINT, for example:

 /FILE FMTPRINT NAME(...) ...

If these requirements are meet, the displayed panel will be printed to the specified file when the user presses
the F12 key. When this is done, control is not returned to the calling program, but rather a message appears
on the screen indicating that the panel has been printed, and the panel is redisplayed.

 REXX interface to PANEL

An interface to MUSIC's PANEL facility is available through the special PANEL command in REXX. The
screens are created as usual via the PANEL facility and stored as object files. When REXX encounters a
PANEL command it dynamically loads the appropriate object files for the screen images. Modifiable fields
are then filled from the specified REXX variables and the panel service routine is invoked to perform the I/O.
When this is complete, the data from any modified fields is then returned via the REXX variables.

The PANEL facility is invoked from REXX using the PANEL command. Due to the fact that the interface
modifies items in the variable list, the entire PANEL command should be enclosed in quotes.

 'PANEL filename [var-list]'

filename The name of the file containing the object file for the panel to use.

 Chapter 10. Utilities - PANEL 621

var-list A list of variable names separated by blanks indicating which REXX variable is associated
 with a specific field on the screen.

Field Variables:

1. The fields on the screen are numbered from left to right, top to bottom.

2. The first name in the list is assigned to the first field, the second name to the second field, etc.

3. There need not be a variable name specified for each field on the screen or in fact for any fields on the
 screen. In either case, the default variable name of name.n is used, where n is the number of the field
 and name is the panel file name, with leading ownership id and directory names (if any) removed. For
 example, for file name "ABC:TEST\MYPAN", the default variable names are MYPAN.1, MYPAN.2,
 etc.

4. A period (".") can be used in the variable list to force the system to use the default name.

5. When a field is initialized from a variable, nulls are appended to the end if the variable is not long
 enough to fill the field.

6. On returning from PANEL trailing blanks and nulls are removed.

7. The panel's subroutine name is ignored by REXX.

Special Variables:

The following variables are used in addition to the panel fields themselves. These names cannot be overrid-
den by the user.

AID Two character code representing the action key pressed by the user.

FIELD Numeric value used to position the cursor to a specific field. It is also returned to indicate the
 position of the cursor when the action key was struck. The fields are numbered 1, 2, 3...

ROW Row number used as an alternative to FIELD.

COL Column number used as an alternative to FIELD

PANCTL Four character supplemental parameter used to control the operation of the alarm and deter-
 mine whether field or row/column positioning is used.

RC This variable is set to the return code as follows.

 100 - insufficient storage to load panel
 101 - PANEL command is invalid
 102 - file is not a panel object file
 103 - panel file too large
 104 - error accessing REXX variable
 105 - error converting ROW, COL, or FIELD to numeric
 <100 - file system return code from reading panel file

For further details on the values that these variables can have refer to the documentation on the PANEL-Sub-
system.

622 PANEL - MUSIC/SP User's Reference Guide

Help Panels

There are two names associated with a panel: the name of the file that contains it, and the subroutine name
that is used by languages such as FORTRAN to invoke it. The link between a panel and it's help panels is
normally provided through the subroutine name. Since REXX dynamically loads the panels into memory
based on the file name, the file name and the subroutine name MUST be the same for help panels.

Example

 /INC REXX
 /* This is an example of a data entry program.
 Fields from a panel are written to a file.
 The panel is called ENTDAT and the file DATFIL. */

 do forever

 /* Display the panel and get the data. Stop if
 F3 is pressed */

 'PANEL ENTDAT NAME ADDR.1 ADDR.2 ADDR.3 PHONE '
 if rc•=0 then do;say ' Error in ENTDAT panel'; exit; end;
 if aid=3 then leave

 /* write the data to the file */

 queue name || addr.1 || addr.2 || addr.3 || phone
 MUSIO WRITE DATFIL 1
 end

Note: The PANEL command line must be in upper case characters.

 Chapter 10. Utilities - PANEL 623

 POLYSOLVE
———————————————
 Overview

The POLYSOLVE program is a powerful conversational tool that can be used as a desk calculator facility,
demonstration program, and it can even be used to solve equations! A sample POLYSOLVE session is
given at the end of this writeup.

One powerful feature of this program, (the one that it takes its name from), is its ability to solve polynomial
equations. The following are examples of polynomial equations:

 x=15/40
 x + 64 = 0
 17x2 + 47x = 16
 16= x3 + 5x
 x= sqrt(15)
 ax3 + bx2 +cx +d = 0

You will notice that you cannot solve the last equation immediately because of the unknown coefficients of
a,b,c and d. The POLYSOLVE program will realize that and ask you to define them. This will be discussed
later. Some more common every-day uses of polysolve are shown in the examples below:

 15 + 63 + 27 + 14/3 + 2.49
 sqrt(15.3)+63/2.3
 24*3 (The "*" means multiplication)

 Usage Notes

The program will solve any polynomial in X with a maximum of 25 real coefficients. All computations are
carried out in double precision. First order polynomials are solved algebraically. Higher order polynomials
are solved iteratively, by the double precision form of the SSP routine POLRT.

The program will solve polynomials for the unknown x entered according to the following conventions:

1. An expression not involving X is assumed to mean X=expression, and the value of X is evaluated and
 displayed. For example, if the expression 2+2 is entered, the result 4 is displayed.

2. An expression in X without an equal sign is assumed to mean expression=0 and the value or values of X
 are evaluated and displayed.

3. An expression in X written with an equal sign is taken as is.

All coefficients must be real numbers. For example, SQRT(-2) is invalid.

624 POLYSOLVE - MUSIC/SP User's Reference Guide

 Constants

Constants are stored in double precision form. The maximum value of a constant is approximately 10**50.

 Variables

The independent variable must be X. Coefficients may be represented by a single letter from A to Z except
X. Use of E should be avoided because of possible confusion with exponential notation for constants. Vari-
ables are stored as double precision numbers. The highest power of X which may be entered is 20.

The following operators are recognized:

 + addition
 - subtraction
 * multiplication
 / division
 ** exponentiation (Raising to a power. **2 means squared)
 ' exponentiation (equivalent to **)

 Implied Operations

Parentheses imply multiplication if no explicit operator is given. For example 3(A+B) is taken as 3 times the
sum of A and B.

A constant immediately followed by a variable or a function name is assumed to have a multiplication opera-
tor in between. For example 3X is taken as 3 times X, and 3SQRT(B) is taken as 3 times the square root of
B. However 3XSQRT(B) is invalid since it would be taken as 3 times XSQRT(B) and there is no function
called XSQRT. X followed by a constant is assumed to have an exponentiation symbol in between. For
example X2 is taken as X to the power 2.

Blanks are always ignored.

 Functions

The following functions are supported:

 ALOG log to base e
 EXP e to a power
 SQRT square root
 SIN sine of an angle expressed in radians
 COS cosine of an angle expressed in radians

The double precision forms of these functions are automatically used.

 Chapter 10. Utilities - POLYSOLVE 625

 Entering a Polynomial

1. An expression not involving X written without an equal sign. For example 3A*SQRT(B) is taken as
 X=3A*SQRT(B).

2. An expression in X written without an equal sign. For example 3X2+X3-3 is taken as 3X2+X3=0.

3. An expression in X written with an equal sign. For example 3X2+SQRT(B)=-2.

Expressions may not:

1. Begin with an equal sign.

2. Be an expression not involving X written with an equal sign. For example A=B+C is invalid

3. Contain an X or an = within parentheses.

 Continuing an Expression

An expression is assumed to be continued on the next line if it ends in a comma, or is completely blank, or
ends with the right parentheses count lower than the left parentheses count, or the last character is an operator
or an equal sign (=).

A function name must not be split between lines, nor can a constant be split between lines.

 Entering Coefficients

If variable coefficients are used in the polynomial, the system will request values for these variables. These
values may be entered as constants or as expressions involving other variables.

The values may be entered explicitly in the form variable = constants or expressions in the order in which
they are requested. Implicit and explicit entries may be intermixed on one line. Expressions must be
preceded by an equal sign.

If more than one value is entered on a line, they must be separated by commas.

The continuation rules shown above under "Entering A Polynomial" also apply for entering coefficients.

 Solution

The value or values of X are displayed by the program. Complex roots are shown as real part and imaginary
part. The letter "i" follows the imaginary part in the printout.

626 POLYSOLVE - MUSIC/SP User's Reference Guide

 Example

 *Go
 polysolve
 *In progress

 Enter calculation or type HELP or /CAN
 ?
 3(x+1)=3
 Incorrect character sequence "(X+1)" found near column 4

 ?
 3x+3=3
 Ans
 .0

 Enter calculation or type HELP or /CAN
 ?
 sqrt(-1)
 IHN261I DSQRT NEGATIVE ARGUMENT=-0.9999999999999997D+00
 Solution terminated

 Enter calculation or type HELP or /CAN
 ?
 1403+75-155/158+3*2501+
 Continue statement
 ?
 145.5
 Ans
 9125.52

 Enter calculation or type HELP or /CAN
 ?
 6sqrt(b)=3x

 Enter B.
 ?
 =p+3f

 Enter P,F.
 ?
 f=c-d,25.5

 Enter C,D.
 ?
 d=1,10
 Ans
 14.4914

 Solve old equation again?
 Type yes or no
 ?
 no

 Enter calculation or type HELP or /CAN

 Chapter 10. Utilities - POLYSOLVE 627

 ?
 20.5x3 + 10x2 +32.3x=15/2.5 + sqrt(2.3)
 Ans
 .212616
 -.350210 -1.26566 i
 -.350210 1.26566 i

 Enter calculation or type HELP or /CAN
 ?
 /cancel
 *Terminated
 *Go

628 POLYSOLVE - MUSIC/SP User's Reference Guide

 PROFILE
———————————————
 Overview

Your user profile contains such things as your sign-on password, default tab character and tab columns, job
time limits, etc. The PROFILE program is used to change or display these options.

To use the PROFILE program, enter the command "PROFILE". You will be asked to enter options. These
options are listed below, in alphabetical order. If you like, you can enter more than one of these options on
the same line, separated by blanks or commas. Also, if only one command line is to be entered, you can type
it on the PROFILE command line, for example: PROFILE SHOW. Entering a blank command is equivalent
to SHOW.

Note: Any changes made to your profile options (except passwords) do not take effect until the next time
you sign on.

 Options

ALWAYSPROG(x) Gives the file name of a program that is to be executed whenever your workstation
 would otherwise be in *Go mode. For example, this could be a menu program that
 lets you choose the next thing to do. You will be prompted to enter your sign-on
 password. To undefine the always program, type ALWAYSPROG(). You are not
 allowed to change the name if it is marked as FIXED. Abbreviations: ALWAYS,
 ALPROG

 Note: If the always program does not work correctly (or does not exist), and you get
 stuck in a loop, don't panic! Go into attention mode (by pressing PA1 or BREAK),
 then type /CAN ALL. This should return you to *Go mode. You can then run
 PROFILE and change the always program name.

AUTOPROG(x) Gives the file name of a program that will automatically be executed each time you
 sign on. The name can be up to 22 characters long. To remove the name, type
 AUTOPROG(). You are not allowed to change the autoprog name if it is marked as
 not cancellable. Abbreviations: AUTO, PROG

BACKSPACE(x) Defines x (any special character) as the input backspace character (not necessary on
 3270-type workstations). The character may also be entered as BACKSPACE(xx),
 where xx is the 2-digit hexadecimal form. To undefine the backspace character, type
 BACKSPACE(). See also TERMINAL(x). Abbreviations: BACKSP, BS

BATCHPW(x) Defines a new batch password (1 to 8 characters). This password may be required
 when you run a batch job. To set no batch password, type BATCHPW(). Abbrevia-
 tion: BPW

BRIEF Displays your name and id number (if assigned). Abbreviation: BR

DEFTIME(n) Sets the default time limit for workstation jobs, in service units (SU). To specify no
 limit, type DEFTIME(NOLIM). Abbreviations: DEFT, DEF, DT

EDMSG Sets the conversational read prompt to *Enter data rather than the normal "?".

 Chapter 10. Utilities - PROFILE 629

END Terminates the PROFILE program. Must be entered at the beginning of the
 command line.

EDNFERR This option applies to the /EDIT command, and means that if the file specified on
 the command does not exist, the Editor should give an error message and stop.

EDNFOK This option applies to the /EDIT command, and means that if the file specified on
 the command does not exist, the Editor should start with an empty file of that name.

Note: EDNFERR and EDNFOK should not both be on; if they are, EDNFOK has priority. If neither is on,
 the result depends on how the Editor was configured for your site.

EXEC The implied form of the EXEC command is not allowed. To execute a file, you
 must type the full command "EXEC filename", rather than just "filename".

HELP Displays a description of the PROFILE program and options. Must be entered at the
 beginning of the command line. The text displayed is taken from the public file
 PROFILE.HELP.

HEX(x y) Defines an input replacement character. When the system sees x in an input terminal
 line, it will replace it with y. x may be any special character (other than "/", comma,
 or blank), and y may be any character. Each may be given in 2-digit hexadecimal
 form. They are separated by a blank or comma. For example: HEX(&,02). To
 remove this option, type HEX().

INPROG Removes the NOINPROG option.

INVIS Makes your id invisible to programs like FINGER. You can use this option if you
 do not wish other users to know that you are signed on.

ITABS(n1 n2 n3 ...) Defines n1, n2, n3, ... as the default input tab column positions. Each number is a
 column position from 1 to 80. When you enter a tab character, the system will
 supply the appropriate number of blanks to get to the next tab position. See the TAB
 option. To undefine all input tab columns, type ITABS(). The numbers are sepa-
 rated by blanks or commas. Abbreviation: ITAB

LANGUAGE(national language name)
 This specifies the national language you prefer for messages, etc. The change will
 take effect the next time you sign on. Not all applications support all languages. If
 an application does not support the language you request, it uses English. National
 language names are: English, French, Kanji (Japanese), Portuguese, and Spanish.
 Other language names MAY also be accepted. Most language names have a 2 or
 3-character abbreviation, for example LANG(ENG). To remove the LANGUAGE
 option, specify LANGUAGE() or LANGUAGE(DEFAULT), both of which use the
 site-dependent default language. Abbreviation: LANG

NEWPW If you wish to be prompted to enter the new password (1 to 8 characters) in a
 blacked-out area (or non-display area for 3270-type workstations), use this option
 instead of PASSWORD(x).

NOEDMSG Removes the EDMSG option.

NOEXEC Removes the EXEC option. Allows the implied EXEC command to be used.

NOINPROG Suppresses the *In progress message.

630 PROFILE - MUSIC/SP User's Reference Guide

NOINVIS Removes the INVIS option.

NOSLASH Removes the SLASH option. "/" may be omitted on commands in *Go mode.

OTABS(n1 n2 n3 ...) Defines n1, n2, n3, ... as the default output tab column positions. The numbers must
 each be 1 to 254 and be in increasing order. They are separated by blanks or
 commas. Up to 11 numbers can be specified. On some types of workstations, the
 system can use output tabs to speed up output. The user must set the correct physi-
 cal output tabs at the workstation. See also the TERMINAL(x) option. To undefine
 the output tabs, type OTABS(). Abbreviation: OTAB

PASSWORD(x) Specifies a new sign-on password (1 to 8 characters). You will be prompted to enter
 your old password. See also NEWPW. Abbreviations: PASSW, PW

PRINT Same as SHOW

PRINT$ Same as SHOW$

PRINTSPACE Same as SHOWSPACE

ROUTE(name) Assigns the default route destination for your userid.

SHOW Displays your complete profile. A blank command line is equivalent to SHOW.

SHOW$ Displays the dollar limit for your userid and the amount used so far. These values
 are also included in the output of the SHOW command. Abbreviation: $

SHOWSPACE Displays the current total space occupied by your files (in units of K = 1024 bytes),
 and also your file space limits (if any). Abbreviation: SHOWSP

SLASH A slash character ("/") is required on all command in *Go mode.

TAB(x) Defines x (any special character) as your logical input tab character. To specify the
 character in 2-digit hexadecimal form, type TAB(xx). To undefine it, type TAB().
 See the ITABS option.

TERMINAL(x) Defines the type of workstation you use. 3270, 3101, and PCWS are examples of
 workstation type names. A workstation name must be defined in order for the
 OTABS (output tabs) and BACKSPACE options to be honoured. Refer to the
 trmcls parameter of the /ID command in Chapter 5. MUSIC Commands for more
 details. To remove this option, type TERMINAL(). Abbreviation: TERM

 Example

 *Go
 profile
 *In progress

 USER PROFILE - ENTER COMMAND OR HELP
 ?
 noinprog itabs(10 20 30)
 CHANGED
 ?
 show

 Chapter 10. Utilities - PROFILE 631

 USERID=SPQR FILE OWNERSHIP ID=SPQR TYPE=0
 ID=987-6543 NAME=Julius Caesar
 TIME LIMITS (IN SERVICE UNITS):
 PRIME=180 NONPRIME=180 BATCH=180 DEFAULT=60
 MAX NUMBER OF EXTRA SESSIONS PER TERMINAL: 5
 PASSWORD CAN BE CHANGED BY USER
 SNGL: CONCURRENT SESSIONS (ON DIFFERENT TERMINALS) ARE NOT ALLOWED
 NOCOM: FILES MAY BE SAVED PRIV OR SHR, BUT NOT PUBL
 AUTOPROG: (NONE)
 INPUT TABS: 10 20 30
 NO OUTPUT TABS
 FUNDS ($): 257.35 USED, 500.00 LIMIT
 SAVE LIBRARY: TOTAL = 132K LIMIT = 200K MAX/FILE = 400
 MAX TRACKS PER DATA SET (UDS) AT ALLOCATION: 0
 CREATED 1991/03/15 (YEAR/MONTH/DAY)
 LAST SIGN-ON: 1991/10/31 10:20 LAST BATCH JOB: 0
 LAST PASSWORD CHANGE: SIGN-ON PW 1991/10/31 BATCH PW 1991/10/31
 PASSWORD LIFETIME: NO LIMIT
 USERID OF CREATOR: $000000
 ?
 end
 *End
 *Go

632 PROFILE - MUSIC/SP User's Reference Guide

 Sorting
———————————————
 Overview of MUSIC SORT Facilities

MUSIC provides facilities for users to sort fixed-length files in main storage and on disk. Disk sort opera-
tions can handle large numbers of individual records. MUSIC's disk sorting capability features the fact that it
preserves the input sequence for those records that contain identical information in the sort fields.

The following identifies the various sorting facilities available on MUSIC. The disk sort routines are then
fully described individually in the same order as they are highlighted below.

SORT This command, valid during *Go mode, sorts the contents of a file. Refer to Chapter 5.
 MUSIC Commands.

MNSORT Generalized disk sort program allowing you to sort files without the need for writing any
 program.

SSORT Routine to sort arrays or tables in main storage. The sorted array replaces the original
 array. No disk work utility files are used, nor is any work storage array required. This
 routine is suitable for the smaller sorting requirements. This subroutine is callable from
 many of MUSIC's high-level languages such as FORTRAN. Input sequence may not be
 preserved for those records that contain identical information in the sort fields. For more
 details about this routine, refer to the SSORT subroutine writeup in Chapter 9. System
 Subroutines in this guide.

DSORT Generalized disk sort subroutine callable from many of MUSIC's high-level languages
 such as FORTRAN.

SRTMUS Subroutine similar to DSORT, except that the parameters are specified in a format similar
 to the OS Sort/Merge routine available on other operating systems.

COBOL SORT The MUSIC disk sort facility is directly callable from COBOL using the COBOL SORT
 Verb.

PL/I SORT A PL/I program can perform sorting operations by calling any of the sort interface
 subroutines PLISRTA, PLISRTB, PLISRTC and PLISRTD, as described in the PL/I
 Optimizing Compiler Programmer's Guide. Refer to the discussion on the PL/I Optimiz-
 ing Compiler.

 MNSORT - MUSIC Main Program for Sorting

MNSORT is a general purpose sort program which can sort data records into ascending or descending order
according to various types of control fields. Input can be from a disk or tape data set, from the Save Library,
or from the input stream. Output sorted records can be punched, printed, or written to tape, disk, or the Save
Library. Sorting is done by the subroutine DSORT. FORTRAN NAMELIST input allows the user to spec-
ify input and output unit numbers, file names, work units, logical record length, sort control fields, and other
parameters. Default values are provided for all parameters.

If you enter only the INPUT='filename' parameter, you can sort the contents of a file and cause it to be
replaced with the sorted version.

 Chapter 10. Utilities - Sorting 633

From a workstation, MNSORT is used by typing EXEC MNSORT or the following:

 /FILE statements as required
 /INCLUDE MNSORT
 ... cards to be sorted... (if input unit is 5)

The user will then be prompted to enter the sort parameters in NAMELIST form, separated by commas (see
below for a description of the parameters). When MNSORT is used from batch, usage is as above except
that the NAMELIST parameters must be supplied following the /INCLUDE MNSORT statement.

Parameters

INPUT=n or INPUT='filename' or FILE='filename'
 The input data to be sorted, either a unit number (1 to 13) or a file name (in single quotes).
 Default is INPUT=1. Abbreviation: IN

OUTPUT=n or OUTPUT='filename' or OUTPUT='*'
 Defines the sort output file, either a unit number (1 to 13) or a file name. OUTPUT='*'
 means use the same unit or file name as specified by the INPUT parameter (i.e. the sorted
 output replaces the input file). Default if OUTPUT not specified: OUTPUT='*' if INPUT is
 a file name; otherwise OUTPUT=2. Abbreviation: OUT.

 Notes:

 1. An output file is automatically replaced if it already exists.
 2. If INPUT is a file name and OUTPUT is not specified, the input file is replaced by the
 sorted data.
 3. If a unit number is used for INPUT or OUTPUT, an appropriate /FILE statement should
 be used if necessary.

RECLEN=n The length of the records to be sorted. If INPUT is a file name, default RECLEN is the
 record length of the file; otherwise the default is RECLEN=80.

WORK1=n Unit number for first (or only) sort work file. Default is 3. If WORK1=0, no work file is
 used.

WORK2=n Unit number for second sort work file. If 0, a second work file is not used. Default is
 WORK2=4.

 Note: The program contains /FILE statements for two work files on units 3 and 4 (tempo-
 rary files). They are adequate for sorting up to about 550K of data (7000 80-byte
 records). If necessary, you can change the work file sizes by supplying your own
 /FILE statements for units 3 and 4:

 /FILE 3 N(&&TEMP) NEW DELETE SPACE(nnnn)
 /FILE 4 N(&&TEMP) NEW DELETE SPACE(nnnn)
 /INCLUDE MNSORT

 where nnnn is the desired space in K. The default is 550K. When work files are
 used, there must be 2 of them (not 1); that is, WORK2 must not be 0.

WRKSIZ=n Size in bytes of the main storage sort work area to be used. The maximum is 52000, which
 is also the default.

FORMAT='xx','xx',...

634 Sorting - MUSIC/SP User's Reference Guide

 Formats of the sort control fields. Default is FORMAT='CH' (1 field). The last specifica-
 tion is repeated if necessary. See also FLDPOS, FLDLEN, and ORDER parameters below.
 The possible formats are: CH (character), BI (binary), DA (date), FI (fixed-point), FL
 (normalized floating-point), ZD (zoned decimal), PD (packed decimal), CI (case ignore).

FLDPOS=n1,n2,...
 Starting column numbers of the sort control fields. Default is FLDPOS=1.

FLDLEN=n1,n2,...
 Lengths of the sort control fields. Each value must be 1 to 256. Default is RECLEN, or 256
 if RECLEN is greater than 256. Refer to the DSORT routine for other restrictions on
 FLDPOS and FLDLEN.

ORDER='x','x',...
 Sort order for the control fields: 'A' for ascending, 'D' for descending. Default is
 ORDER='A'. The last specification is repeated if necessary.

TITLE='xxxx...'
 Optional information to appear in the heading.

PARMS=n If a nonzero unit number is specified, additional parameters will be read from that unit. The
 default is PARMS=0.

HELP Requests a display of information on how to use the program.

ECHO Requests a display of the parameter values.

Notes:

1. The same sorting restrictions and efficiency considerations apply to MNSORT as apply to DSORT.

2. The file MNSORT is public and not execute-only, so that the user can replace the /FILE statement for
 unit 3 or supply replacements for routines SRTIN, SRTOUT, or SRTMSG.

Examples:

1. Assume that data set ABCDFIL1 contains 50-byte records to be sorted in ascending order on
 two control fields. The first field is a 4-byte fixed-point value starting in column 21; the
 second is a 10-byte character field starting in column 3. The sorted records are to be writ-
 ten to data set ABCDFIL2.

 Chapter 10. Utilities - Sorting 635

 *Go
 list sample
 *In progress
 /FILE 1 UDS(ABCDFIL1) VOL(VOLUME) SHR
 /FILE 2 UDS(ABCDFIL2) VOL(VOLUME) OLD
 /INCLUDE MNSORT
 *End
 *Go
 sample
 *In progress
 ENTER SORT PARAMETERS OR HELP
 ?
 reclen=50,format='fi','ch',fldpos=21,3,fldlen=4,10

 SRT000 BEGIN SORT. RECORD LENGTH = 50, AREA = 51944
 SRT000 RECORD COUNT = 200
 SRT000 NORMAL END OF SORT
 JOB TIME 3.42 SERVICE UNITS
 *End
 *Go

2. This example sorts the contents of file TT1 and stores the sorted records into file TT2. The
 previous file TT2 is replaced.

 mnsort
 *In progress

 ENTER SORT PARAMETERS OR HELP
 ?
 input='tt1',output='tt2'

 SRT000 BEGIN SORT. RECORD LENGTH = 80, AREA = 52000
 SRT000 RECORD COUNT = 125
 SRT000 NORMAL END OF SORT
 JOB TIME 2.19 SERVICE UNITS

 TT2
 REPLACED
 *End
 *Go

 DSORT Subroutine

This subroutine sorts fixed-length logical records into ascending or descending order based on one or more
sort control fields in each record. The caller supplies a main storage area and, optionally, one or two direct
access work files to be used if all records cannot be sorted in the main storage area. The input data set to be
sorted, and the output sorted data set, may be any MUSIC sequential files, or user-written input/output
routines may be supplied.

If appropriate user-written input/output routines are used, the length of each logical record is limited only by
the size of the main storage work area. If sufficient direct access work space is provided, there is no limit on
the number of records which can be sorted. Records with identical control fields are output in the same order
as input.

636 Sorting - MUSIC/SP User's Reference Guide

Restrictions

1. The total length of the sort control fields may not exceed 256 bytes.

2. The maximum number of control fields is 20.

3. Control fields may not overlap, and each must start within the first 4096 bytes of the logical record.

4. Only the following types of control fields are accepted:

 a. Character (EBCDIC collating sequence) (OS Sort/Merge codes CH and BI).

 b. Internal fixed-point (OS Sort/Merge code FI).

 c. Internal normalized floating-point (OS Sort/Merge code FL). Floating-point control fields must be
 normalized.

 d. Zoned decimal (OS Sort/Merge code ZD). ZD should be used to sort unsigned numeric fields
 created using FORTRAN I format.

 e. Packed decimal (OS Sort/Merge code PD).

5. Zoned and packed decimal fields must not exceed 32 bytes in length and are not checked for valid sign,
 digit or zone codes. Note that non-negative integer fields created using FORTRAN I-format may be
 treated as zoned decimal fields for sorting.

Usage

DSORT may be called in two ways. All variables except CTLTAB and WKAREA are fullword integers.

 Mode I:
 CALL DSORT(RECLEN,ORDER,CTLLEN,CTLDSP,WKAREA,WRKSIZ,
 INU,OUTU,WORKU1,WORKU2,&n)

 Mode II:
 CALL DSORT(RECLEN,2,CTLTAB,0,WKAREA,WRKSIZ,INU,OUTU,
 WORKU1,WORKU2,&n)

Mode I is used when sorting on a single character-type control field. Mode II is used for the general case of
one or more control fields of various types.

RECLEN Length (in bytes) of each logical record.

ORDER 0 for ascending order, 1 for descending order.

CTLLEN Length (in bytes) of the control field. This must be 1 to 256.

CTLDSP Displacement (in bytes) of the control field from the start of the logical record. This must be
 0 to 4095. (A control field at the beginning of the record has a displacement of 0).

CTLTAB Table specifying the sort control fields for Mode II. The format of this table is described
 below.

WKAREA Array to be used as a main storage work area. Usually this is specified as a REAL*8 array.

 Chapter 10. Utilities - Sorting 637

WRKSIZ Length (in bytes) of the work area WKAREA. The minimum length is 1536 if only one sort
 control field is used, or approximately 1536 + RECLEN if more than one sort control field is
 used. However, a larger area should be provided if possible.

INU Unit number of sort input data. This argument is not inspected by DSORT. It is simply
 passed to the SRTIN routine.

OUTU Unit number of sort output data. This argument is not inspected by DSORT. It is simply
 passed to the SRTOUT routine.

WORKU1 Unit number or ddname of a direct access work file, or 0. If a ddname is used, it must be
 followed by a blank (if less than 8 characters long) and enclosed in single quotes. For exam-
 ple, 'SRTWRK '. If only one work file is used (WORKU2=0), then it must be a UDS file,
 not a file.

WORKU2 Unit number or ddname of a second direct access work file, or 0.

&n This argument is optional. It is the FORTRAN statement number to be transferred to if the
 sort is unsuccessful. DSORT returns with a code of 0 in register 15 if the sort is successful,
 and a code of 4 otherwise.

Format of Control Field Table

The table CTLTAB specifying the sort control fields for Mode II is an INTEGER*2 array (that is, halfword
integers). The first element, CTLTAB(1), is the number (1 to 20) of sort control fields. The remaining
elements, in groups of three, describe the sort control fields as follows:

CTLTAB(3i-1) Displacement (in bytes) of the ith control field from the start of the logical record. This
 must be 0 to 4095. (A control field at the beginning of the record has a displacement of
 0.)

CTLTAB(3i) Length (in bytes) of the ith control field. This must be 1 to 256.

CTLTAB(3i+1) The first byte specifies the type of the ith control field:

 0=character
 1=fixed-point
 2=normalized floating-point
 3=zoned decimal
 4=packed decimal
 5=date (7 character form, i.e. 01JAN90)
 6=case ignore

 The second byte gives the sort order for the ith control field:

 0=ascending
 1=descending

 An example is given below.

Sort I/O Routines

In addition to using the GULP routines for I/O on the disk work files, DSORT calls three subroutines:
SRTIN to read an input logical record, SRTOUT to write an output logical record, and SRTMSG to display a

638 Sorting - MUSIC/SP User's Reference Guide

message. DSORT uses the following calling sequences:

 CALL SRTIN(RECORD,RECLEN,INU,&n)

 CALL SRTOUT(RECORD,RECLEN,OUTU)

 CALL SRTMSG(LINE)

where RECORD is the logical record to be read or written, RECLEN is the record length (as passed to
DSORT), INU is the input unit number (as passed to DSORT), OUTU is the output unit number (as passed
to DSORT), and LINE is a 121-character line to be printed. SRTIN does an alternate return (RETURN 1) to
indicate end of input.

Default versions of SRTIN, SRTOUT, and SRTMSG are available in the subroutine library. SRTIN and
SRTOUT can handle any record length. For special applications, any or all of these routines may be
replaced by user-written ones. This is done by including the replacement source or object deck as part of the
user's program.

You can suppress all the sort messages by defining a dummy version of SRTMSG such as:

 SUBROUTINE SRTMSG
 RETURN
 END

DSORT uses 18 and 19 as the GULPDF file numbers for work file I/O. Therefore, the user's program should
avoid using these numbers.

Efficiency Considerations

As large a main storage area as possible should be provided. A suggested size is 32000 bytes or more.

The number of direct access work files may be 0, 1, or 2. No work file is needed if all records can be sorted
in main storage. Otherwise, the total work space provided must be at least twice the size of the input data set
to be sorted. That is, a single work file twice the input size is needed, or two work files each at least the
input size. To avoid excessive disk arm movement, two UDS work files should be used only if they are
located on different volumes.

For maximum efficiency in sorting a large file, use two UDS work files on different volumes.

If a file is used as a work file, the number of work files must be two. In other words, if a single work file is
used, it must be a UDS file, not a file.

Example 1

The following program sorts the card images in data set ABCD$XYZ in ascending order according to the
characters in columns 21 to 30 of each card. The resulting cards are punched (unit 7). Mode I calling
sequence is used, with two sort work files on different volumes.

 /FILE 1 UDS(ABCD$XYZ) VOL(MUSIC2) SHR
 /FILE 2 UDS(ABCDWRK1) VOL(MUSIC2) OLD
 /FILE 3 UDS(ABCDWRK2) VOL(MUSIC3) OLD
 /LOAD VSFORT
 REAL*8 WORK(7000)
 CALL DSORT(80,0,10,20,WORK,56000,1,7,2,3,*9)

 Chapter 10. Utilities - Sorting 639

 STOP
 9 STOP 99
 END

Example 2

This example reads cards on unit 5, sorts them according to three control fields, and writes the result on unit
10. Mode II calling sequence is used, with one sort work file. A dummy SRTMSG routine is used to
suppress messages. The control fields are:

1. Fixed-point in columns 5 to 8 (ascending order).

2. Floating-point (double precision) in columns 41 to 48 (descending order).

3. Characters in columns 21 to 30 (ascending order).

 /FILE 1 UDS(&&TEMP) NREC(2000)
 /LOAD VSFORT
 REAL*8 WORK(4000)
 INTEGER*2 CTLTAB(10)/3,4,4,Z0100,40,8,Z0201,
 * 20,10,0/
 CALL DSORT(80,2,CTLTAB,0,WORK,32000,5,10,1,0,*9)
 STOP
 9 STOP 99
 END
 SUBROUTINE SRTMSG
 RETURN
 END
 /DATA

 cards to be sorted

 SRTMUS Subroutine

The MUSIC subroutine SRTMUS may be used from a FORTRAN program to sort fixed-length records into
ascending or descending order according to one or more control fields in each record. SRTMUS performs
the sort operation by calling DSORT, the MUSIC generalized sort routine. Refer to the description of
DSORT for detailed information about sort work files, main storage areas, and input/output routines.

Syntax

CALL SRTMUS(SRTCMD,RECCMD,RETCOD,WRKSIZ,WKAREA,INU,OUTU,WORKU1,WORKU2)

Parameters

SRTCMD Image of SORT statement (as for OS Sort/Merge), terminated by a dollar sign character ($).

RECCMD Image of RECORD statement (as for OS Sort/Merge), terminated by $.

RETCOD Integer return code, set to 0 if sort is successful, to 16 otherwise.

WRKSIZ Integer length (in bytes) of the array WKAREA.

640 Sorting - MUSIC/SP User's Reference Guide

WKAREA Main storage work area to be used by DSORT. A recommended size is 32000 bytes or
 more.

INU Integer unit number of sort input data. If this argument is omitted, unit 1 is assumed.

OUTU Integer unit number of sort output data. If this argument is omitted, the output unit is
 assumed to be the same as the input unit, and the original data set is replaced by the sorted
 one.

WORKU1 Integer unit number of a temporary data set to be used as a sort work file. If this argument is
 omitted, unit 3 is assumed. If 0 is specified, a work file is not used.

WORKU2 Integer unit number of a second sort work file. If this argument is omitted or 0, only one
 work file is used (WORKU1). Two sort work files should be used only if they are on differ-
 ent volumes.

Restrictions

1. Variable-length records (TYPE=V) may not be used.

2. Sort control formats CH (character), BI (binary), FI (fixed-point), FL (normalized floating-point), ZD
 (zoned decimal), and PD (packed decimal) are supported.

3. Sort control fields must begin on a byte boundary and be a whole number of bytes in length.

4. The maximum number of control fields is 20.

5. Control fields may not overlap.

Example of SRTMUS

This example generates 20-byte records on unit 1 containing floating-point numbers, then sorts the records
into ascending order according to the floating-point numbers and prints the lowest and highest values. File 3
is a sort work file.

 /FILE 1 UDS(&&TEMP) NREC(2000) LRECL(20)
 /FILE 3 UDS(&&TEMP) NREC(1000)
 /LOAD VSFORT
 REAL*8 WORK(4000)
 CALL RSTART(123,4567)
 DO 1 M=1,2000
 X=UNI(0)
 1 WRITE(1,71) M,X
 71 FORMAT(I10,A4)
 ENDFILE 1
 REWIND 1
 CALL SRTMUS(' SORT FIELDS=(11,4,FL,A)$',
 * ' RECORD TYPE=F,LENGTH=20$',K,32000,WORK)
 IF(K.NE.0) STOP 99
 REWIND 1
 DO 2 N=1,2000
 READ(1,71) M,X
 IF(N.EQ.1) WRITE(6,61) X,M
 2 IF(N.EQ.2000) WRITE(6,62) X,M

 Chapter 10. Utilities - Sorting 641

 61 FORMAT('0MINIMUM =',F12.6,' AT M =',I7)
 62 FORMAT('0MAXIMUM =',F12.6,' AT M =',I7/
 STOP
 END

 Using COBOL's SORT Feature

The Sort Feature of ANS COBOL is supported by MUSIC. Using the SORT Statement, the COBOL
programmer can sort data records according to specified fields. Refer to the ANS COBOL Language Manual
(GC28-6396) for a complete description of the Sort Feature, and a sample program illustrating its use. The
following additional remarks apply to COBOL sorts under MUSIC:

1. The sort is performed by DSORT, the MUSIC generalized sort routine described above.

2. A work file must be defined with a ddname of SORTWK01 by using a /FILE statement. This is used as
 a sort work file by DSORT. If a second sort work file is to be used, define it with ddname SORTWK02.
 The work files can be UDS or normal MUSIC files, except that a UDS must be used if there is only one
 sort work file.

 Example using one work file:

 /FILE SORTWK01 UDS(&&TEMP) NEW DELETE NREC(8000)

 Example using two work files:

 /FILE SORTWK01 NAME(&&TEMP) SPACE(500)
 /FILE SORTWK02 NAME(&&TEMP) SPACE(500)

3. The size of the main storage work area can be specified within the COBOL source program by using the
 SORT-CORE-SIZE special register. For example, to request an area of 50000 bytes, use "MOVE
 50000 TO SORT-CORE-SIZE". Negative numbers and the special value +999999 are not supported.

4. Variable-length records may not be sorted.

642 Sorting - MUSIC/SP User's Reference Guide

 TAPUTIL
———————————————
TAPUTIL is a tape utility program which can be used to dump or summarize selected files from tape, and
copy files from one tape to another. All record formats and block sizes can be processed, and blocks may be
of different lengths. Blocks can be dumped in both character and hexadecimal form.

 Usage

TAPUTIL is run as a MUSIC batch job, with the tape or tapes specified on /FILE statements. The input tape
(the tape to be read) is normally defined as unit 1. The output tape, if required, is normally defined as unit 2.
An output tape is used only if the COPY parameter is specified. The control statement setup is as follows:

 /FILE 1 TAPE VOL(volume1) RECFM(U)
 /FILE 2 TAPE VOL(volume2) RECFM(U) (if a second tape is used)
 /INCLUDE TAPUTIL
 parameter statement (see below)

The /FILE statements for the tape(s) must specify RECFM(U), since this program processes raw blocks of
data of any length. The program is controlled by various keyword parameters (in Fortran NAMELIST form)
on the parameter statement. These parameters, described below, are separated from each other by commas.

 Parameters

The following may be specified on the parameter statement, separated from each other by commas. The
default column lists the parameter values which are automatically assumed if the parameter is not specified.

STATS Print statistics about each file (number of blocks, lengths of blocks, etc.) The default is no
 STATS.

SL Print any standard labels found. The default is no SL.

COPY Copy files from the input tape to the output tape. The default is no COPY.

IN=n Unit number of input tape. The default is 1

OUT=n,f Unit number (n) of output tape and starting file number (f) in the output tape. The defaults
 are 2,1.

PRINT=n Print the first n blocks from each file, in character form. PRINT='ALL' may be specified.
 The default is 0.

DUMP=n Dump the first n blocks from each file, in character and hexadecimal. DUMP='ALL' may be
 specified. The default is 0.

FILES=n Process the first n files from the input tape. If not specified, two tape marks will be regarded
 as the end.

SELECT=n,m,...
 Process only files n, m, ... from the input tape. Up to 100 file numbers may be specified.

 Chapter 10. Utilities - TAPUTIL 643

 They must be in ascending order.

 Notes

1. Record format U must be specified on the tape /FILE statements.

2. A file of a tape is considered to be the data between two consecutive tape marks (or between the begin-
 ning of the tape and the first tape mark). The files of a tape are numbered 1, 2, 3, etc. MUSIC has no
 skip to file support, so files are skipped by reading through them.

3. The program assumes that two tape marks (with no data blocks between them) indicate the end of the
 input tape. If the tape does not end with two tape marks, the program will continue reading to the end of
 the reel. This is not very popular with operations. It is recommended that the FILES=n parameter be
 used to limit the number of files processed. This parameter can also be used to skip over double tape
 marks in the middle of a volume. However, the FILES and SELECT parameters must not be used
 together.

4. Users are reminded that MUSIC tape jobs must be submitted by using the SUBMIT command described
 earlier in this guide in Chapter 3. Using Batch.

5. The STATS, SL, and copy parameters must not immediately follow the OUT or SELECT parameters.

 Examples

1. Dump the first 5 blocks from every file of a tape.

 /FILE 1 TAPE VOL(MYTAPE) RECFM(U)
 /INC TAPUTIL
 DUMP=5

2. Print the first 10 blocks of each of files 1, 5, and 7.

 /FILE 1 TAPE VOL(MYTAPE) RECFM(U)
 /INC TAPUTIL
 PRINT=10,SELECT=1,5,7

3. Copy TAPEX to TAPEY.

 /FILE 1 TAPE VOL(TAPEX) RECFM(U)
 /FILE 2 TAPE VOL(TAPEY) RECFM(U)
 /INC TAPUTIL
 COPY

4. Dump the entire contents of a tape, print statistics, and any standard labels.

 /FILE 1 TAPE VOL(XXXXXX) RECFM(U)
 /INC TAPUTIL
 STATS,SL,DUMP='ALL'

644 TAPUTIL - MUSIC/SP User's Reference Guide

5. Copy files 3 and 4 from TAPEIN to file 6 and 7 on TAPEOT.

 /FILE 1 TAPE VOL(TAPEIN) RECFM(U)
 /FILE 2 TAPE VOL(TAPEOT) RECFM(U)
 /INC TAPUTIL
 COPY,OUT=2,6,SELECT=3,4

 Chapter 10. Utilities - TAPUTIL 645

 UDSARC/UDSRST/DSCHK
———————————————
 Archiving and Retrieving User Data Set (UDS) Files

The user can cause a set of User Data Set (UDS) files owned by the user to be copied to a magnetic tape by
using the UDSARC program. The referenced data sets on disk are not altered by this copy operation.
Options are available to archive specific data sets, a group, or all of them to tape. (To archive files, refer to
the writeup on the ARCHIV utility.)

The UDSRST program can be used to retrieve data sets from tapes created by UDSARC.

The DSCHK utility is available to list the names of the files contained on a tape created by the UDSARC
program and at the same time, double-check the validity of the information stored on the tape.

The user should note that these three utilities must be submitted to batch since they use magnetic tape.

 UDSARC Program

The following illustrates the control statement set up for the UDSARC program:

 /FILE 1 TAPE BLK(nnnn) RSIZ(80) VOL(vvvvvv)
 /INCLUDE UDSARC
 UNITS=1
 ... dump specification statements (see below)

 Dump Specification Statement:

 VOL='vol1'[,'vol2'][,'vol3'][,DSN='data set name']
 [,CODES='userid']

 Examples: VOL='MUSIC1',DSN='ABCD1234'
 VOL='MUSIC1','MUSIC2',CODES='ABCD'
 VOL='MUSIC2',DSN='ABCDX..'

 One or more dump specification statements may be used. Each statement must contain a VOL parameter
 and one of either a DSN or CODES parameter. Abbreviations V, D and C may be used. Commas are used
 to separate the parameters on each dump specification statement.

VOL specifies a list of volume names to be searched for the data sets. One or more volume names
 may be given.

DSN specifies the name of the data set to be archived. The form DSN='ABCDX..' may be used to
 indicate that all data sets on the named volumes starting with the letters ABCDX are to be
 archived.

646 UDSARC - MUSIC/SP User's Reference Guide

CODES parameter causes all the user's data sets on the given volumes to be archived. Specify the
 ownership id (userid without subcode).

 Retrieving UDS Files: UDSRST

UDS files can be retrieved from the tape prepared by the UDSARC program. Each data set is retrieved from
tape by running a separate batch job. If the receiving data set does not exist, it must be allocated using the
original logical record size (RSIZ) and number of records (NREC). The parameters VOL and DSN give the
volume and data set name at the time the data set was archived. These parameters are used to locate the
specific copy on tape.

The following illustrates the control statement set up:

 /FILE 1 TAPE BLK(nnnn) RSIZ(80) VOL(vvvvvv) SHR
 /FILE 2 UDS(receiving data set name) VOL(volume) OLD
 /INCLUDE UDSRST
 IN=1,OUT=2,VOL='original volume',DSN='original data set name'

 DSCHK Program

This program checks the contents of a tape created by UDSARC and can list the data set names stored on it if
the INFO=TRUE parameter is used. The following illustrates the control statement set up for running the
DSCHK program:

 /FILE 1 TAPE BLK(nnnn) RSIZ(80) VOL(vvvvvv) SHR
 /INCLUDE DSCHK
 UNITS=1,INFO=TRUE

 Contents of Information Records

In a dump produced by UDSARC, each data set is preceded by a *DS1 record and a *DS2 record. The *DS1
record has the volume name, the data set name, and the date and time of the dump. The *DS2 record
contains the following information:

 Column 8 B for backup, N for no backup.
 9-12 Device type.
 13-15 Data set organization.
 16-19 Record format.
 20-25 Block size.
 26-31 Logical record length.
 32-37 No. of tracks (no. of physical blocks if FBA device).
 38-40 No. of extents.
 41-44 No. of blocks per track (32 if FBA device).
 45-48 Key length.
 49-53 FBA physical block length (0 if not FBA device).

 Chapter 10. Utilities - UDSARC/UDSRST/DSCHK 647

 UTIL
———————————————
UTIL provides facilities for listing, punching, copying, and merging data on cards, card images, tape or disk.
It can insert sequence numbers, translate from BCD to EBCDIC and vice versa, and perform other editing
functions. Multiple copies can be punched or printed. The program can read and write logical records up to
133 bytes in length, and can supply information on the size and characteristics of MUSIC disk data sets.

 Usage

Typically UTIL is run using a control statement set up similar to that shown below:

 /FILE statements (if required)
 /INCLUDE UTIL
 ...control statements and data...

If more than one copy of punched or printed output is requested (via the control statements $PUNCH=n,
$LIST=n or $COPIES=n described below), then unit 4 is reserved as a work file and thus the user cannot
give a /FILE statement for this unit number. If copies involve more than about 4000 records each, then the
user should provide a temporary file on unit 4 that will be large enough to hold one copy. If multiple copies
are not requested, then the user may supply as many as 4 /FILE statements referring to UDS files.

For data records in the input stream (unit 5) or accessed by /INCLUDE, the record length is 80. For data
records accessed by $INPUT=m, the record length is that of the file specified on the /FILE statement for unit
m, to a maximum of 133.

 Control Statements

Control statements normally have $ in column 1 and may not contain embedded blanks. In the following
description, n is an unsigned decimal number, 1 to 8 digits in length. A quote within a data string must be
represented by two single quotes. With no control statements, the input deck is simply listed.

A user data record may have the control character $ in column 1 provided a UTIL control statement name
does not occur starting in column 2. (See also $NOCTL, $INPUT and $CHAR below.)

$BACKSPACE=n
 Performs a backspace operation on MUSIC I/O unit number n.

$BATCH Causes line numbers, indentation, and page headings to be produced by default. The page
 heading includes the date and page number, unless suppressed by $NOPAGE.

$BCD=n Convert from EBCDIC to BCD and punch n copies. Default is n=1. (Number of copies is
 ignored if already specified.) If both conversions are requested, BCD to EBCDIC is done
 first.

$CHAR=x Use x (may be any character) as the control character instead of $.

$CONV Convert from BCD to EBCDIC as cards are read.

$DOUBLE Double space listing.

648 UTIL - MUSIC/SP User's Reference Guide

$EBCDIC=n Equivalent to $CONV followed by $PUNCH=n.

$END Treated as end-of-file.

$ENDFILE=n Write an end-of-file mark on MUSIC input/output unit number n.

$GANG
n
card The above sequence punches n copies of card.

$INDENT=n In the listing, indent n spaces before the record. n must be 0 to 40. Default is n=0 (n=20 if
 $BATCH is used).

$INFO Causes a description of UDS files to be printed at the end of the program. Temporary (that
 is, unnamed) disk data sets are not included.

$INFO=ALL Same as $INFO, except that temporary UDS files are included.

$INPUT=m Causes reading to immediately transfer to unit m. At end-of-file on this unit, reading
 switches back to unit 5. Input logical records shorter than 133 bytes are filled out with
 blanks on the right. m may be 1, 2, 3, 4, 5, 9, 11, 12, 13, 14, or 15. More than one $INPUT
 card may be used, and the same unit number may be repeated; thus, two or more data sets
 may be merged. For units 5 and 9, control statements are accepted (e.g. $INPUT=5 may be
 used to switch from 9 to 5, or $END may be used to stop the program from unit 9), but for
 other units any control statements are treated as data.

 Input is from unit 5 (the input stream) until the first $INPUT=m statement is encountered.
 The record length for the input stream, or for any /INCLUDE'd file, is 80.

 Note: If a $OUTPUT or other control statement is to apply to the data read by a $INPUT
 statement, it must precede the $INPUT statement.

$LIST=n
$COPIES=n Either of these control statements is used to resume or begin listing, and produce n copies of
 printed output. n (and the equal sign) may be omitted, in which case n=1 is assumed.

$LIT=('string1',starting col,'string2',starting col)
 Specifies up to 2 character strings to be inserted in each card. For example,
 $LIT=('ABCD',73) puts ABCD in columns 73-76 of each card.

$NAME=a...an...n
 Specifies identification a...a and sequence numbers (initial value and increment both n...n)
 for columns 73-80. a...a and n...n must together have a length of 8, and the length of n...n
 must not be zero. a...a may not contain blanks or end with a digit.

$NOBCD Suppress conversion from EBCDIC to BCD. (Punching continues unless suppressed by
 $NOPUNCH -- the same applies to $NOEBCDIC.)

$NOCTL Causes any subsequent control statements to be treated as data.

$NOCONV Either control statement suppresses conversion from BCD to EBCDIC. (This is the default.)
 $NOEBCDIC
$NOLIST Suppress listing.

$NOLIT Suppress insertion of character strings.

 Chapter 10. Utilities - UTIL 649

$NOPAGE Suppress date and page numbers from the page heading line. (Meaningful only if $BATCH
 is used.)

$NOPUNCH Suppress punching. (This is the default.)

$NOSEQ Suppress sequence numbers.

$NUMBER Either of these control statements is used to cause a skip to a new page and number the
 following printed lines, starting at 1. $NUM

$OUTPUT=m Specifies that output is to be written on unit m, and implies 1 copy. m may be 1, 2, 3, 4, 6, 7,
 10, 11, 12, 13, 14, or 15. Output logical records are truncated or blank-padded on the right
 to conform to the receiving data set.

 The combination of $NOLIST and $OUTPUT=6 can be used to print a file which has
 carriage control information as the first character of each record.

 Use the $PUNCH=n option to get multiple copies of the output. If used this way, the
 $PUNCH card must precede the $OUTPUT card.

 Note: If a $OUTPUT card is to apply to one or more $INPUT cards, it must precede the
 $INPUT cards.

$PUNCH=n Write the output on unit 7, producing n copies (for example, punch n copies of an input
 deck). n may be omitted, in which case n=1 is assumed. Only the first $PUNCH card is
 used to set the number of copies.

$REWIND=n Issues a rewind for MUSIC I/O unit number n.

$SEQ=(starting-col,length,initial-value,increment)
 Specifies sequence numbers to be inserted. Length must be 1 to 8. $SEQ is equivalent to
 $SEQ=(77,4,1,1).

$SEP=n Punch n separator cards between each copy (n may be 0). Separator cards have 7-8-9
 punches in columns 1-80. Default assumption is 5 separator cards. Separator cards are
 suppressed if the output unit is not 7.

$SINGLE Single space listing. (Default is $SINGLE.)

$SKIP
$EJECT Either of these control statements will cause a skip to a new page.

$SPACE=n Insert n blank lines in the listing. Default is n=1. If fewer than n lines remain on the page,
 effect is same as $EJECT.

$STATS Prints input and output record counts. The input count does not include control cards and the
 output count does not include extra copies of punched output or separator cards.

$SUPPRESS
$NONUM Either control statement suppresses line numbers.

$TERM Reverts to standard defaults, i.e. no line numbers, no indentation, and no page headings.
 $TERM is assumed at the start of the program.

$TITLE='string'
 Skip to a new page and print specified title at top of each page. (Meaningful only if

650 UTIL - MUSIC/SP User's Reference Guide

 $BATCH is used.)

$* Comment (ignored).

 Examples

Copy a sequential file from one UDS to another (unit 1 to unit 2). The logical record length is assumed to be
133 or less.

 /FILE 1 UDS(ABCDXXX1) VOL(VVVVVV) SHR
 /FILE 2 UDS(ABCDXXX2) VOL(VVVVVV) OLD
 /INCLUDE UTIL
 $NOLIST
 $STATS
 $OUTPUT=2
 $INPUT=1

Print a file called ABC with line and page numbers

 /INCLUDE UTIL
 $BATCH
 /INCLUDE ABC

Card to tape with sequence numbered listing

 /FILE 1 TAPE BLK(800) RSIZ(80) VOL(MYTAPE) OLD
 /INCLUDE UTIL
 $OUTPUT=1
 $NUMBER
 $NOCTL
 (DATA CARDS)

Card to disk data set, suppressing listing

 /FILE 1 UDS(UUUUSIII) VOL(MUSIC2) OLD
 /INCLUDE UTIL
 $OUTPUT=1
 $NOLIST
 $NOCTL
 (DATA CARDS)

Print and punch from magnetic tape

 /FILE 1 TAPE BLK(800) RSIZ(80) VOL(MYTAPE) SHR
 /INCLUDE UTIL
 $OUTPUT=7
 $INPUT=1

Listing a disk UDS file with line and page numbers

 /FILE 1 UDS(UUUUSIII) VOL(MUSIC2) SHR
 /INCLUDE UTIL
 $BATCH
 $INPUT=1

 Chapter 10. Utilities - UTIL 651

Print 10 copies of a file whose records are 100 bytes long

 /FILE 1 NAME(FILENAME)
 /INCLUDE UTIL
 $COPIES=10
 $INPUT=1

Reproduce a card deck:

Add identification in columns 73-76 and sequence numbers in columns 77-80. No listing to be produced.

 /INCLUDE UTIL
 $NOLIST
 $NAME=CARD0001
 $OUTPUT=7
 (DATA CARDS)

Punch 500 copies of a card

 /INCLUDE UTIL
 $GANG
 500
 (CARD)

Obtain information about a disk data set:

 /FILE 1 UDS(UUUUSIII) VOL(MUSIC2)
 /INCLUDE UTIL
 $INFO

652 UTIL - MUSIC/SP User's Reference Guide

 VIEW
———————————————
VIEW allows the viewing of files of any record length or type and any size on a full-screen workstation.
Files can be displayed in hexadecimal. ASCII mode is available to view ASCII files on a 3270-type work-
station. In this mode printable ASCII characters are translated to their EBCDIC equivalents. Locate and
Find functions are supported.

 Summary of Commands

AScii [on|off|flip] HUNT string Search string
Bottom Locate string SHow [on|off]
CANcel LEft n STatus
CAse [Ignore|Respect] LIne n STORE fn [Append|Replace]
CEnter n MArk [m n|?] TAG [on|off|flip]
COlumns [on|off|flip] MARKER x TEXTLc
DEFine PFn string Next n TEXTUc
Down n LLine n TIme
ECHO [NAME|WORD|text] NUMber [on|off|flip] Top
ECHOX [NAME|WORD|text] QQuit UIO [on|off|flip]
END RAnge m n UNMark
Find string RETrieve Up
HELP RIght n Users
HEX [on|off|flip] RUler [on|off|flip] VHEX [on|off|flip]
HHEX [on|off|flip] SCROll n Zone m n

Function Keys

F1: Help Get help on how to use VIEW.

F3: End Terminate the current VIEW.

F5: CEnter Place the data line pointed to by the cursor at the center of the data display area.

F7: Up Move by the scroll value toward the top of the file.

F8: Down Move by the scroll value toward the bottom of the file.

F9: Locate Repeat the previous locate command.

F10: LEft Move by the scroll value toward the first column of the file.

F11: RIght Move by the scroll value toward the last column of the file.

F12: RETrieve Retrieve the previous command entered.

Commands

AScii [on|off|flip] Turns on or off ASCII translation. If the file being viewed is an ASCII file, "ascii
 on" will allow the display of the standard printable characters.

 Chapter 10. Utilities - VIEW 653

Bottom Displays the last full page (screen) of the file.

CANcel Terminates the current view.

CAse [Ignore|Respect]
 Defines the case for searching strings. When RESPECT, the result of the search
 depends upon the setting of TEXTLC or TEXTUC. If TEXTUC is in effect, then
 your input text is translated to upper case prior to the search. If TEXTLC is in
 effect, then your input string is not translated to upper case. In both circumstances,
 the text in the file is compared "as-is". When IGNORE, the searching ignores
 case, both in your input string and in the file. Any combination of upper and lower
 case matches the searched text.

CEnter n Places the line defined by n at the center of the display area. If n is not specified,
 the line pointed to by the cursor is centered.

COlumns [on|off|flip] This command places a ruled line in the message area that corresponds to the
 columns being displayed.

DEFine PFn string Defines the function key specified by n to be string. If no string is specified, the
 current definition is place in the command area, ready for modification. If the
 string specified is an asterisk (*), the key reverts to the default definition.

Down n This command moves down the viewing window by n lines, or when n is not spec-
 ified, it moves down the viewing window by the scroll value.

ECHO [NAme|WORD|text]
 Echoes to the command area the text pointed to by the cursor. When the key word
 "NAME" is used it echoes the viewed file name. When the keyword "WORD" is
 used the text being echoed is truncated after the first word of the text. When text
 follows the echo command that text is echoed to the command area.

ECHOX [NAme|WORD|text]
 Identical to ECHO except that this command places the hexadecimal version of the
 text in the command area

END Terminates the current view.

Find string Finds the next occurrence of the specified string. The search proceeds from the
 line pointed to by the cursor plus 1. The string to be found must be found at the
 start of the defined locate zone. See Locate, Zone and RAnge.

HELP Provides help on how to use the view facility.

HEX [on|off|flip] Turns on vertical hex display of the data on the screen.

HHEX [on|off|flip] Turns on horizontal hex display of the data on the screen.

Hunt string Same as FIND except that the FIND begins at the top of the file.

Locate string Locates the next occurrence of the specified string. The search goes from right to
 left, and downward, from the line and record column pointed to by the cursor. The 'string'
 cursor is placed at the found text. The view of the file on the screen changes in X'string'
 accordance with the result of the search. If the found text is not on the currently
 displayed lines and columns, the viewing window adjusts as required. If the search
 fails, a message is posted informing you that the search has gone to end-of-file,

654 VIEW - MUSIC/SP User's Reference Guide

 and the current line and cursor position remains unchanged. The search can be
 limited horizontally (column-wise) by setting the zone. Setting the range limits
 searches within the lines defined by the range.

 You can specify strings to be located by delimiting them with single (') or double
 (") quotes. Though quotes are normally not required, they are necessary when
 leading or trailing blanks are part of a string or when the string to be located is
 expressed as a hexadecimal string (LOCATE X'string').

 Examples:

 l abc locate the string -- abc

 l ' abc ' locate the string -- abc preceded and followed by a blank.

 l "don't" locate the string -- don't

 l x"c1c2c3" locate the hexstring -- c1c2c3 (c'abc')

 Illegal strings

 don't strings with imbedded quotes should be quoted by the alter-
 nate quote. In this case: "don't".

 'abc missing ending quote.

 'abc" the first quote must be matched by the same same type
 quote at the end of the string.

 x'f1fm' the string type (x) requires that all hexadecimal digits be
 in the range a-f and 0-9.

 x'c1c' the string type (x) requires that all hexadecimal digits be
 paired. In this example the string has a trailing "c" which
 is not paired.

LEft n This command moves the viewing window left by n lines, or when n is not speci-
 fied, it moves the viewing window left by the scroll value.

LIne n Displays the page (screen) with n as the first line. "n" can be a "." (period) indicat-
 ing the first line of a marked group.

LLine n Defines the row of the displayed data area to place the "located text" after a locate,
 where the "locate text" was not on the currently displayed screen. By default such
 searches will place the located text at the center of the screen. n can be any posi-
 tive integer or any of the following keywords PAGE, HALF, CENTER, CURSOR
 or MAX.

MArk [m n|?] Marks the line pointed to by the cursor. A group of lines can be marked. When
 integer values are used as parameters those lines are marked. "?" used as a param-
 eter, displays in the message area what lines are marked and how many.

MARKER x used to define the mark character to be used to flag marked lines.

Next n This command moves the viewing window down by n lines, or when n is not
 specified, it moves down by the scroll value.

 Chapter 10. Utilities - VIEW 655

NUMber [on|off|flip]
 Turns line numbering on or off.

QQuit Terminates the current view.

RAnge m n Sets the range, start and end lines, for find, locate, top, bottom, up and down
 commands. m is the starting line and n is the ending line. If only one number is
 specified it is taken as n and m is defaulted to 1. In other words, when only 1
 number is specified, the range is taken to be the first "number" lines in the file.
 RA MAX is used to reset it to the entire file length (all lines). Top of file and
 bottom of file messages are changed to top of range and bottom of range, when the
 range is a subset of the file size.

 Examples:

 RA 10 30 only lines 10 through 30 can be displayed and searched
 through.
 RA max sets the range to the file size.

RETrieve Echoes to the command buffer the previous command entered.

RIght This command moves the viewing window right by n lines, or when n is not speci-
 fied, it moves right by the scroll value.

RUler [on|off|flip] This command places a ruled line in the message area which corresponds to the
 columns being displayed.

SCROll n This is an alternate method of setting the scroll value. Normally the scroll value is
 set by typing in the scroll area directly. Valid values for scroll is any valid positive
 integer, and the key words max, page, half, and cursor.

Search string Same as LOCATE except that the search begins at the top of the file.

SHow [filename] Display the first two lines of filename at the bottom of the screen. This is usually
 used to display function key definitions. "SHOW OFF" will display the default
 function key definitions.

STatus Displays the current time, date, service units used, number of users current signed
 on, and the session id number.

STOre fn [Append|Replace]
 Stores the marked lines in the specified file. If append is specified, the marked
 lines will be appended to the file. If replace is specified the file will be purged and
 a new file with the marked lines will be created. If neither option is specified,
 replace is assumed. In this case you will be prompted if the file already exists.

TAG Displays the tag text of the viewed file.

TEXTLc When specified, the command area is not translated to uppercase. Therefore
 searching is performed on an upper and lower case basis.

TEXTUc When specified, the command area is translated to uppercase. Therefore searching
 is performed on uppercase basis only.

TIme Same as STATUS.

656 VIEW - MUSIC/SP User's Reference Guide

Top Displays the first full page (screen) of the file.

UIO [on|off|flip] Turns unformatted I/O on or off. Unformatted I/O refers to reading in the data
 from the file as 512 byte chunks. These chunks are exact representations of the file
 as it is recorded on disk. Some files may have been created or written using unfor-
 matted I/O. This is detected by VIEW and UIO is automatically turned on. UIO
 off is invalid for such files since they can not be read sequentially.

UNMark Unmarks the marked lines.

Up This command moves the viewing window up by n lines, or when n is not speci-
 fied, it moves up by the scroll value.

USers Same as STATUS.

VHEX [on|off|flip] Turns on vertical hex display of the data on the screen.

Zone m n Sets the zone, start and end columns, for find and locate commands. m is the start-
 ing column and n is the ending column. If only one number is specified it is taken
 as n and m is defaulted to 1. Z MAX is used to reset it to the entire record length
 (all columns).

 Examples:

 z 10 30 the located string must occur within columns 10-30.
 z 50 the located string must occur within columns 1-50.

 The Scroll Area

This field on the extreme right of the command area, is used to define the scroll value for right/left and
up/down movement. Valid entries in this field are any positive integer or any of the following keywords:
PAGE, HALF, CENTER, CURSOR, and MAX. You can change the scroll value by overtyping a new
value in the field or you can use the "SCROLL n" command. Commands that use the scroll value are:

 UP (F7) scroll towards the top of the file
 DOWN (F8) scroll towards the bottom of the file
 LEFT (F10) scroll towards the first column of the file
 RIGHT (F11) scroll towards the last column of the file

The use of MAX in the scroll field scrolls to the top, bottom, left margin, or right margin, depending on
which of the function keys above you press next. The previous scroll value reappears and takes effect after
the interaction, that is MAX is always temporary.

The use of CURSOR scrolls to the data line pointed to by the cursor or if the cursor is off the data area by a
PAGE value. For example, if the cursor is pointing to line 50 of a file, the DOWN key places line 50 at the
top of the data area on the screen.

Return Codes

 0 normal termination.

 -1 not a 3270 workstation.

 Chapter 10. Utilities - VIEW 657

 <-1 not enough work area available, absolute of the return integer is the required area in bytes.

 1-100 file error occurred.

 >100 FSIO error occurred.

658 VIEW - MUSIC/SP User's Reference Guide

 VMPRINT
———————————————
The VMPRINT program is used to print the contents of MUSIC files on a batch printer without the neces-
sity of submitting a batch job. The data writes to a VM virtual printer for subsequent printing by VM. The
program has the ability to direct files to remote printers or to other VM systems via RSCS (the Remote
Spooling Communication Subsystem of VM).

 Usage

 VMPRINT file1[,file2,...filen][,CLASS='x'][,TO='yyy'][,CC='zzz']

where:

file1 is the name of the MUSIC file to be printed. One or more files can be specified per
 command.

CLASS='x' specifies the VM output class for this printer file (1 character long). The default is class A.

TO='yyy' specifies the RSCS node ID name, referred to as the destination (up to 8 characters). This
 is the tag information, which can be the remote printer assigned name or the name of
 another VM system. When TO= is present, the print file is spooled to RSCS; when TO= is
 absent, the print file is spooled to SYSTEM (the default).

CC='zzz' zzz can be either YES or NO indicating whether the file to be printed contains control char-
 acters in the first column which will control the printing of the file. Acceptable carriage
 control characters are blank, 0, +, -, and 1. If CC= is not present, then the following
 defaults are assumed:
 - files with a fixed or fixed compressed record format, whose record lengths are not 121
 and not greater than 132, do not contain carriage control characters.
 - all other files do contain carriage control characters.

The operands are entered on the same line as the command and can be separated by any number of blanks
or commands. Any options specified must be enclosed in single quotes.

Examples:

 VMPRINT MYFILE
 VMPRINT FILE1, FILE2, CLASS='A', CC='YES'

 Chapter 10. Utilities - VMPRINT 659

 ZERO.FILE
———————————————
 Program to Write Zeroes to a File

The ZERO.FILE utility program provides an efficient way of writing binary zeroes to every block of a file
or user data set. Usage is as follows:

 /FILE 1 UDS(dsname) VOL(volume) OLD
 /INCLUDE ZERO.FILE
 START=n,END=m <--- optional

 or

 /FILE 1 NAME(filename) OLD
 /INCLUDE ZERO.FILE
 START=n,END=m <--- optional

In the case of a file, the currently allocated space is set to zero. Each 512-byte block is zeroed, therefore
this program should not be used for a file which has a record format FC, V, or VC and is later to be read
sequentially (error 46, "file cannot be read sequentially" would result).

660 ZERO.FILE - MUSIC/SP User's Reference Guide

 Appendixes

 Appendixes 661

 Appendix A. IIPS/IIAS
———————————————
 Interactive Instructional Systems

The MUSIC Interactive Instructional Presentation and Authoring System (IIPS/IIAS) is an implementation
of the IBM Interactive Instructional Presentation System (IIPS) (Program Product 5668-012) and Interac-
tive Instructional Authoring System (IIAS) (Program Product 5668-011). It provides a real-time training
and instructional capability for course creation and presentation. The IIPS and IIAS combine the best
features of IBM's previous training and instructional programs: the Interactive Instructional System (IIS)
and Coursewriter III.

Facilities provided by the IIPS and IIAS include:

 1. Administrator commands
 2. Report programs
 3. Course creation
 4. Course execution

Administrator commands provide a means to monitor and control administrative, maintenance, and opera-
tional functions of the instructional system. Information relating to the execution and maintenance of
course material can be recorded.

A number of programs are provided to process these recordings, producing a variety of statistical summar-
ies.

Instructional materials (courses) prepared by the author are entered into the system from a workstation.
The courses may be written in the Coursewriter Language or using the IIAS Course Structuring facility.
Once the courses have entered, they are available to the students registered to them.

Course execution is carried out in a conversational manner between a student at a workstation and the
instructional system control program. The instructional system presents material to the student, evaluates
responses, and, based upon the responses, determines the student's path through the material created by the
author.

662 MUSIC/SP User's Reference Guide

 Appendix B. LEARN Program
———————————————
If your installation has installed the MUSIC Interactive Instructional Presentation System (IIPS), several
computer-assisted instruction (CAI) courses are available to familiarize the user with the basic concepts of
the MUSIC system for TTY-type terminals. The names of the courses are:

 1. MUSIC (Introduction to MUSIC)
 2. UPDATE (Introduction to MUSIC Line Editor)
 3. EDITOR (Introduction to MUSIC Context Editor)
 4. SCRIPT (Introduction to MUSIC/SCRIPT)

 Course Sign On

To sign on to a particular course, enter the word LEARN anytime you are in *Go mode. The system will
prompt you with a message

 ENTER STD#/CNAME OR LIST OR HELP

Three responses are valid at this time:

1. Enter "student/cname", where cname is one of the course names listed above. For example, enter
 "student/script" if you want to take the MUSIC/SCRIPT course. (LEARN recognizes student as an
 authorized student number.)

2. Type LIST to get a list of all the MUSIC CAI courses available.

3. Type HELP to get a description of the usage of special keys on your workstation.

Whenever you sign on any one of the courses, the system will create a file called @LEARN for you. This
file is used to record information about your progression in the course. The next time when you sign on the
same course, it will start from where it left off. Should you want to start at the beginning of the same
course the next time when you sign on it, you can purge the file by using the command PURGE @LEARN
before you enter LEARN.

If you are taking a course different from the one you took previously, the contents in the file @LEARN will
be replaced by the information about your progression in the current course. Therefore, if you sign on the
previous course the next time, the course will start at the beginning.

 Course Sign Off

Should you want to get out of the course while you are in the middle of it, type SIGN OFF anytime while
the system is waiting for your answer to a question. The workstation will then return to *Go mode.

If you have come to the end of the course, the system will issue a message END OF COURSE PLEASE
SIGN OFF. At this time, enter SIGN OFF to exit from the course and return to *Go mode.

 Appendix B. LEARN Program 663

664 MUSIC/SP User's Reference Guide

 Index

 Index 665

 Index
———————————————
 & =

&&TEMP, 169, 172 = - Editor Command, 284

 * /

* - Editor Command, 284 /CANCEL - MUSIC Command, 99
/COMPRESS - MUSIC Command, 105
/DEFINE - MUSIC Command, 108
/DISCON - MUSIC Command, 112

 / /ID - MUSIC Command, 123
/NEXT - MUSIC Command, 135

/COM Job Control Statement, 165 /PREVIOUS - MUSIC Command, 138
/DATA Job Control Statement, 165 /RECORD - MUSIC Command, 143
/END Job Control Statement, 166 /REQUEST - MUSIC Command, 145
/ETC Job Control Statement, 166 /SKIP - MUSIC Command, 148
/FILE (Files) Job Control Statement, 168 /STATUS - MUSIC Command, 151
/FILE (General Overview) Job Control Statement, /TIME - MUSIC Command, 155
 167 /USERS - MUSIC Command, 157
/FILE (Miscellaneous) Job Control Statement, 180 /WINDOW - MUSIC Command, 161
/FILE (Permanent UDS) Job Control Statement,
 173
/FILE (Printers) Job Control Statement, 182
/FILE (Tape UDS) Job Control Statement, 176 A
/FILE (Temporary UDS) Job Control Statement,
 172 A Programming Language, 318, 324
/ID Job Control Statement, 183 ABBREV - System Subroutine, 466
/INCLUDE Job Control Statement, 183 Abbreviations
/INFO Job Control Statement, 185 Editor, 214
/JOB Job Control Statement, 185 of Commands, 96
/LOAD Job Control Statement, 185 Abend Codes, VSAM, 82
/OPT Job Control Statement, 188 ACB, VSAM, 75
/PARM Job Control Statement, 188 ACCESS - MUSIC Command, 97
/PASSWORD Job Control Statement, 188 Access Control - Files, 63
/PAUSE Job Control Statement, 188 Access Method Services, 75, 552
/SYS Job Control Statement, 189 Accessing Menu Facilities, 89

Accessing MUSIC, 18
Accumulated Charge Listing, 631
Action Keys (FSED), 199

 ? Active Users
 Number of, 151, 157

? Command, 155 Number of (Editor), 277, 281
ADD - Editor Command, 219
ADD - MUSIC Command, 97
Adding Blank Spaces, 205
Adding Data to End of Tape File, 179
ADTOXY - System Subroutine, 466
ADVANCEDEX (MUSIC/APL), 321
AIN - Editor Command, 219, 293
Allocation Buffer for UDS, 72

666 MUSIC/SP User's Reference Guide

Allocation UDS Volume Names, 175 AUTOSKIP - Editor Command, 220
ALPHA - Editor Command, 219, 293
ALT Key
 3178 Terminal, 21
 3278 Terminal, 21 B
 3279 Terminal, 21
ALTER AMS Command, 555 BACKSP - System Subroutine, 466
ALWAYSPROG Defining, 629 BACKSP System Subroutine, 179
AMS, 75, 552 Backspace, 18
 ALTER Command, 555 Changing Batch, 629
 BLDINDEX Command, 558 TTY Terminal, 27
 Command Language Syntax, 553 3270 Terminal, 21
 Commands, 555 Backspace Key, 204
 DEFINE ALTERNATEINDEX, 560 Backspacing Records in FORTRAN, COBOL,
 DEFINE CLUSTER, 563 PL/I, 179
 DEFINE PATH, 566 BACKUP on FILE Statement, 175
 DELETE Command, 567 Backup UDS File, 175
 LISTCAT Command, 568 BASE64 Data Processing, 468
 REPRO Command, 569 BASIC
AMS - MUSIC Command, 98 IBM, 341
Anonymous Login, 607 BASIC - MUSIC Command, 98
APL - Subset Version, 318 BASIC Compiler - VSBASIC, 345
APL Interpreter - VSAPL, 324 Batch
APL ON/OFF Key 3270 Terminal, 21 Concepts, 42
APLCOURSE (MUSIC/APL), 321 Defintion, 3
APPEND on FILE Statement, 169 ID Statement, 43
APPONLY on FILE Statement, 169 Job Classes, 48
Architecture - 3270, 18 Job Return Location, 45
ARCHIV Utility, 571 Job Submission, 46-47, 152
Archive Tape Checking, 605, 647 Job Submission (Editor), 274
Archiving Files, 571, 603 Job Time, 43, 47
Archiving UDS File, 646 Magnetic Tape, 47, 179
ARROW - Editor Command, 219 Operator Messages, 44, 47
Arrow Keys, 205 Output Inspection, 50
ASM, 330 Output Route Location, 47
 Buffer Space, 73 Output Routed to MUSIC, 50
 Loading, 186 Password, 43
ASMFIX - Editor Command, 220 Password Defining, 629
ASMLG, 339 Preparing Job for, 43
ASMLG Loading, 186 Printer Control, 44
Assembler (Loader) - ASMLG, 339 Printing Without Submitting to Batch, 659
Assembler - ASM, 330 Special Forms, 47
ATTN Key, 18 Statements, 42
 3270 Terminal, 21 BCD to EBCDIC Code Conversion, 648
Attn 3270 Terminal State, 23 BDAM, 378
ATTRIB - Editor Command, 220 BEEP - Editor Command, 221
ATTRIB - MUSIC Command, 98 BIGBUF - System Subroutine, 467
Attributes, 239 BIGEDIT - MUSIC Command, 99
 Execute-Only, 64 Bit Manipulation Subroutines, 463
 Files, 171 BITFLP - System Subroutine, 467
 Private, 63 BITOFF - System Subroutine, 468
 Public, 63 BITON - System Subroutine, 468
 Share, 63 BLANK - Editor Command, 221
Attributes - Files, 63 Blanks Removing from Output, 66, 105
Attributes, Changing File, 91 BLDINDEX AMS Command, 558
AUTOPROG Defining, 629 BLKSIZE on FILE Statement, 177

 Index 667

Block Size CHANGEL - Editor Command, 225
 Magnetic Tape, 177 Changing File Attributes, 91, 102
 UDS File, 72 Changing Files
Blocks Definition, 13 Brief Introduction, 3
BLOCKSIZE on FILE Statement, 177 with Editor, 114
BOATPROB (MUSIC/APL), 321 Changing Passwords, 134
BOATPROB (VS APL), 328 Changing Text, 206
BOTH - Editor Command, 221, 293 Channels Definition, 13
BOTTOM - Editor Command, 222 Character Search Subroutines, 464
BR - Editor Command, 222 Character String Conversion Subroutines, 463
BREAK Key, 18 Character Strings - LN, 495
 TTY Terminal, 27 Character Translation Subroutine, 463
Break Mode, 24, 88 Charge Accumulated Listing, 631
BREAK Request CHAT - MUSIC Command, 101
 3270 Terminal, 24 Checking Archive Tape, 605, 647
BREAK Signal CHMOD - MUSIC Command, 102
 TTY Terminal, 27 CI, 7
 3270 Terminal, 21 CI - MUSIC Command, 103
BRIEF - Editor Command, 222 CICS - MUSIC Command, 103
BROWSE - MUSIC Command, 99, 194 CICS/VM, 364
BROWSE LRECL, 99 CICS/VM-MUSIC Interface - CICS, 364
Browsing Files with VIEW, 653 Class, Batch Job, 48
BSAM, 333, 378 CLEAR Key
Buffer (FSED), 199-200
 Allocation for UDS, 72 3270 Terminal, 24
 Definition, 13 CLOSDA - System Subroutine, 470
 Space on UDS Files, 72 CLRIN - System Subroutine, 471
Bulletin Boards - IDP, 125 CLSFIL
BYTE - System Subroutine, 468 Common Blocks, 539
Byte Definition, 14 Error Codes, 539
Byte Manipulation Subroutines, 463 Option Keywords (SS), 534, 537
B64TXT - System Subroutine, 468 CLSFIL - System Subroutine, 471

CM, 6
CM - MUSIC Command, 103
CMDPFK - Editor Command, 226

 C CMDRET - System Subroutine, 471
CMDS - Editor Command, 226

C/370, 359 CMDSTO - System Subroutine, 471
 Data Definition, 359 Cmd Pipe-lines, 448
CAI Courses, 663 CN Command Suffix (Editor), 286
CALC - Editor Command, 223 CNCL Key
CANCAN - System Subroutine, 469 3270 Terminal, 21
CARGCALL - System Subroutine, 470 CNTINFO - Editor Command, 226
Carriage Control, 66 Co-axial Connected PCs, 24
Carriage Control Overview, 38 COBLG, 385
CASE - Editor Command, 223 COBLG Loading, 186
CD - Editor Command, 224 COBOL, 378
CD - MUSIC Command, 100 Accessing 3270 Panels, 617, 619
CD on SYS Statement, 190 Backspacing Records, 179
CENTER - Editor Command, 224 Link-Editing, 414
CENTER - System Subroutine, 470 Loading, 186
Central Processing Unit (CPU), 13 Running from Object Modules, 335, 373, 382,
CHANGE 385
 (VSBE), 355 SORT Verb, 633, 642
CHANGE - Editor Command, 199, 224 COBOL (Loader) - COBLG, 385
Change Directory for /SYS, 190 COBOL Compiler - COBOL2, 369

668 MUSIC/SP User's Reference Guide

COBOL Compiler - VSCOBOL, 378 Control, Printer Carriage, 66
COBOL II, 369 Controlled Access, 11
COBOL2 Controlled Scrolling TTY Video Terminal, 28
 Loading, 186 Conventions of Commands, 96
COBTEST - MUSIC Command, 104 Conventions of Job Control Statements, 164
Code Conversion Conversational Read
 BCD to EBCDIC, 648 FILE Statement, 181
 EBCDIC to BCD, 648 from Batch, 45
CODON - System Subroutine, 472 Spooled, 69
COLOR - Editor Command, 227, 294 COPY - Editor Command, 227
COM - Job Control Statement, 165 COPY - MUSIC Command, 106
COM on FILE Statement, 171 COPY Statement of AUTOREPORT RPG II, 455
Command Area COPYCOL - Editor Command, 228
 Editor', 208 Copying
Command Key, 207 Files, 106, 648
Command Language Definition, 2 UDS Files, 593, 648
Command Mode, 88 CORE - System Subroutine, 472
Command Mode Help Facility, 122 Correct Typing Mistakes, 18
Command Syntax, 88 Correct Typing Mistakes 3270 Terminal, 23
Command Syntax (Editor), 214 COUNT - MUSIC Command, 107
Commands, 88 Course Information - CI, 7
 Abbreviations, 96 Course Management Facility, 6
 Convention, 96 CPU Definition, 13
 Description, 96 Creating New Files (Editor), 195
 For Editor, 208 Creating New Files (VSBE), 355
 MUSIC, 88 Creating UDS File, 176
 Summary of MUSIC, 89 Creating your own Editor, 288
Comments Editor, 284, 290 CREP - Editor Command, 228
Common Library Index, 63 CRLF - System Subroutine, 474
COMPARE - MUSIC Command, 104 CTRAN - System Subroutine, 474
Comparison Subroutines, 464 CTRL Key on TTY Terminal, 27
Compile Step Parameters Current
 ASM, 334 Date, 151
 C/370, 360 Job Time, 155
 COBOL, 380 News Items, 134
 COBOL II, 372 Time of Day, 151
 PL/I, 431 Cursor (FSED), 203
Compiler Step Parameters CURSOR - Editor Command, 229
 VS PASCAL, 424 Cursor Character 3270 Terminal, 22
Compilers Cursor Key (FSED), 199
 Brief Introduction, 3 Cursor Key 3270 Terminal, 23
 Options, Specifying (Overview), 188 Cursor, Moving, 206
 Overview, 314 Customized Editor, 289
Compress Command, 105 CWIS - IDP Program, 125
CONF - MUSIC Command, 106 C2D - System Subroutine, 475
Conferencing, Administering, 106 C2I - System Subroutine, 476
CONFMAN - MUSIC Command, 106 C2R - System Subroutine, 476
Connect Time for Session, 135, 151 C2X - System Subroutine, 477
Connection to MUSIC, 18 C370
Connections to MUSIC, 19 External Names, 359
Constraints Profile (Introduction), 12 Loading, 186
Contents Program SCRIPT, 10
Context Editor VS APL, 328
Control Section Restriction on LOADER, 421

 Index 669

DELCHAR - Editor Command, 234
 D DELETE

 (VSBE), 355
Data on FILE Statement, 170
 Conversion, Magnetic Tape, 178 DELETE - Editor Command, 234
 Separating, 165 DELETE - MUSIC Command, 110
 Set Name (DSN), 174 DELETE AMS Command, 567
DATA - Job Control Statement, 165 Delete Character (Editor), 252
Data Definition Name, 167-168, 172, 174, 177, DELETE Key, 207
 180 DELETEL - Editor Command, 235
 ASM, 333 Deleting
 C/370, 359, 361 Characters, 207
 COBOL, 370, 379 Lines, 207
 GPSS, 408 Deleting Files, 140
 PL/I, 430, 432 Deleting UDS File, 176
 RPG II, 454 DELIM - Editor Command, 235
 VS BASIC, 350 Density Magnetic Tape, 178
 VS PASCAL, 424 DENSITY on FILE Statement, 178
Data Storage, VSAM, 76 Desk Calculator, 318, 324, 624
DATCN2 - System Subroutine, 478 DIAL Command 3270 Terminal, 22
DATCON - System Subroutine, 478 DIR - MUSIC Command, 111
Date Direct Access
 Current, 151 COBOL, 378
 Subroutines, 460 FORTRAN, 173, 414
DBCS - Editor Command, 230 Direct Output Control, 67
DBG Command, 108 Direct Terminal Control, 38
DEBUG - MUSIC Command, 108 Directories, 63, 111
DEBUG - System Subroutine, 479 Disk
Debug Utility Program, 573 Allocation, 12
Debugger - TESTF, 399 Block Utilization, UDS, 72
Debugger, Interactive COBOL II, 374 Device Definition, 13
Debugging Aids Sort, 633
 ASM, 332 Dispatcher Definition, 14
 VS PASCAL, 427 DISPLAY - MUSIC Command, 113
Debugging and Tracing, VSAM, 83 Displaying
DECN - System Subroutine, 479 Files, 113
DECOUT - System Subroutine, 479 Files (Editor), 249
DECRYPT - MUSIC Command, 108 Portion of Line, 161
DECRYPT Utility, 597 Portion of Line (Editor), 282
Default Function Key Definitions - All Modes, Portion of Line (FSED), 292
 109 DisplayWrite/370, 114
Default Job Time Changing, 629 Disposition
DEFAULT on FILE Statement, 170 File, 169
DEFINE - Editor Command, 230 Magnetic Tape, 178
DEFINE ALTERNATEINDEX Command, 560 UDS File, 175
DEFINE CLUSTER Command, 563 Document Processing, 10
Define Command, 108 Double Spacing, 66
DEFINE Editor Command, 287 DOWN - Editor Command, 236
DEFINE PATH Command, 566 DOWNPAGE - Editor Command, 236
Defining a TAB key, 290 DOWNWINDOW - Editor Command, 236
Defining function Keys DSCHK Utility, 647
 All Modes, 108 DSCOPY Utility, 593
Defining Function Keys, No. of, 125 DSLIST Utility, 594
Del Key (FSED), 199 DSORT - System Subroutine, 480
DEL Key 3270 Terminal, 23 DSORT Subroutine, 636
DELAY - System Subroutine, 480 DSREN Utility, 596

670 MUSIC/SP User's Reference Guide

DUMMY - ROUTE Destination, 56 Hex Input and Output, 293
DUMMY on FILE Statement, 181 Input of Data, 204
Dummy Program, 186 Invoking, 194
DUP - Editor Command, 236 Logical Commands, 286
Duplicating Macro Facility in REXX, 297
 Files, 648 Marking Lines, 209
 Lines (Editor Command), 236 MFIO UIO Requests, 195
 UDS File, 593 Modes, 193
DW370 - MUSIC Command, 114 Restart Facility, 308
Dynamic Access Routines, 534 Restart Facility Efficiency, 310
 Common Blocks, 538 Restart Facility Restrictions, 310
 Error Codes, 539 Restart Log File, 308
Dynamic Access to Files, 534 Restart Multi-Session, 312
Dynamic Output Control, 37 SAVE Command, 196

 Starting, 193
 String Separator, 214
 Suppressing Restart Feature, 195, 310

 E VS BASIC, 353
Editor Commands

EBCDIC to BCD Code conversion, 648 *, 284
ECHO - Editor Command, 237 =, 284
ECHO Editor Command, 288 ADD, 219
ECHOIN - System Subroutine, 480 AIN, 219
EDIT - MUSIC Command, 114 ALPHA, 219
EDIT Command, 194 ARROW, 219
Editing ASMFIX, 220
 Files, 194 ATTRIB, 220
 Functions, 206 AUTOSKIP, 220
 INPUT File, 194 BEEP, 221
 Large File, 289 BLANK, 221
 Large UDS Files, 289 BOTH, 221
 MUSIC Commands Summary, 89 BOTTOM, 222
 Script Files, 154 BR, 222
 UDS Files, 289 BRIEF, 222
 using the Editor, 114 CALC, 223
Editing Large Files, 99 CASE, 223
Editor, 114, 192 CD, 224
 (Editor), 195, 290 CENTER, 224
 Abbreviations, 214 CHANGE, 224
 Command Suffix, 286 CHANGEL, 225
 Commands, 208, 214 CMDPFK, 226
 Comments, 284, 290 CMDS, 226
 Creating your own, 288 CNTINFO, 226
 Customized, 289 COLOR, 227, 294
 Defining X Command, 287 COPY, 227
 Delete Character, 234, 252 COPYCOL, 228
 Ending, 193 CREP, 228
 EXECUTE Command, 196 CURSOR, 229
 Extent of Restart Recovery, 309 DBCS, 230
 FILE & QUIT Commands, 208 DEFINE, 230
 FILE Command, 196 DELCHAR, 234
 Full Screen Mode, 197 DELETE, 234
 Function Key Default Definitions, 200 DELETEL, 235
 Function Keys, 200 DELIM, 235
 Getting Help, 208 DOWN, 236
 Help Facility, 245 DOWNPAGE, 236

 Index 671

 DOWNWINDOW, 236 POWERINP, 260
 DUP, 236 PREFIX, 211, 261
 ECHO, 237 PRINT, 261
 END, 237 PROMPT, 263
 ENQ, 238 PURGE, 263
 EXECUTE, 238 QQUIT, 264
 FF, 238 QUIT, 264
 FILE, 239 RENAME, 264
 FILL, 241 REPEAT, 264
 FIND, 242 REPLACE, 265
 FLAG, 242-243 REXX, 265
 FLIP, 244 RIGHT, 266
 FORMAT, 244 RUN, 266
 FS, 245 SAVE, 266
 GETV, 245 SCAN, 267
 HELP, 245 SCREEN, 267
 HEX, 246 SEARCH, 268
 HUNT, 246 SEARCHL, 268
 INPUT, 247 SEQ, 268
 INSERT, 247 SET, 269
 JOIN, 248 SETRC, 269
 KEYS, 248 SETV, 270
 LANGUAGE, 248 SHIFT, 270
 LAST, 249 SHOW, 270
 LEFT, 249 SIZE, 271
 LIST, 249 SORT, 272
 LOCATE, 250 SPACE, 272
 LOCATEL, 250 SPELL, 273
 LOG, 251 SPLIT, 273
 MARGINS, 251 STORE, 273
 MARK, 252 SUBMIT, 274
 MD, 252 SUBSET, 275
 MDELETE, 252 TABIN, 275
 MERGE, 253 TABOUT, 276
 MINSERT, 253 TAG, 276
 MOVE, 253 TEXT, 276
 MSG, 254 TIME, 277
 MSGS, 254 TOLC, 277
 NAME, 255 TOP, 277
 NEXT, 255 TOUC, 278
 NOARROW, 255 TRAN, 278
 NOCHANGE, 256 TREE, 278
 NOFILL, 256 UFIND, 278
 NOFLAG, 256 ULOCATE, 279
 NOFS, 256 UNDELETE, 279
 NONULLS, 257 UNFF, 280
 NONUMBER, 257 UNFORMAT, 280
 NOSCREEN, 257 UNMARK, 280
 NOSHOW, 257 UNSORT, 280
 NOTRAN, 258 UP, 280
 NULLS, 258 UPPAGE, 281
 NUMBER, 258 UPWINDOW, 281
 OFF, 258 USERS, 281
 OKREPL, 259 VERIFY, 281
 OVERLAY, 259 WINDOW, 282
 POINT, 260 X, 282

672 MUSIC/SP User's Reference Guide

 XIN, 283 EXECUTE - Editor Command, 196, 238
 XL, 283 EXECUTE - MUSIC Command, 116
 ZONE, 283 Execute-Only Attribute, 171
Editor LRECL, 114 Execute-Only Attributes, 64
Electronic Mail, 131 Execution Mode, 88
Emulation - 3270, 19 EXREST Utility, 600
ENCRYPT - MUSIC Command, 115 External Names
ENCRYPT/DECRYPT Utility, 597 C/370, 359
Encrypted File, Viewing, 115 COBOL, 370, 379
END PL/I, 430-431
 (VSBE), 355 RPG II, 454
END - Editor Command, 237 VS PASCAL, 424
END - Job Control Statement, 166 EXTRACT Command, 297
End of Line Signal EXTRACT Variables, 298
 3270 Terminal, 21
Ending the Editor, 193, 196
ENQ - Editor Command, 238
Enqueue UDS File, 174 F
Enter Data Message, 629
ENTER Key, 204-205 FBAS64 - System Subroutine, 481
 3270 Terminal, 24 FF - Editor Command, 238
ENTER Key (FSED), 199 FILARC Utility, 603
ENTER Key 3270 Terminal, 21, 23 FILCHK Utility, 605
Entry Assist 3270 Terminal, 21 FILE
Entry Point Restriction on LOADER, 421 Editor Command, 196, 208
EOF (/INCLUDE), 184 FILE (Files) - Job Control Statement, 168
EOJ - System Subroutine, 480 FILE (General Overview) - Job Control State-
EQUAL - System Subroutine, 480 ment, 167
Equal Editor Command, 284 FILE (Miscellaneous) - Job Control Statement,
EQUALB - System Subroutine, 481 180
ERASE FILE (Permanent UDS) - Job Control Statement,
 EOF Key (FSED), 199, 291 173
 EOF Key 3270 Terminal, 24 FILE (Printers) - Job Control Statement, 182
 INPUT Key (FSED), 199, 201 FILE (Tape UDS) - Job Control Statement, 176
 INPUT Key 3270 Terminal, 24 FILE (Temporary UDS) - Job Control Statement,
ERASE - MUSIC Command, 115 172
Erase Screen, 3270 Terminal, 66 FILE (VSBE), 356
Erasing Files, 140 FILE - Editor Command, 239
Error Code Dynamic Access to Files, 539 File Naming, Flat, 61
Error Codes, VSAM, 79 FILE PRT Statement, 182
Error Messages FILE Statement
 Multi-Session, 39 Continuation, 167
ERRS (/INCLUDE), 184 General Syntax, 167
ESDS Magnetic Tape File, 176
 VSAM Files, 76 Pre-allocated File, 180
ETC Temporary UDS File, 172
 Command from Batch, 45 Unit Record Device, 180
ETC - Job Control Statement, 166 Where to Place, 167
EVIEW - MUSIC Command, 115 File System, 59
EXAMPLES (VS APL), 328 Files
EXARCH Utility, 599 Access by Subroutines, 461
EXEC Access Control, 63
 (REXX), 444 Archiving, 571, 603
 (VSBE), 355 Attributes, 63, 171, 239
 Buffer Space, 73 Changing Attributes, 91
 Loading, 186 Changing, Brief Introduction, 3

 Index 673

 Copying, 106, 648 FILMSG (SS), 535
 Displaying, 113 FILMSG - System Subroutine, 484
 Disposition, 169 FILRST Utility, 604
 Dynamic Access, 534 Filters in REXX, 451
 Editing, 194 FIND - Editor Command, 242
 Encrypt Utility, 597 FINDTEXT - MUSIC Command, 117
 Exporting, 599 FINGER - MUSIC Command, 118
 FILE Statement, 168 FINGER Command - Internet, 607
 Groups, 169 Fixed Compressed Record Format (FC), 64
 Introduction, 2 Fixed Length Record Format (F), 64
 Listing, 129 FIXSCR - System Subroutine, 484
 Listing All, 609 FLAG - Editor Command, 242-243
 Listing Information, 126 Flagging MUSIC/SCRIPT, 242
 Logical Record Length, 170 Flat File Naming, 61
 Manipulation Commands Summary, 90 FLIB - MUSIC Command, 119
 Max Size, 64 FLIP - Editor Command, 244
 Max Size, Temporary UDS, 172 FNDALL - System Subroutine, 484
 Name Save Library, 60 FNDCHR - System Subroutine, 485
 Name, Prefix, 63 FORMAT (VS APL), 328
 Naming, 60 FORMAT - Editor Command, 244
 Number of Records, 171 FORTG1 Buffer Space, 73
 Ownership, 11, 60 FORTG1 Loading, 186
 Printing by VMPRINT, 659 FORTRAN
 Printing on Specified Printer, 56, 138 Accessing 3270 Panels, 617, 620
 Purging, 140 Backspacing Records, 179
 Purging (Editor), 263 Direct Access, 173
 Purging from Batch, 45 Sequential I/O, MAX Record Size, 172-173
 Record Formats, 64, 170 Unformatted I/O, 172-173
 Record Length, 170 FORTRAN Compiler - VSFORT, 387
 Record Size, 64, 170 FORTRAN/MUSIC
 Referencing from Program, 183 Interface Introduction, 14
 Renaming, 144 Interface Sequential I/O, 172-173
 Renaming (Editor), 264 FORTRAN/VS, 387
 Restoring, 604 FRMTDA - System Subroutine, 486
 Retrieving, 572, 604 FRSTOR - System Subroutine, 486
 Sharing VSAM, 79 FS - Editor Command, 245
 Size, UDS, 72 FSI, 5
 Sorting, 149 FSI - MUSIC Command, 119
 Space, 64 FTP, 607
 Space Allocation, 64, 170 Documentation, 608
 Space Release, 169 FTP - MUSIC Command, 120
 Storage Technique, 60 Full Screen Editing
 Summarizing, 152 Action Keys, 199
 Systems, 60 Blank Display, 291
 Tag String, 276 Changing Default, 630
 Transferring FTP, 120 CLEAR Key, 200
 Types of Structure, 2 Cursor Key, 199
 Utilitites for, 648 Defining PF Keys, 287
 Utility Programs, 550 DEL Key, 199
 VSAM, 75 Display PF keys Assignment, 288
 Writing Binary Zeros to, 660 Efficient Usage, 202
Filess ENTER Key, 199
 Temporary, 169 Entry Assist, 199
FILL - Editor Command, 241 ERASE EOF Key, 199, 291
FILL - System Subroutine, 483 ERASE INPUT Key, 199, 201
FILL Editor Command, 291 INS MODE Key, 199, 291

674 MUSIC/SP User's Reference Guide

 Invoking, 245 GO Step Parameters
 Invoking (Editor), 197 ASM, 336
 NEW LINE Key, 199 C/370, 362
 Null Character, 291 COBOL, 374, 382
 Order of Operation, 201 PL/I, 433
 PA1 Key, 199 GOPHER - MUSIC Command, 122
 PA2 Key, 199 GPSS, 408
 PF Keys, 199 GPSS Loading, 186
 PF13-PF24 Simulation, 291 Graphical Data Display Manager, 410
 RESET Key, 201 Graphical Data Display Manager - GDDM, 410
 Retrieving Previous Cmd. Line, 202 Group of Files, 169
 Screen Cursor, 203 GTSTOR - System Subroutine, 488
 Screen Format, 197 GULPDF - System Subroutine, 489
 SYS REQ Key, 200 GULPRD - System Subroutine, 490
 Unprintable Character, 198 GULPWR - System Subroutine, 490
 VS APL, 324
 WINDOW Command, 292
 Without PF keys, 291
Full Screen Interface (FSI), 5 H
Full Screen Mode
 Definition, 19 Hardware Definition, 13
 Editing in, 199 Help
Full Screen Panel Generator, 610 For the Editor, 208
Function Keys HELP - Command Mode, 122
 (FSED), 199 HELP - Editor Command, 245
 Default Definitions, Editor, 200 HELP - MUSIC Command, 122
 Defining for All Modes, 108 Help Facility Command Mode, 2, 122
 Defining No. of, 125, 245 Help Facility Editor, 245
 Definitions - All Modes, 108 HEX - Editor Command, 246, 293
 Display Definitions in *Go, 34, 110 Hexadecimal Definition, 293
 Editor, 200 Hexadecimal Input and Output (Editor), 293
 Multi-Session, 34, 110 Hierarchical, 61
 PANEL, 613 HOLD on FILE Statement, 181
 Retrieve, 109 Holding File, 68
Fund HUNT - Editor Command, 246
 allocation, 11, 124 HWORD - System Subroutine, 491
 Low on, 124
 Out of, 124
 Remaining, 124

 I

I/O
 G Area Panel, 617

 Definition, 13
Gang Punching, 649 Direct Access, FORTRAN, 173
GDDM, 410 Numbers, 65
GDDM - MUSIC Command, 120 Sequential FORTRAN, 172
General Purpose Simulation System, 408 Sequential, FORTRAN, 173
General Purpose Simulation System - GPSS, 408 Subroutine Extensions, 461
GET Request, VSAM, 83 Unformatted FORTRAN, 173
GETID - System Subroutine, 487 Unformatted, FORTRAN, 172
GETMAIL - MUSIC Command, 120 I/O Interface, 59
GETMINFO - MUSIC Command, 121 IBM BASIC, 341
GETOP - System Subroutine, 487 IBM BASIC Environment - IBMBASIC, 341
GETRET - System Subroutine, 488 IBM C/370 Compilers, 359
GETV - Editor Command, 245 IBM PC, 29

 Index 675

 PCWS, 29 Internet
 Personal Computer Workstation, 29 Access, 33, 92
 3270/PC Workstation, 24 FINGER Command, 118, 607
IBM 3161/3163/3164 Terminals, 27 NET Command, 134
IBM 3270 Architecture, 18 PING Command, 136, 607
ID - Job Control Statement, 183 TELNET Command, 155
ID Command Workstation, 123 Transferring Files, 120
ID Statement Batch, 43 Using, 19
ID Statement Continuation Batch, 166 Intersystem TELL, 155
IDP - MUSIC Command, 125 Introduction, 1
IEFBR Loading, 186 INVIS - Profile Option, 630
IIAS, 662 IRC - MUSIC Command, 126
IIPS, 662 ITS Subroutines, 544, 465
IIS, 662 ITSBLD Utility, 544
Implied Exec, 116 ITSBLD2 Utility, 544
Implied EXEC Changing Default, 630 ITSFCL Subroutine, 547
IN PROGRESS Message Suppression, 630 ITSFID Subroutine, 544
INCLUDE - Job Control Statement, 183 ITSFIW Subroutine, 544
Index Program SCRIPT, 10 ITSFOP Subroutine, 545
Index Text Searching - Subroutines, 465 ITSFOR Subroutine, 546
INFO - Job Control Statement, 185 ITSFRE Subroutine, 546
INFO Statement, 47 ITSFSS Subroutine, 545
Information Passing to Program, 116, 188 ITSFxx - System Subroutine, 491
INPUT - Editor Command, 247 ITSRET Utility, 544
Input File, 96 I2C - System Subroutine, 491
 Displaying, 113 I2X - System Subroutine, 492
 Editing, 194
 Listing, 129
INPUT INHIBITED 3270 Terminal, 23
Input Key, 207 J
Input Mode
 (Editor Command), 247 Job
 (Editor), 193 Batch, 43
Input of Data, 204 Time Changing Default, 629
Input Tabs (Editor), 275 Time Editing (Editor), 277, 281
Input Tabs Changing Default, 630 JOB - Job Control Statement, 185
Ins Line Key, 207 Job Class, Batch, 48
INS MODE Key (FSED), 199, 291 Job Control Statements, 164
INS MODE Key 3270 Terminal, 23 Job Control Statements Convention, 164
INSERT - Editor Command, 247 Job Statement
INSERT Key, 207 ASM, 335
Inserting Characters, 207 ASMLG, 339
Inserting Files (Editor), 253 C/370, 362
Inserting Lines, 207 COBLG, 385
Interactive COBOL, 373, 382
 Computing Definition, 1 LKED, 415
 Computing Introduction, 1 Loader, 421
 Debugger VS PASCAL, 427 PL/I, 433
 Instructional Authoring System, 662 PLILG, 439
 Instructional Presentation System, 662 VS PASCAL, 426
 Instructional System, 662 JOB Statement Overview, 185
Intercepting Terminal Output, 449 Job Submission
Interlanguage Communication to MUSIC Batch, 46-47
 VS FORTRAN, 393 to Operating Systems, 46
Interlanguage Communication VS PASCAL, 424 Job Time
Interlanguage Communications IBM BASIC, 343 Batch, 43, 47

676 MUSIC/SP User's Reference Guide

 Current, 155 Line Length, Batch Printer, 42
 Limit, 189 Line Numbers, 113
 Session, 135, 151 Display (Editor), 257-258, 284
JOIN - Editor Command, 248 Linkage Editor, 414

 Control Statements, 416
 Overlay, 315
 When to Use, 315

 K Work File, 416
Linkage Editor - LKED, 414

K Unit of Storage Definition, 14 LIST (VSBE), 356
KEEP on FILE Statement, 170 LIST - Editor Command, 249
KEEPIN - System Subroutine, 492 LIST - MUSIC Command, 129
Keyboard is Locked, 205 LISTCAT AMS Command, 568
Keys Listing
 Editor Function, 200 All Files, 609
 ENTER, 205 File Information, 126
 INSERT and DELETE, 207 File Names, 126
 TAB, 204 Files, 129
KEYS - Editor Command, 248 Files (Editor), 249
KSDS Listing Names UDS Files, 594
 VSAM Files, 76 LJUST - System Subroutine, 494

LKED, 414
 Buffer Space, 73
 Loading, 186

 L Return Codes, 417
LM - MUSIC Command, 130

Label Magnetic Tape, 177 LMOVE - System Subroutine, 495
LAND - System Subroutine, 493 LN - System Subroutine, 495
LANG - MUSIC Command, 126 LOAD - Job Control Statement, 185
LANGUAGE - Editor Command, 248 Load Module Executor - EXEC, 418
LANGUAGE - National Support, 630 Load Module Executor - XMON, 420
LAST - Editor Command, 249 Load Modules
LAST /List Parameter, 130 Creating, 414
Last Display Command, 113 Executor, 418
LBCOMP - System Subroutine, 493 Executor (OS MODE), 420
LBLIST Utility, 609 Executor (PL/I), 440
LBMOVE - System Subroutine, 493 Running, 418
LCOMP - System Subroutine, 494 Running in OS Mode, 420
LCOMPL - System Subroutine, 494 Load Modules IBM BASIC, 343
LEARN, 663 LOADER, 339, 385, 421
LEFT - Editor Command, 249 Buffer Space, 73
Length of Strings - LN, 495 Loading, 186
Library Options Specifying, 185
 Command for REXX, REXLIB, 444 OS-Mode, 438
 Common Index, 63 When to use, 314
 Subroutine Introduction, 3 LOADER - System Loader, 421
 User Index, 63 Loader Overview, 314
LIBRARY - MUSIC Command, 126 Loader Step Parameters
Library, Listing File Names, 126 ASM, 335
Limiting Time Option MUSIC/APL, 322 C/370, 361
Limiting Time Option VS APL, 329 COBLG, 385
Line Call Down COBOL, 373, 381
 3270 Terminal, 23 PL/I, 432
Line End Signal PLILG, 438
 TTY Terminal, 27 VS PASCAL, 425
Line Length Input Restriction, 18 Local Area Network, 19

 Index 677

 NET3270, 31 Summarizing Files, 643
Local Editing Keys, 207 Tape Recording Technique, 178
LOCATE - Editor Command, 250 Translation, 178
LOCATE - System Subroutine, 496 UDS Files, 176
LOCATEL - Editor Command, 250 Utility for, 643
LOCNAM - System Subroutine, 496 Volume Name, 178
LOG - Editor Command, 251 Writing Multiple Files, 179
LOG Editor Command, 309 7 Track, 178
Logical Commands for Editor, 286 9 Track, 178
Logical Operations by Subroutines, 464 MAIL - MUSIC Command, 131
Logical Record Length Main Storage VSAM, 78
 Files, 170 MAKxxxx - MUSIC Command, 131
 Magnetic Tape, 177 MAN - MUSIC Command, 2, 131
 UDS File, 173, 175, 177 Manuals, v
Logical Unit Numbers, 65, 167-168, 172, 174, MARGINS - Editor Command, 251
 177, 180 MARK - Editor Command, 252
Logical Unit Numbers Default Assignment, 167 Marking Lines for Editor, 209
LOR - System Subroutine, 497 MAXSP on FILE Statement, 170
Lower Case MA2E - System Subroutine, 497
 (Editor), 276 MCNCAT - System Subroutine, 498
 Editing, 154 MD - Editor Command, 252
 3270 Terminal, 24 MD - MUSIC Command, 132
LPT1 - PC1 Printer Name, 57 MDELETE (Editor Command), 234
LRECL for Browse, 99 MDELETE - Editor Command, 252
LRECL for Editor, 114 MDISK Command, 450
LRECL on FILE Statement, 170, 173, 177 MEET - MUSIC Command, 132
LSHFTL - System Subroutine, 497 Menu Facilities, Accessing, 89
LSHFTR - System Subroutine, 497 Menus, 5
LXOR - System Subroutine, 497 FSI, 5

 TODO, 8
MERGE - Editor Command, 253
Message Suppressing IN PROGRESS, 630

 M Message to Operator Commands Summary, 93
Messages

Macro Facility in REXX, 297 Electronic Mail, 131
Macro Instructions for ASM, 331 Multi-Session, 39
Macro Library for ASM, 330 Sending, 154
Magnetic Tape Sending to Operator, 145
 Adding Data to End of, 179 Workstation, 39
 Batch Job, 47, 179 MESSAGES - MUSIC Command, 133
 Block Size, 177 ME2A - System Subroutine, 498
 Control Subroutine, 462 MFIO UIO Requests, Editor, 195
 Copying Files, 643 MINSERT (Editor Command), 234
 Data Conversion, 178 MINSERT - Editor Command, 253
 Density, 178 Miscellaneous Utility Programs, 551
 Disposition, 178 MNSORT - MUSIC Command, 133
 Dumping Files, 643 MNSORT Utility, 633
 Fixed Format, 179 Mode
 Fixed-Blocked Format, 179 Break, 24, 88
 Label, 177 Command, 88
 Logical Record Length, 177 Execution, 88
 Parity, 178 Reading, 88
 Reading Multiple Files, 179 Model 38 TTY Terminal, 27
 Record Length, 177 Modes Editor, 193
 Record Size, 177 Modes Terminal, 88
 Ring, 177 Modes Workstation, 88

678 MUSIC/SP User's Reference Guide

MODFLD - System Subroutine, 499 COBTEST, 104
MODOPT - System Subroutine, 500 COMPARE, 104
More... 3270 Terminal State, 23 CONF, 106
MOVE - Editor Command, 253 CONFMAN, 106
MOVE - System Subroutine, 501 COPY, 106
Moving COUNT, 107
 The Cursor, 206 DEBUG, 108
MS - MUSIC Command, 133 DECRYPT, 108
MS Programs, 34 DELETE, 110
MSG - Editor Command, 254 Description, 96
MSGS - Editor Command, 254 DIR, 111
Multi-Session DISPLAY, 113
 Error Messages, 39 DW370, 114
 Function Keys, 34, 110 EDIT, 114
 Restart Facility, 312 ENCRYPT, 115
 Support, 34 ERASE, 115
Multiple Blanks, Removing, 66, 105 EVIEW, 115
MUSFNS (MUSIC/APL), 321 EXECUTE, 116
MUSFNS (VS APL), 328 FINDTEXT, 117
MUSIC FINGER, 118
 (VS APL), 328 FLIB, 119
 Commands', 88 FSI, 119
 Courses, 663 FTP, 120
 Definition, 2 GDDM, 120
 Loader, 421 GETMAIL, 120
 Publications, v GETMINFO, 121
 System Overview, 13 GOPHER, 122
MUSIC - ROUTE Destination, 56 HELP, 122
MUSIC Commands IDP, 125
 /CANCEL, 99 IRC, 126
 /COMPRESS, 105 LANG, 126
 /DEFINE, 108 LIBRARY, 126
 /DISCON, 112 LIST, 129
 /ID, 123 LM, 130
 /NEXT, 135 MAIL, 131
 /PREVIOUS, 138 MAKxxxx, 131
 /RECORD, 143 MAN, 131
 /REQUEST, 145 MD, 132
 /SKIP, 148 MEET, 132
 /STATUS, 151 MESSAGES, 133
 /TIME, 155 MNSORT, 133
 /USERS, 157 MS, 133
 /WINDOW, 161 NET, 134
 ACCESS, 97 NEWPW, 134
 ADD, 97 NEWS, 134
 AMS, 98 OFF, 135
 ATTRIB, 98 OUTPUT, 135
 BASIC, 98 PCEXEC, 136
 BIGEDIT, 99 PHONE, 136
 BROWSE, 99 PING, 136
 CD, 100 PIPE, 137
 CHAT, 101 PLAN, 137
 CHMOD, 102 POLYSOLVE, 137
 CI, 103 POST, 137
 CICS, 103 PQ, 138
 CM, 103 PRINT, 56, 138

 Index 679

 PROFILE, 140 MUSIC/APL, 318
 PROG, 140 I Beam Functions, 322
 PURGE, 140 Limiting Time Option, 322
 QFTP, 142 Loading, 186
 RD, 142 System Commands, 321
 RENAME, 144 Time Limits Extension, 322
 RN, 145 Workspace Library, 320
 ROUTE, 35, 56, 145 Workspaces, 320
 SCHED, 146 Workstation Support, 318
 SENDFILE, 146 MUSIC/SCRIPT, 10
 SENDMAIL, 147 Flagging, 242
 SHOPAN, 147 MUSIC/SP VS/FORTRAN Debugger - TESTF,
 SHOWPFK, 148 399
 SORT, 149 MUSIO Command REXX, 443
 SUBMIT, 152
 SUMMARY, 152
 SYSDATE, 153
 TAG, 153 N
 TEDIT, 154
 TELL, 154 NAME - Editor Command, 255
 TELNET, 155 Naming Rules Save Library, 60
 TODO, 156 Naming Rules, UDS File, 174
 TREE, 63, 156 National Language Support, 630
 TUT, 157 NEST (/INCLUDE), 184
 VER, 157 NET - MUSIC Command, 134
 VIEW, 158 NET3270, 31, 19, 199, 202
 VM, 158 Features, 31
 WEB, 160 Starting, 31
 WHOAMI, 160 NEW
 with REXX, 441 (Editor), 195
 XTMUS, 161 on File Statement, 169
 XTPC, 162 NEW (VSBE), 355
 ZEROCNT, 162 New Users, Full Screen Interface, 5
MUSIC Commands from the Editor, 208 NEW(REPLACE) on FILE Statement, 169, 175
MUSIC Job Control Statements NEWLINE Key (FSED), 199
 /COM, 165 NEWPW - MUSIC Command, 134
 /DATA, 165 NEWS (MUSIC/APL), 321
 /END, 166 NEWS (VS APL), 328
 /ETC, 166 NEWS - MUSIC Command, 134
 /FILE (Files), 168 News Reader, 145
 /FILE (General Overview), 167 NEXT - Editor Command, 255
 /FILE (Miscellaneous), 180 Next Line, 204
 /FILE (Permanent UDS), 173 NEXT on SYS Statement, 190
 /FILE (Printers), 182 Next Program Specifying, 190
 /FILE (Tape UDS), 176 NOARROW - Editor Command, 255
 /FILE (Temporary UDS), 172 NOBACKUP on FILE Statement, 175
 /ID, 183 NOCHANGE - Editor Command, 256
 /INCLUDE, 183 NOCRLF - System Subroutine, 501
 /INFO, 185 NOECHO - System Subroutine, 502
 /JOB, 185 NOFILL - Editor Command, 256
 /LOAD, 185 NOFILL Editor Command, 291
 /OPT, 188 NOFLAG - Editor Command, 256
 /PARM, 188 NOFS - Editor Command, 256
 /PASSWORD, 188 NOLOG (Editor), 195
 /PAUSE, 188 NOLOG Editor Command, 310
 /SYS, 189 NONCAN - System Subroutine, 502

680 MUSIC/SP User's Reference Guide

NONULLS - Editor Command, 257 Error Codes, 539
NONULLS Editor Command, 291 Option Keywords (SS), 534, 537
NONUMBER - Editor Command, 257 OPNFIL - System Subroutine, 506
NOPAUS - System Subroutine, 502 OPT - Job Control Statement, 188
NOPRINT on SYS Statement, 189 OPT Command
NORLSE on FILE Statement, 170 MUSIC/APL, 319, 322
NOSCREEN - Editor Command, 257 VS APL, 325
NOSHOW - Editor Command, 257 OPT Statement
NOSHOW - System Subroutine, 502 ASM, 334
NOSKIP on SYS Statement, 189 ASMLG, 340
NOTRAN - Editor Command, 258, 293 COBLG, 386
NOTRIN - System Subroutine, 502 COBOL, 380
NPRMPT - System Subroutine, 502 COBOL II, 372
NREC on FILE Statement, 171, 173 GPSS, 408
NSGNOF - System Subroutine, 503 LKED, 417
NULFIL (VSBE), 355 LOADER, 422
NULLS - Editor Command, 258 PLILG, 439
NULLS Editor Command, 291 RPG II, 454
NUMBER - Editor Command, 258 VS BASIC, 348
Number of Records Options, Specifying Compiler (Overview), 188
 Files, 171 OS
 UDS File, 173-174 Facilities Simulation, 331
Numbers Macros Supported, 331
 Logical Unit, 167-168, 172, 174, 177, 180 OS/MUSIC Interface Introduction, 14
 Logical Unit Default Assignment, 167 Output
 Random Generating, 465 Compressed, 66, 105
 Unit, 65 Skipping on Workstation, 148
Numeric One, 18 OUTPUT - MUSIC Command, 135
NXTCMD - System Subroutine, 503 Output Control
NXTPGM - System Subroutine, 504 Direct, 67
NXWORD - System Subroutine, 505 STOPSK Subroutine, 462

 Workstation, 37, 161
OUTPUT Program, 50
 Commands, 53

 O Keys, 53
 Request Codes, 52

Object Modules Screen, 51
 How to Load, 314 Using, 50
 Loading, 421 Output Tabs (Editor), 276
 VS BASIC, 348 Output Tabs Changing Default, 631
 VS PASCAL, 425 OVERLAY - Editor Command, 259
OFF - Editor Command, 258 Overprinting, 66
OFF - MUSIC Command, 135 Overview System, 13
OKREPL - Editor Command, 259 Ownership Id, 11
OLD
 (CREATE) on FILE Statement, 169, 175
 (Editor), 195
 on File Statement, 169 P
Online Help, 2
Operating Systems Definition, 13 Page Skip, 66
Operating Systems, Submitting to, 46 Page Skip on Batch, Suppressing, 189
Operator Messages, 20 Paging Up and Down, 206
 Batch, 44, 47 PANEL, 610
 Sending, 145 Accessing from Programs, 617
OPNFIL Creating New Panels, 612
 Common Blocks, 539 Function Keys, 613

 Index 681

 I/O Area, 617 Backspacing Records, 179
 Modifying Panels, 612 Link-Editing, 414
 Printing, 621 Running from Load Module, 440
 REXX Interface, 621 Running from Object Modules, 438
 Storing Panels, 616 Sort, 433, 633
 Supplemental Area, 617 Support, VSAM, 84
 Usage, 611, 621 PL/I Load Module Executor - XMPLI, 440
PANFLD - System Subroutine, 506 PL/I OS-Mode Loader - PLILG, 438
Parameter PL/I Version 2 Optimizing Compiler - PLI, 429
 Information to Program, 116 PLAN - MUSIC Command, 137
 Passing to Program, 116, 188 PLC, Buffer Space, 73
Parity Magnetic Tape, 178 PLI Loading, 187
PARM - Job Control Statement, 188 PLILG, 438
PARM - System Subroutine, 507 Buffer Space, 73
PASCAL Compiler - VSPASCAL, 423 Loading, 187
PASCAL Loading, 187 PLOT (VS APL), 328
Passing Information to Program, 188 PLOTFORMAT (MUSIC/APL), 321
Passthru, 158 POINT - Editor Command, 260
Password Polynomial Definition, 624
 Batch, 43 POLYSOLVE, 624
 Changing, 11, 134, 630-631 POLYSOLVE - MUSIC Command, 137
 Introduction, 11 Port Definition, 13
PASSWORD - Job Control Statement, 188 POST - MUSIC Command, 137
PAUSE - Job Control Statement, 188 Power Input, 212
PAUSE - System Subroutine, 508 POWERINP - Editor Command, 260
PAUSE Statement from Batch, 44 PQ - MUSIC Command, 138
PA1 Key, 18 PQ Program, 58
 (FSED), 199 Pre-allocated File FILE Statement, 180
 3270 Terminal, 21 PREFIX - Editor Command, 211, 261
PA2 Key (FSED), 199 Prefix Area of the Editor, 211
PA2 Key 3270 Terminal, 21 Prefix, File Name, 63
PCEXEC - MUSIC Command, 136 PRINT
PCWS (VSBE), 356
 Terminal Types, 29 Command, 56
PCWS for Windows, 30 Queue, 56
PCWS IBM PC, 29 PRINT - Editor Command, 261
PC1 Printer Name, 57 PRINT - MUSIC Command, 56, 138
PDS on FILE Statement, 169 Print Queue, 50
Permanent UDS File, 173 Print Screen, 35
Personal Computer Workstation, Printer
 IBM PC, 29 Control, 66
Personal Computers Control from Batch, 44
 Co-axial Connected, 24 Status, 58
 LAN Connections, 31 Printing Files on Specified Printer, 56, 138
PF Keys PRIV on FILE Statement, 171
 Assignment Displaying of (FSED), 288 Private Attributes, 63, 171
 Defining (Editor), 287 Private UDS File, 174
 Defining Number of, 22 Processors
PHONE - MUSIC Command, 136 APL - Subset Version, 318
PING - MUSIC Command, 136 APL Interpreter - VSAPL, 324
PING Command - Internet, 607 Assembler (Loader) - ASMLG, 339
PIPE - MUSIC Command, 137 Assembler - ASM, 330
PIPE Command, 450 BASIC Compiler - VSBASIC, 345
Pipe-lines, 448 CICS/VM-MUSIC Interface - CICS, 364
PL/I, 429 COBOL (Loader) - COBLG, 385
 Accessing 3270 Panels, 617, 620 COBOL Compiler - COBOL2, 369

682 MUSIC/SP User's Reference Guide

 COBOL Compiler - VSCOBOL, 378 PUN on FILE Statement, 181
 FORTRAN Compiler - VSFORT, 387 Punching Cards from Batch, 650
 General Purpose Simulation System - GPSS, PURGE
 408 Command from Batch, 45
 Graphical Data Display Manager - GDDM, PURGE - Editor Command, 263
 410 PURGE - MUSIC Command, 140
 IBM BASIC Environment - IBMBASIC, 341 PURGE - System Subroutine, 509
 IBM C/370 Compilers, 359 Purging Files, 140
 Linkage Editor - LKED, 414 Purging Files (Editor), 263
 Load Module Executor - EXEC, 418
 Load Module Executor - XMON, 420
 LOADER - System Loader, 421
 MUSIC/SP VS/FORTRAN Debugger - Q
 TESTF, 399
 PASCAL Compiler - VSPASCAL, 423 QFOPEN - System Subroutine, 509
 PL/I Load Module Executor - XMPLI, 440 QFTP - MUSIC Command, 142
 PL/I OS-Mode Loader - PLILG, 438 QQUIT - Editor Command, 264
 PL/I Version 2 Optimizing Compiler - PLI, QSAM, 333
 429 QUIT (VSBE), 357
 Restructured Extended Executor - REXX, 441 QUIT - Editor Command, 208, 264
 RPG II - RPG, 453
 SAA RPG/370, 456
PROCOP - System Subroutine, 508
Profile, 12 R
 Changing, 629
 Constraints (Introduction), 12 Random Number
 Modifiable Items (Overview), 12 Subroutines, 465
PROFILE - MUSIC Command, 140 RD - MUSIC Command, 142
PROFILE Utility, 629 RDR on FILE Statement, 181
PROG - MUSIC Command, 140 Reading Mode, 88
Program Reading Sequential Files, 541
 Dummy, 186 Reading 3270 Workstation State, 23
 Passing Information to, 116 RECFM on FILE Statement, 170
 Passing to Program, 188 Record
Program Chaining (REXX), 445 Command, 143
Program Chaining (VS BASIC), 346 Length, Files, 64
Program Execution Commands Summary, 93 Record Formats (Editor), 195
Program Running, 116 Record Formats - Files, 64, 170
PROMPT (VSBE), 356 Record Length
PROMPT - Editor Command, 263 (Editor), 195
PROMPT - System Subroutine, 509 Files, 170
Prompting Subroutines, 461 Magnetic Tape, 177
Protocol Converter, 29 UDS File, 173, 175, 177
Protocol Converters Recording MUSIC Sessions, 143
 7171, 21 Referencing Files, 183
PRT on FILE Statement, 181 Remote Job Entry Definition, 14
PRTSCR, 35 RENAME - Editor Command, 264
PUBL on FILE Statement, 171 RENAME - MUSIC Command, 144
Public Renaming
 Read-Only UDS File, 174 Files, 144
 Workspace MUSIC/APL, 321 UDS File, 596
 Workspace VS APL, 327 Renaming Files (Editor), 264
 Write Access UDS File, 174 RENUM (VSBE), 357
Public Attributes, 63, 171 REPEAT - Editor Command, 264
Public Domain Software, 607 REPLACE - Editor Command, 265
Publications, v Replacing Text, 204

 Index 683

Report Program Generator II, 453 References, 458
REPRO AMS Command, 569 Statements, 456
REPT Key TTY Terminal, 27 Usage, 456
REQUEST Command, 145 RPLGLG Loading, 187
REREAD - System Subroutine, 510 RRDS
RESET Key, 205 VSAM Files, 76
RESET Key (FSED), 201 RSCS Printer, 56
RESET Key 3270 Terminal, 23 RSCS Printers, 139
Restart Facility RSIZE on FILE Statement, 170, 173, 177
 (Editor), 308 RSTART - System Subroutine, 511
 Efficiency (Editor), 310 RUN
 Extent of Recovery (Editor), 309 (VSBE), 357
 LOG Command (Editor), 309 RUN - Editor Command, 266
 Log File (Editor), 308 Run Programs from Editor, 266
 Multi-Session, 312 Run Time Step Parameters
 Restrictions (Editor), 310 VS PASCAL, 426
 Sample Session (Editor), 311 Running Program, 116
 Suppressing (Editor), 195, 310 Running Programs from Editor, 238
Restart Number, Displaying, 151 RVRS - System Subroutine, 512
Restoring Files, 604
Restoring UDS Files, 647
Restructured Extended Executor, (see also REXX)
Restructured Extended Executor - REXX, 441 S
Retrev Utility, 572
Retrieve Function Key, 109 SAA RPG/370, 456
Retrieving Files, 572, 604 SAAFLAG - RPG370, 457
Retrieving UDS Files, 647 Sample
Return Codes Restart Session (Editor), 311
 LKED, 417 SAVE (VSBE), 357
Return Location, Batch Job, 45 SAVE - Editor Command, 196, 266
REXLIB Command, REXX, 444 Save Library, 60
REXX, 88, 441 Listing File Names, 126
 Editor Macro Facility, 297 Sorting, 633
 Interface to PANEL, 621 Save Library File, 60
 Loading, 187 Introduction, 2
 REXLIB Command, 444 Name, 60
REXX - Editor Command, 265 Saving
REXX Filters, 451 Output (Unit 10), 68
RIGHT - Editor Command, 266 SAVREQ - System Subroutine, 513
Ring, Magnetic Tape, 177 SBIC (VS APL), 328
RJE Definition, 14 SCAN - Editor Command, 199, 267
RJUST - System Subroutine, 511 SCHED - MUSIC Command, 146
RLSE on FILE Statement, 170 Scheduling Actions by Subroutines, 460
RN - MUSIC Command, 145 Scheduling Meetings, 132
RO (Editor), 195 SCREEN - Editor Command, 267
ROUTE - MUSIC Command, 35, 56, 145 Screen Control 3270 Terminal, 23, 66
ROUTE Destination Screen Cursor (FSED), 203
 DUMMY, 56 Screen Format 3270 Terminal, 22
 MUSIC, 56 Screen States 3270 Workstation, 23
 SYSTEM, 56 Scrolling Control
Route Location, Batch Output, 47 TTY Video Terminal, 28
Routing Program Output to System Printer, 182 Scrolling Definition, 28
RPG II - RPG, 453 SEARCH - Editor Command, 268
RPG Loading, 187 SEARCHL - Editor Command, 268
RPGAUTO Loading, 187 SECSP on FILE Statement, 170
RPG370 Security, 11

684 MUSIC/SP User's Reference Guide

Self-Teach CAI Courses, 663 SIZE - Editor Command, 271
SEND Command for Transferring Files, 24 SKIP Command, 148
SENDFILE - MUSIC Command, 146 Skipping Output on Workstation, 148
Sending Messages, 154 Skipping to the Next Line, 204
Sending Messages to Operator, 145 SNAP Macro for ASM, 332
SENDMAIL - MUSIC Command, 147 Software Definition, 13
SEP - System Subroutine, 513 Sort
Separator String (Editor), 214 COBOL, 633
SEQ - Editor Command, 268 COBOL SORT Verb, 642
Sequence Numbering Disk, 633
 (Editor), 268 Facilities, 633
 (UTIL), 650 PL/I, 433, 633
Sequential Files, Reading, 541 Utility, 633
Sequential I/O FORTRAN Utility Programs, 551
 Max Record Size, 172-173 SORT - Editor Command, 272
Service Units, 11 SORT - MUSIC Command, 149
 Used for Session, 135, 151 Sorting by Subroutines, 464
Session Sorting Subroutine, 636, 638, 640
 Sample Restart (Editor), 311 Space
Sessions, Multiple, 34 Allocation - Filesss, 170
SET - Editor Command, 269 Allocation, Files, 64
SETINF Bar 3270 Terminal, 24
 Common Blocks, 539 Information Save Library, 631
 Error Codes, 539 Limit Temporary UDS File, 172
 Option Keywords (SS), 534, 538 Release Files, 169
SETINF - System Subroutine, 514 SPACE - Editor Command, 272
SETRC - Editor Command, 269 SPACE on FILE Statement, 170
Setup Special Forms, Batch Output, 47
 TTY Terminal, 28 SPELL - Editor Command, 273
SETV - Editor Command, 270 Spelling Check Program, 9
SHARE Attribute, 171 SPLIT - Editor Command, 273
Share Attributes, 63 Spooled Conversational Reads, 69
SHIFT - Editor Command, 270 Spooling Definition, 15
Shifting by Subroutines, 464 SRTIN (SS), 638
SHOPAN - MUSIC Command, 147 SRTMSG (SS), 639
SHOW - Editor Command, 270 SRTMUS - System Subroutine, 514
SHOW Editor Command, 288 SRTMUS Subroutine, 640
SHOWIN - System Subroutine, 514 SRTOUT (SS), 638
SHOWPFK, 34, 110 SSORT - System Subroutine, 514
SHOWPFK - MUSIC Command, 148 Stack Usage REXX, 442
SHR on FILE Statement, 169, 171 Starting the Editor, 193
Sign On Statements for Batch, 42
 Command, 123 Statements Job Control, 164
 3270 Terminal, 22 STATUS - System Subroutine, 515
 3270-type Workstation, 125 STATUS Command, 151
Signing Off, 135 Stopping a Program, 99
Signing On and Off Commands Summary, 91 STOPSK - System Subroutine, 515
SIGNOF - System Subroutine, 514 Storage
Simulation OS and VS, 331 Techniques, 60
Size STORE - Editor Command, 273
 MAX Temporary UDS File, 172 String Manipulation Subroutines, 464
 Specifying Files, 170 String Separator (Editor), 214
 Specifying Permanent UDS File, 175 Student Facility - CI, 7
 Specifying Temporary UDS File, 172 Submit
 Specifying User Region, 189 Command, 46
 UDS File, 72 MUSIC Batch Keywords, 47

 Index 685

 to MUSIC Batch, 42, 46-47, 152 CRLF, 474
 to Operating Systems, 46 CTRAN, 474
SUBMIT - Editor Command, 274 C2D, 475
SUBMIT - MUSIC Command, 152 C2I, 476
Subroutine, (see System Subroutines) C2R, 476
 Interlanguage Communication VS PASCAL, C2X, 477
 424 DATCN2, 478
 Interlanguage Communication VSFORTRAN, DATCON, 478
 393 DEBUG, 479
 Library Introduction, 3 DECN, 479
 Summary of, 460 DECOUT, 479
SUBSET - Editor Command, 275 DELAY, 480
Summarizing Files, 152 DSORT, 480
SUMMARY - MUSIC Command, 152 ECHOIN, 480
SUMRY Command, 152 EOJ, 480
Supplemental Area PANEL, 617 EQUAL, 480
Swapping Definition, 15 EQUALB, 481
SYS - Job Control Statement, 189 FBAS64, 481
SYS REQ Key (FSED), 200 FILL, 483
SYSDATE - MUSIC Command, 153 FILMSG, 484
SYSINE - System Subroutine, 515 FIXSCR, 484
SYSINL - System Subroutine, 516 FNDALL, 484
SYSINM - System Subroutine, 516 FNDCHR, 485
SYSINR - System Subroutine, 516 FRMTDA, 486
SYSINR Usage for Conversational Reads, 69 FRSTOR, 486
SYSMSG - System Subroutine, 518 GETID, 487
System GETOP, 487
 Control Program Definition, 13 GETRET, 488
 Information Commands Summary, 91 GTSTOR, 488
 Loader, 421 GULPDF, 489
 Names COBOL, 379 GULPRD, 490
 Names COBOL II, 370 GULPWR, 490
 Overview, 13 HWORD, 491
 Status, 151 ITSFCL, 547
 Subroutine Library Introduction, 3 ITSFID, 544
SYSTEM - ROUTE Destination, 56 ITSFIW, 544
System Subroutines ITSFOP, 545
 ABBREV, 466 ITSFOR, 546
 ADTOXY, 466 ITSFRE, 546
 BACKSP, 466 ITSFSS, 545
 BIGBUF, 467 ITSFxx, 491
 BITFLP, 467 I2C, 491
 BITOFF, 468 I2X, 492
 BITON, 468 KEEPIN, 492
 BYTE, 468 LAND, 493
 B64TXT, 468 LBCOMP, 493
 CANCAN, 469 LBMOVE, 493
 CARGCALL, 470 LCOMP, 494
 CENTER, 470 LCOMPL, 494
 CLOSDA, 470 LJUST, 494
 CLRIN, 471 LMOVE, 495
 CLSFIL, 471 LN, 495
 CMDRET, 471 LOCATE, 496
 CMDSTO, 471 LOCNAM, 496
 CODON, 472 LOR, 497
 CORE, 472 LSHFTL, 497

686 MUSIC/SP User's Reference Guide

 LSHFTR, 497 TOUC, 522
 LXOR, 497 TPCLSE, 523
 MA2E, 497 TPOPEN, 523
 MCNCAT, 498 TRANSL, 523
 ME2A, 498 TRIN, 524
 MODFLD, 499 TSDATE, 524
 MODOPT, 500 TSTIME, 524
 MOVE, 501 TSUSER, 525
 NOCRLF, 501 UUDEC, 526
 NOECHO, 502 UUENC, 527
 NONCAN, 502 VERALL, 528
 NOPAUS, 502 VERIFY, 529
 NOSHOW, 502 WORD, 529
 NOTRIN, 502 XGCOFF, 530
 NPRMPT, 502 XGCON, 530
 NSGNOF, 503 X2C, 531
 NXTCMD, 503 X2I, 532
 NXTPGM, 504 ZERO, 532
 NXWORD, 505
 OPNFIL, 506
 PANFLD, 506
 PARM, 507 T
 PAUSE, 508
 PROCOP, 508 TAB Key, 204, 206
 PROMPT, 509 Tabbing with the Editor, 290
 PURGE, 509 TABIN - Editor Command, 275
 QFOPEN, 509 TABOUT - Editor Command, 276
 REREAD, 510 Tabs
 RJUST, 511 Changing Default Character, 631
 RSTART, 511 Overview, 37
 RVRS, 512 Setting (Editor), 275
 SAVREQ, 513 Setting by Subroutines, 462
 SEP, 513 TTY Terminals, 28
 SETINF, 514 TABS - System Subroutine, 518
 SHOWIN, 514 TAG - Editor Command, 276
 SIGNOF, 514 TAG - MUSIC Command, 153
 SRTMUS, 514 Tag String - Files, 276
 SSORT, 514 TAPE on FILE Statement, 177
 STATUS, 515 TAPUTIL Utility, 643
 STOPSK, 515 TBAS64 - System Subroutine, 518
 Summary of, 460 TBIT - System Subroutine, 519
 SYSINE, 515 TCB, Displaying, 160
 SYSINL, 516 TCP/IP, 92, 155
 SYSINM, 516 TCP/IP Internet, 607
 SYSINR, 516 Teacher's Menu, 6
 SYSMSG, 518 TEDIT - MUSIC Command, 154
 TABS, 518 Telephone Connection to MUSIC, 18
 TBAS64, 518 Teletype Terminals, 27
 TBIT, 519 TELL - MUSIC Command, 154
 TEXTLC, 519 TELL, Intersystem, 155
 TEXTUC, 520 TELNET, 607
 TIMCON, 520 Documentation, 608
 TIMDAT, 521 TELNET - MUSIC Command, 33, 155
 TIMOFF, 522 Temporary
 TIMON, 522 File, 169
 TOLC, 522 UDS File, 172

 Index 687

 Space Limit, 172 TOLC - Editor Command, 277
TERM on FILE Statement, 181 TOLC - System Subroutine, 522
Terminal TOP - Editor Command, 277
 Modes, 88 TOUC - Editor Command, 278
Terminal Class TOUC - System Subroutine, 522
 on /id Command, 124 TPCLSE - System Subroutine, 523
 Specifying Default, 631 TPOPEN - System Subroutine, 523
 3101, 27 Tracing and Debugging, VSAM, 83
 3161, 27 Trademarks, vi
 3270 Terminal, 124 TRAN - Editor Command, 278, 293
Terminal Status Transfer Files, 24
 3270 Attn, 23 TRANSL - System Subroutine, 523
 3270 More..., 23 Translation Magnetic Tape, 178
 3270 Working, 23 Transmission Control Unit Definition, 13
 3270 Writing, 23 Transporting VS APL Workspaces, 328
Terminal Types, 29 TREE - Editor Command, 278
Terminal Users TREE - MUSIC Command, 63, 156
 Displaying Number of, 151, 157 Tree Structured File Naming, 61
Terminals TRIN - System Subroutine, 524
 Definition, 2 Triple Spacing, 66
 Number, 124, 151 TRTCH on FILE Statement, 178
 Usage, 18 TSDATE - System Subroutine, 524
Terminating a Program, 99 TSTIME - System Subroutine, 524
TEST TSUSER - System Subroutine, 525
 REQ Key (FSED), 200 TTY Definition, 27
TESTF - VS/FORTRAN Debugger, 399 TUT - MUSIC Command, 157
TEST2741 (MUSIC/APL), 321 TYPEDRILL (MUSIC/APL), 321
TEST2741 (VS APL), 328 Typing Mistakes Correction, 18
TEXT - Editor Command, 276 Typing Mistakes Correction 3270 Terminal, 23
Text Formatting, 10
TEXTLC - System Subroutine, 519
TEXTUC - System Subroutine, 520
TIMCON - System Subroutine, 520 U
TIMDAT - System Subroutine, 521
Time UDS Access Subroutines, 461
 of Day Current, 151 UDS Files, 60
 Slice Definition, 14 Access Control, 71
 Subroutines, 460 Archiving, 646
TIME - Editor Command, 277 Backup, 175
Time Limits Block Size for Magnetic Tapes, 177
 Extension MUSIC/APL, 322 Buffer Allocation, 72
 Extension VS APL, 329 Buffer Space, 72
 Overview, 11 Copying, 648
 Workstation Jobs, 189 Creation, 176
TIME on SYS Statement, 189 Deletion, 176
Time, Office, And Documentation Organizer, 8 Disk Block Utilization, 72
TIMOFF - System Subroutine, 522 Disposition, 175
TIMON - System Subroutine, 522 Editing, 289
Title Lines Enqueue, 174
 ASM, 336 Finding Size of($INFO), 649
 C/370, 363 Introduction, 2, 71
 COBOL, 374, 382 Listing Names, 594
 PL/I, 433 Logical Record Length, 173, 175, 177
 VS PASCAL, 426 Magnectic Tape, 176
TODO, 8 Names, 71
TODO - MUSIC Command, 156 Naming Rules, 174

688 MUSIC/SP User's Reference Guide

 Number of Records, 173-174 USENET, 145
 Permanent, 173 User Library Index, 63
 Private, 174 User Region
 Public Read-Only, 174 Introduction, 14
 Public Write Access, 174 Size, 14
 Record Length, 173, 175 Userids
 Record Size, 173, 175, 177 Changing Options, 629
 Renaming, 593, 596 Introduction, 11
 Restoring, 647 Out of Funds, 124
 Retrieving, 647 Printing Current, 151
 Size, 72 Protection, 11
 Storage Technique, 71 Specifying, 123
 Temporary, 172 Users
 Temporary UDS File, 172 Displaying Number of (Editor), 277, 281
 Utilities for, 648 USERS - Editor Command, 281
 Utility Programs, 550 USERS Command, 157
 Volume Name Specification, 175 Using Terminals, 18
UDS on FILE Statement, 172, 174 UTIL Utility, 648
UDSARC Contents of Information Record, 647 UTIL Utility Examples, 651
UDSARC Utility, 646 Utilities Definition, 4
UDSRST Utility, 647 UUDEC - System Subroutine, 526
UFIND - Editor Command, 278 UUENC - System Subroutine, 527
ULOCATE - Editor Command, 279
Undefined File FILE Statement, 181
UNDEFINED on FILE Statement, 181
Undefined Record Format (U), 64 V
UNDELETE - Editor Command, 279
UNFF - Editor Command, 280 Variable Compressed Record Format (VC), 64
UNFORMAT - Editor Command, 280 Variable Length Record Format (V), 64
Unformatted I/O FORTRAN, 172-173 VER - MUSIC Command, 157
Unit Numbers, 65 VERALL - System Subroutine, 528
 Logical, 167-168, 174, 177, 180 VERIFY - Editor Command, 281
 Logical Default Assignment, 167 VERIFY - System Subroutine, 529
Unit Record Device FILE Statement, 181 VIEW, 653
Unit 10, 65, 68 VIEW - MUSIC Command, 158
Unit 10 Default Assignment, 167 Viewing an Encrypted File, 115
Unit 5, 65 Viewing Files with VIEW, 653
Unit 5 Default Assignment, 167 Virtual Storage Access Method, 75
Unit 6, 65 VM - MUSIC Command, 158
Unit 6 Default Assignment, 167 VM command, 158
Unit 7, 65 VM Definition, 14
Unit 7 Default Assignment, 167 VMPRINT Utility, 659
Unit 9, 65 Volume Name
Unit 9 Default Assignment, 167 Magnetic Tape, 178
Unit 9 from Batch, 45 Specification UDS File, 175
Unlocking the Keyboard, 205 VOLUME on FILE Statement, 178
UNMARK - Editor Command, 280 VS
UNSORT - Editor Command, 280 PASCAL, 423
UP - Editor Command, 280 VS APL, 324
UPPAGE - Editor Command, 281 Conversion of MUSIC/APL Workspaces, 327
Upper and Lower Case Full Screen Editing of Functions, 324, 328
 (Editor), 276 Limiting Time Option, 329
 Editing, 154 System Commands, 326
 3270 Terminal, 24 Time Limits Extension, 329
UPWINDOW - Editor Command, 281 Transporting Workspaces, 328
Usage Constraints Introduction, 12 Workspace Library, 327

 Index 689

 Workspaces, 326
 Workstation Reguirement, 325 W
VS Assembler, 330
 Link-Editing, 414 WEB - MUSIC Command, 160
 Running from Object Modules, 335, 373, 382, WHOAMI - MUSIC Command, 160
 385, 433 WINDOW - Editor Command, 282
VS BASIC WINDOW Command, 161
 Chaining Programs, 346 WINDOW Editor Command, 292
 Compiler, 345 Windows, PCWS for, 30
 Control of Input/Output Files, 349 WORD - System Subroutine, 529
 Control Statements, 347 Word Movement Subroutines, 463
 Editor, 353 Working 3270 Terminal State, 23
 Editor Invoking, 355 Workspaces MUSIC/APL, 320
 Object Modules, 348 Workspaces VS APL, 326
 Storage Requirement, 347 Workstation
VS BASIC Editor Invoking, 98 Definition, 2
VS FORTRAN, 387 Workstation I/O Control Commands
VS FORTRAN Interlanguage Communication, Summary, 89
 393 Workstation Status
VS Macros Supported, 331 3270 Reading, 23
VS PASCAL, 423 Workstation Users
 Running from Object Modules, 426 Displaying Number of, 151, 157
VS PASCAL Interlanguage Communication, 424 Workstations
VSAM, 75 ASCII, 27
 Abend Codes, 82 Class, 124
 Data Storage Organization, 76 Defaults, 20
 Error Codes, 79 Direct Control, 38
 File Sharing, 79 Error Messages, 39
 Files, 75 Feature Subroutines, 462
 GET Request, 83 Holding File FILE Statement, 181
 Indexes, 77 IBM 3101, 27
 Main Storage Requirements, 78 IBM 3161, 27
 PL/I Support, 84 IBM 3163, 27
 Sample Program, 84 IBM 3164, 27
 Tracing and Debugging, 83 IBM 3270, 21
VSAM Files Modes, 88
 ESDS, 76 Multi-Session, 34
 KSDS, 76 Number, 124, 151
 Processing with AMS, 552 Output Control, 37
 RRDS, 76 Password Changing, 630-631
VSAM IBM BASIC Support, 344 Prompting Subroutines, 462
VSAPL, 324 Screen States, 23
VSAPL.FS, 324 Supported by MUSIC, 19
VSBASIC Loading, 187 Type Specifying Default, 631
VSBASIC, Buffer Space, 73 Usage, 18
VSFORT Loading, 187 Wrap-around - POWERINP, 212, 260
VSPASCAL Loading, 187 Write to Input Area, 3270 Terminal, 67

Write to Message Area, 3270 Terminal, 66
Writing Binary Zeros to File, 660
Writing 3270 Terminal State, 23
WSFNS (MUSIC/APL), 321
WSHR on FILE Statement, 169

690 MUSIC/SP User's Reference Guide

316x Terminals, 27
 X 3270 Terminal, 21

 (FSED), 197
X - Editor Command, 282 Architecture, 18
X Command Defining (Editor), 287 Attn Status, 23
XGCOFF - System Subroutine, 530 Display Control Subroutines, 462
XGCON - System Subroutine, 530 Emulation, 19
XIN - Editor Command, 283, 293 Entry Assist, 21
XL - Editor Command, 283 Line Call Down, 23
XMON, 420 More... Status, 23
XMON Loading, 187 Overview, 19
XMON, Buffer Space, 73 Screen Control, 23
XMPLI Buffer Space, 74 Screen Format, 22
XMPLI Loading, 187 Sign On, 22
XMRPG Loading, 187 Working Status, 23
XMRPG370, 456 Write to Message Area, 66
XO on FILE Statement, 171 Writing Status, 23
XTMUS - MUSIC Command, 161 3270 Terminal, Write to Input Area, 67
XTPC - MUSIC Command, 162 3270 Workstation
X2C - System Subroutine, 531 Panel Generator, 610
X2I - System Subroutine, 532 Reading Status, 23

 Screen Formatting, 610
 Screen States, 23
3270/PC

 Z Receive, IBM PC, 25
 Send, IBM PC, 24

ZERO - System Subroutine, 532 Workstation, IBM PC, 24
ZERO.FILE Utility, 660
ZEROCNT - MUSIC Command, 162
ZONE - Editor Command, 283

 7

7 Track Magnetic Tape, 178
 2 7 Track on FILE Statement, 178

7Trk on FILE Statement, 178
2741 Terminal
 Testing, 321, 328

 9

 3 9 Track Magnetic Tape, 178
9 Track on FILE Statement, 178

3101 Terminals, 27 9TRK on FILE Statement, 178

 Index 691

692 MUSIC/SP User's Reference Guide

 Table of Contents
———————————————
 Chapter 1. Introduction . 1

 Introduction to Interactive Computing . 2
 How to Get MUSIC to Work for You . 2
 Online Information . 2
 Files on MUSIC . 2
 MUSIC/SP Editor . 3
 Processors . 3
 System Subroutine Library . 3
 Batch Processing . 3
 Utility Programs . 4

 Menu Facilities . 5
 Overview . 5
 Full Screen Interface (FSI) . 5
 Menu for Teachers (CM) . 6
 Time, Office, and Documentation Organizer (TODO) 8

 MUSIC and You (Userids and Profiles) . 11
 What is a Userid? . 11
 Password . 11
 Time Limits . 11
 Fund Allocation . 11
 Disk Allocation . 12
 Userid Profile . 12

 MUSIC System Overview . 13
 Hardware Components . 13
 MUSIC System Tasks . 13
 VM and MUSIC . 14
 User Region . 14
 User Servicing Techniques . 14

 Chapter 2. Workstations . 17

 Overview of Workstations . 18
 Basic Concepts . 18
 Types of Connections . 19

 IBM 3270-type Terminals (Connection type 1) 21
 Entry Assist Feature . 21
 Sign on to MUSIC . 22
 Screen Format . 22
 Screen Control . 23
 MUSIC Screen States . 23
 3270/PC and other Co-Axial Connected PCs 24

 ASCII Terminals (Connection type 2) . 27

 PCWS (Connection type 3) . 29

 MUSIC/SP User's Reference Guide vii

 NET3270 for Personal Computers (Connection type 4) 31
 Starting NET3270 . 31
 NET3270 Features . 31

 Internet Access (connection type 5) . 33
 Using the Internet to Connect to MUSIC 33
 MUSIC's TELNET Command . 33

 Multi-Session Support . 34
 SESSIONS Command . 36

 Workstation Output Control . 37

 Workstation Error Messages . 39

 Chapter 3. Using Batch . 41

 Batch Concepts . 42
 MUSIC Commands and Statements on Batch 42
 Preparing a Batch Job . 43
 Format of the Batch /ID Statement . 43
 Printer Control . 44
 Special Operator Message - /PAUSE . 44
 Return Location Messages . 45
 Purging Files . 45
 Unit 9 on Batch . 45

 Submitting Jobs to MUSIC Batch & Other Operating Systems 46
 SUBMIT Program . 46
 /INFO Job Control Statement . 47
 Submitting to MUSIC batch . 47
 Examples of SUBMIT . 48

 OUTPUT Management Facility . 50
 Using the OUTPUT Facility . 50
 OUTPUT Commands . 53
 Non-3270 Support (TTY Mode) . 55

 Printing Files . 56

 Checking the Status of Printers . 58

 Chapter 4. File System and I/O Interface . 59

 File Systems . 60
 Save Library Files . 60
 Hierarchical Tree Structured File Naming 61

 Unit Numbers . 65

 Carriage Control Characters . 66

 Holding File . 68

 Spooled Conversational Reads . 69

viii MUSIC/SP User's Reference Guide

 User Data Sets (UDS) . 71
 Storing Data on a UDS File . 72
 Disk Block Utilization . 72
 Buffer Allocation for UDS Files . 72

 MUSIC/SP Virtual Storage Access Method (VSAM) 75
 Introduction to VSAM . 75
 VSAM References . 75
 VSAM Abbreviations . 75
 VSAM Data Storage and Organization . 76
 Features Not Supported by VSAM . 77
 VSAM Usage Notes . 78
 Main Storage Requirements - VSAM . 78
 VSAM File Sharing . 79
 VSAM Error Codes . 79
 VSAM Abend Codes . 82
 Tracing and Debugging Facilities . 83
 VSAM Miscellaneous Notes . 83
 PL/I Support . 84
 Sample Program for VSAM . 84

 Chapter 5. MUSIC Commands . 87

 MUSIC Commands - Overview . 88
 Workstation Modes . 88
 Functional Summary of Commands . 89
 MUSIC Commands Equivalent to Other Systems 94

 MUSIC Command Descriptions . 96
 Command Presentation . 96
 ACCESS . 97
 ADD . 97
 AMS . 98
 ATTRIB . 98
 BASIC . 98
 BIGEDIT . 99
 BROWSE . 99
 /CANCEL . 99
 CD . 100
 CHAT . 101
 CHMOD . 102
 CI . 103
 CICS . 103
 CM . 103
 COBTEST . 104
 COMPARE . 104
 /COMPRESS . 105
 CONF . 106
 CONFMAN . 106
 COPY . 106
 COUNT . 107
 DEBUG . 108
 DECRYPT . 108
 /DEFINE . 108
 DELETE . 110
 DIR . 111

 MUSIC/SP User's Reference Guide ix

 /DISCON . 112
 DISPLAY . 113
 DW370 . 114
 EDIT . 114
 ENCRYPT . 115
 ERASE . 115
 EVIEW . 115
 EXECUTE . 116
 FINDTEXT . 117
 FINGER . 118
 FLIB . 119
 FSI . 119
 FTP . 120
 GDDM . 120
 GETMAIL . 120
 GETMINFO . 121
 GOPHER . 122
 HELP . 122
 /ID . 123
 IDP . 125
 IRC . 126
 LANG . 126
 LIBRARY . 126
 LIST . 129
 LM . 130
 MAIL . 131
 MAKxxxx . 131
 MAN . 131
 MD . 132
 MEET . 132
 MESSAGES . 133
 MNSORT . 133
 MS . 133
 NET . 134
 NEWPW . 134
 NEWS . 134
 /NEXT . 135
 OFF . 135
 OUTPUT . 135
 PCEXEC . 136
 PHONE . 136
 PING . 136
 PIPE . 137
 PLAN . 137
 POLYSOLVE . 137
 POST . 137
 PQ . 138
 /PREVIOUS . 138
 PRINT . 138
 PROFILE . 140
 PROG . 140
 PURGE . 140
 QFTP . 142
 RD . 142
 /RECORD . 143
 RENAME . 144

x MUSIC/SP User's Reference Guide

 /REQUEST . 145
 RN . 145
 ROUTE . 145
 SCHED . 146
 SENDFILE . 146
 SENDMAIL . 147
 SHOPAN . 147
 SHOWPFK . 148
 /SKIP . 148
 SORT . 149
 /STATUS . 151
 SUBMIT . 152
 SUMMARY . 152
 SYSDATE . 153
 TAG . 153
 TEDIT . 154
 TELL . 154
 TELNET . 155
 /TIME . 155
 TODO . 156
 TREE . 156
 TUT . 157
 /USERS . 157
 VER . 157
 VIEW . 158
 VM . 158
 WEB . 160
 WHOAMI . 160
 /WINDOW . 161
 XTMUS . 161
 XTPC . 162
 ZEROCNT . 162

 Chapter 6. MUSIC Job Control Statements . 163

 Job Control Statements - Overview . 164
 Conventions . 164

 Job Control Statement Descriptions . 165
 /COM . 165
 /DATA . 165
 /END . 166
 /ETC . 166
 /FILE (General Overview) . 167
 /FILE (Files) . 168
 /FILE (Temporary UDS) . 172
 /FILE (Permanent UDS) . 173
 /FILE (Tape UDS) . 176
 /FILE (Miscellaneous) . 180
 /FILE (Printers) . 182
 /ID . 183
 /INCLUDE . 183
 /INFO . 185
 /JOB . 185
 /LOAD . 185
 /OPT . 188

 MUSIC/SP User's Reference Guide xi

 /PARM . 188
 /PASSWORD . 188
 /PAUSE . 188
 /SYS . 189

 Chapter 7. Using The Editor . 191
 Overview of the Editor . 192
 Editor Concepts . 192
 Starting and Ending the Editor . 193

 Editor Full-Screen Mode . 197
 Introduction to Full-Screen Mode . 197
 Screen Format for Full-Screen Mode . 197
 Editing Keys . 199
 Suggestions for Efficient use of Full-Screen Mode 202

 Creating a New File . 204
 Input of Data for the Editor . 204

 Common Editing Functions . 206
 Making Changes on the Current Screen 206
 Moving the Cursor . 206
 Paging Up and Down . 206
 Inserting and Deleting Characters . 207
 Inserting and Deleting Lines . 207
 FILE and QUIT Commands . 208
 Getting Help for the Editor . 208
 Common Editor Commands . 208
 Marking a Group of Lines . 209

 Prefix Area . 211

 Editor Commands . 214
 Notation . 214
 Command Syntax . 214
 String Separator . 214
 Functional Summary of Commands . 214
 Editor Command Descriptions . 219

 Advanced Features . 286
 Starting Column Suffix -- CN . 286
 Logical Commands . 286
 Defining Function Keys and the X Command 287
 Creating your own Editor . 288
 Editing a Large File . 289
 Editing User Data Set Files . 289
 Additional Editor Command Input . 290
 Specifying Editor Comments (* Command) 290
 Defining a TAB key . 290
 Using Full-Screen Mode Without Function Keys 291
 Simulating Additional Function Keys . 291
 Blank-Filled Screen Display . 291
 Output Cursor Positioning . 291
 The S Parameter on the SCAN and CHANGE Commands 292
 RIGHT and LEFT Parameters on the WINDOW Command 292
 Hexadecimal Input and Output . 293

xii MUSIC/SP User's Reference Guide

 Hexadecimal Input Format . 294
 Changing Screen Colors . 294

 Editor Macro Facility in REXX . 297
 Writing Editor Macros . 297
 Return Codes . 297
 The EXTRACT Command . 297
 Sample Macros . 304
 Defining Prefix Macros . 306

 Editor Restart Facility . 308
 Introduction . 308
 General Description . 308
 Extent of Recovery . 309
 The LOG Command . 309
 Effect on Performance . 310
 Suppressing the Restart Feature . 310
 Restrictions . 310
 Sample Terminal Session . 311
 Editor Restart for Multiple Sessions . 312

 Chapter 8. Processors . 313

 Overview of Processors . 314
 MUSIC Compilers . 314
 MUSIC Loaders . 315
 MUSIC Linkage Editor . 315
 Load Module Executors . 316
 MUSIC Interpreters . 316
 Programming Tutorials . 317
 APL - Subset Version . 318
 Running MUSIC/APL . 318
 Workstation Requirement - APL . 318
 Usage Notes - APL . 319
 APL Workspace Concepts . 320
 Initializing an APL WS . 320
 Using A WS Library - APL . 320
 APL Public Workspaces . 321
 APL System Commands . 321
 MUSIC/APL I Beams . 322
 Limiting Time Option - APL . 322
 Extension of Session Time Limits - APL 322
 References - APL . 323
 APL Interpreter - VSAPL . 324
 Usage Notes - VSAPL . 324
 Running VS APL . 324
 Workstation Requirement - VSAPL . 325
 APL System Commands . 326
 Workspace Concepts - VSAPL . 326
 Workspace Compatibility - VSAPL . 327
 Workspace Conversion of old MUSIC/APL Workspaces 327
 Workspace Library Numbers - VSAPL 327
 APL Public Workspaces . 327
 Transporting VS APL Workspaces to Other Installations 328
 Limiting Time Option - VSAPL . 329
 Extension of Session Time Limits - VSAPL 329

 MUSIC/SP User's Reference Guide xiii

 References - VSAPL . 329
 Assembler - ASM . 330
 Macro Library - ASM . 330
 Macro Instructions - ASM . 331
 SNAP Macro - ASM . 332
 Input/Output - ASM . 333
 Usage - ASM . 333
 Parameters: Compile Step - ASM . 334
 Parameters: Loader Step - ASM . 335
 Parameters: Go Step - ASM . 336
 Title Lines - ASM . 336
 References - ASM . 336
 Examples - ASM . 336
 Assembler (Loader) - ASMLG . 339
 Usage - ASMLG . 339
 Parameters - ASMLG . 339
 Example - ASMLG . 340
 IBM BASIC Environment - IBMBASIC . 341
 Usage - IBMBASIC . 341
 IBM BASIC programs as load modules 343
 IBM BASIC Interlanguage Communications 343
 IBM BASIC VSAM Support . 344
 References - IBMBASIC . 344
 BASIC Compiler - VSBASIC . 345
 VS BASIC Highlights . 345
 Language Specifications - VSBASIC . 345
 Usage Notes - VSBASIC . 346
 Continuation Statements - VSBASIC . 347
 Main Storage Requirements - VSBASIC 347
 Control Statement Set Up - VSBASIC 347
 VS BASIC Object Modules . 348
 VS BASIC Compiler Parameters - /OPT Statement 348
 Control of Input/Output Files - VSBASIC 349
 Pre-Defined DDNAMES - VSBASIC . 350
 Examples of VS BASIC Programs . 350
 VS BASIC Editor . 353
 VS BASIC Editor Commands . 355
 IBM C/370 Compilers . 359
 Usage - C/370 . 359
 Available Unit Numbers and Buffer Space - C/370 359
 External File Names - C/370 . 359
 Parameters: Compiler Step - C/370 . 360
 Parameters: Loader Step - C/370 . 361
 Parameters: Go Step - C/370 . 362
 Title Lines - C/370 . 363
 References - C/370 . 363
 Example - C/370 . 363
 CICS/VM-MUSIC Interface - CICS . 364
 Usage - CICS . 364
 Application Lists - CICS . 365
 CICS/VM Setup Facility . 366
 References - CICS . 368
 COBOL Compiler - COBOL2 . 369
 Usage Notes - COBOL2 . 369
 Input/Output - COBOL2 . 369
 System Names - COBOL2 . 370

xiv MUSIC/SP User's Reference Guide

 External Names - COBOL2 . 370
 Usage - COBOL2 . 371
 Parameters: Compile Step - COBOL2 . 372
 Parameters: Loader Step . 373
 Parameters: Go Step - COBOL2 . 374
 Title Lines - COBOL2 . 374
 COBOL II Interactive Debugger . 374
 References - COBOL2 . 376
 Examples - COBOL2 . 376
 COBOL Compiler - VSCOBOL . 378
 Input/Output - VSCOBOL . 378
 Direct Access Support - VSCOBOL . 378
 System Names - VSCOBOL . 379
 External Names - VSCOBOL . 379
 Usage - VSCOBOL . 380
 Parameters: Compile Step - VSCOBOL 380
 Parameters: Loader Step . 381
 Parameters: Go Step - VSCOBOL . 382
 Title Lines - VSCOBOL . 382
 References - VSCOBOL . 383
 Examples - VSCOBOL . 383
 COBOL (Loader) - COBLG . 385
 Usage - COBOLG . 385
 Parameters . 385
 FORTRAN Compiler - VSFORT . 387
 Available Versions - VSFORT . 387
 Interactive Debug - VSFORT . 387
 Control Statements - VSFORT . 387
 Defining Program Files - VSFORT . 388
 Compiler Options on the /OPT Statement - VSFORT 389
 Loader and MVS Simulator Options on the /JOB Statement 389
 Execution-Time Parameters - VSFORT 391
 Block Letter Titles - VSFORT . 391
 Using Object Modules and Load Modules - VSFORT 391
 Usage Notes - VSFORT . 392
 Interlanguage Communication - VSFORT 393
 MUSIC Extensions to NAMELIST Input 394
 VS Fortran Interactive Debug (IAD) . 394
 Separation Tool - VSFORT . 396
 Alternate Math Library (Version 1 Only) 396
 Sample Program - VSFORT . 396
 References - VSFORT . 398
 MUSIC/SP VS/FORTRAN Debugger - TESTF 399
 Invoking TESTF (VS Fortran Debugger) 399
 VS Fortran Debugger Function Keys . 401
 VS Fortran Debugger Commands . 403
 General Purpose Simulation System - GPSS 408
 Restrictions - GPSS . 408
 Usage - GPSS . 408
 Reference - GPSS . 408
 Example - GPSS . 409
 Graphical Data Display Manager - GDDM . 410
 Command - GDDM . 410
 Usage Notes - GDDM . 410
 Full-Screen Menu - GDDM . 411
 References - GDDM . 412

 MUSIC/SP User's Reference Guide xv

 Examples - GDDM . 413
 Linkage Editor - LKED . 414
 Link-editing COBOL, VS Assembler and PL/I Programs 414
 Usage - LKED . 414
 Parameters - LKED . 415
 Control Statements - LKED . 416
 Linkage Editor Return Codes . 417
 Reference - LKED . 417
 Example - LKED . 417
 Load Module Executor - EXEC . 418
 COBOL, ASM and PL/I Load Modules 418
 Usage - EXEC . 418
 Control Line - EXEC . 418
 Example - EXEC . 419
 Load Module Executor - XMON . 420
 Usage - XMON . 420
 LOADER - System Loader . 421
 Usage - LOADER . 421
 Parameters: Loader Step - LOADER . 421
 Example - LOADER . 422
 PASCAL Compiler - VSPASCAL . 423
 Usage - VSPASCAL . 423
 Main Storage Requirements - VSPASCAL 424
 Interlanguage Communication - VSPASCAL 424
 External File Names - VSPASCAL . 424
 Parameters: Compiler Step - VSPASCAL 424
 Parameters: Loader Step - VSPASCAL 425
 Parameters: Go Step - VSPASCAL . 426
 Title Lines - VSPASCAL . 426
 VS PASCAL Interactive Debugger . 427
 References - VSPASCAL . 427
 Examples - VSPASCAL . 427
 PL/I Version 2 Optimizing Compiler - PLI . 429
 Usage Notes - PLI . 429
 Usage - PLI . 430
 Available Unit Numbers and Buffer Space - PLI 430
 External File Names - PLI . 430
 Parameters: Compiler Step - PLI . 431
 Parameters: Loader Step - PLI . 432
 Parameters: Go Step - PLI . 433
 Title Lines - PLI . 433
 PL/I Sort . 433
 References - PLI . 434
 Example - PLI . 434
 PLITEST . 434
 PL/I OS-Mode Loader - PLILG . 438
 Usage - PLILG . 438
 Available Unit Numbers and Buffer Spaces - PLILG 438
 Parameters - PLILG . 438
 PL/I Load Module Executor - XMPLI . 440
 Usage - XMPLI . 440
 Available Unit Numbers and Buffer Space - XMPLI 440
 Restructured Extended Executor - REXX . 441
 Invoking REXX . 441
 Executing MUSIC Commands - REXX 441
 Communicating with the workstation - REXX 442

xvi MUSIC/SP User's Reference Guide

 Accessing the STACK - REXX . 442
 MUSIO Command - REXX . 443
 EXEC Command - REXX . 444
 REXLIB Command - REXX . 444
 Program Chaining - REXX . 445
 Interface with the PANEL subsystem - REXX 446
 Callable MUSIC System Functions - REXX 446
 Editor Macro Facility - REXX . 446
 Sample REXX programs . 447
 Pipe-lines on MUSIC/SP . 448
 RPG II - RPG . 453
 Control Statements - RPG . 453
 Usage - RPG . 453
 The /COPY Statement of Autoreport - RPG 455
 Sample Programs - RPG . 455
 Reference Manuals - RPG . 455
 SAA RPG/370 . 456
 Control Statements - RPG370 . 456
 Usage - RPG370 . 456
 Example - RPG370 . 456
 References - RPG370 . 458

 Chapter 9. System Subroutines . 459
 Overview . 460
 Functional Summary of Subroutines . 460
 Subroutines Listed Alphabetically . 466

 Dynamic Access to Files . 534
 OPNFIL Subroutine (Open a File) . 534
 CLSFIL Subroutine (Close a File) . 534
 SETINF Subroutine (Set Information for a New File) 534
 FILMSG Subroutine (Get Error Description) 535
 Calling Sequences . 535
 Option Keywords for Open . 537
 Option Keywords for Close . 537
 Keywords for SETINF Access Control Options 538
 Common Blocks Used . 538
 Error Codes and Descriptions . 539
 Examples . 540
 QFOPEN, QFCLOS, QFREAD, QFBKRD, QFRBA, QFREW 541
 ITS Subroutines . 544

 Chapter 10. Utilities . 549

 Summary of Utility Programs . 550
 Archiving . 550
 Working with Files . 550
 Working with UDS Files . 550
 Sorting . 551
 Batch Utilities . 551
 Miscellaneous Utilities . 551

 MUSIC/SP Access Method Services (AMS) 552
 Definitions and Basic Concepts . 552
 Command Language Syntax . 553
 Invoking Access Method Services . 554

 MUSIC/SP User's Reference Guide xvii

 Access Method Services Commands . 555

 ARCHIV/RETREV . 571
 Archiving and Retrieving User Files . 571
 ARCHIV Program . 571
 Retrieving Files: RETREV . 572

 Debug Facility . 573
 How Debug Works . 573
 Invoking Debug . 574
 Other Topics . 579
 Function Keys . 582
 Debug Commands . 583
 WatchPoint Facility . 590

 DSCOPY . 593
 Copying one UDS File To Another - DSCOPY 593

 DSLIST . 594
 Examples . 594

 DSREN . 596
 UDS Rename Program . 596
 Using DSREN . 596
 Non-Conversational DSREN . 596

 ENCRYPT/DECRYPT . 597
 Parameters . 597

 EXARCH and EXREST . 599
 EXARCH . 599
 EXREST . 600

 FILARC/FILRST/FILCHK . 603
 Dumping and Restoring MUSIC Files . 603
 Control Statements . 603
 File Archive (FILARC) . 603
 File Restore (FILRST) . 604
 Dump Checkout (FILCHK) . 605

 FTP and TELNET from MUSIC . 607
 Connection . 607
 Login . 607
 Documentation . 608

 LBLIST . 609
 Printing Save Libraries . 609

 PANEL . 610
 Fullscreen Panel Generator . 610
 Services Provided by PANEL . 610
 Developing Panels . 611
 Creating a New Panel . 612
 Modifying an Existing Panel . 612
 Modification Function Keys . 613
 Examples of Modifying a Panel . 615

xviii MUSIC/SP User's Reference Guide

 Storing Panels . 616
 Accessing Panels through a Program . 617
 Coding examples . 619
 Usage . 621
 Panel Printing . 621
 REXX interface to PANEL . 621

 POLYSOLVE . 624
 Overview . 624
 Usage Notes . 624
 Constants . 625
 Variables . 625
 Implied Operations . 625
 Functions . 625
 Entering a Polynomial . 626
 Continuing an Expression . 626
 Entering Coefficients . 626
 Solution . 626
 Example . 627

 PROFILE . 629
 Overview . 629
 Options . 629
 Example . 631

 Sorting . 633
 Overview of MUSIC SORT Facilities . 633
 MNSORT - MUSIC Main Program for Sorting 633
 DSORT Subroutine . 636
 SRTMUS Subroutine . 640
 Using COBOL's SORT Feature . 642

 TAPUTIL . 643
 Usage . 643
 Parameters . 643
 Notes . 644
 Examples . 644

 UDSARC/UDSRST/DSCHK . 646
 Archiving and Retrieving User Data Set (UDS) Files 646
 UDSARC Program . 646
 Retrieving UDS Files: UDSRST . 647
 DSCHK Program . 647
 Contents of Information Records . 647

 UTIL . 648
 Usage . 648
 Control Statements . 648
 Examples . 651

 VIEW . 653
 Summary of Commands . 653
 The Scroll Area . 657

 VMPRINT . 659
 Usage . 659

 MUSIC/SP User's Reference Guide xix

 ZERO.FILE . 660
 Program to Write Zeroes to a File . 660

 Appendixes . 661

 Appendix A. IIPS/IIAS . 662
 Interactive Instructional Systems . 662

 Appendix B. LEARN Program . 663
 Course Sign On . 663
 Course Sign Off . 663

 Index . 665

xx MUSIC/SP User's Reference Guide

 Figures
———————————————
 Figure 1.1 - Main Selection Screen of FSI . 6
 Figure 1.3 - CM Menu Display . 7
 Figure 1.4 - CI Menu Display . 8
 Figure 1.5 - TODO Menu Display . 9

 Figure 2.1 - Sample NET3270 Configuration . 31
 Figure 2.2 - NET3270 Help Screen . 32
 Figure 2.3 - Screen display for SESSIONS command 36

 Figure 3.1 - /ID Statement for Batch . 44
 Figure 3.2 - OUTPUT Facility Screen . 51

 Figure 4.1 - Screen display for TREE command . 62

 Figure 7.1 - Steps for Using the Editor . 194
 Figure 7.2 - Screen Display in Full-Screen Mode 197
 Figure 7.3 - Screen Display for Input Mode . 204
 Figure 7.4 - Prefix Area of the Editor . 211

 Figure 8.1 - Compilers . 315
 Figure 8.2 - Linkage Editor . 316
 Figure 8.3 - CICS Interface . 364
 Figure 8.4 - CICS Interface Setup . 367
 Figure 8.5 - COBOL II Debug . 375
 Figure 8.6 - Example of MUSIC's VS/FORTRAN Debugger Display 399
 Figure 8.7 - Menu for GDDM . 412

 Figure 10.1 - Alter Keywords Used with VSAM Objects 556
 Figure 10.2 - Debug Memory Display . 576
 Figure 10.3 - Debug Instruction Display . 577
 Figure 10.4 - Displaying Watchpoints . 591
 Figure 10.5 - Adding Watchpoints . 592
 Figure 10.6 - Function Keys for PANEL . 613
 Figure 10.7 - Flow of Panels . 616
 Figure 10.8 - Sample Panel . 619

 MUSIC/SP User's Reference Guide xxi

xxii MUSIC/SP User's Reference Guide

MUSIC/SP READER'S
User's Reference Guide COMMENT
August 1995 FORM

You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that the MUSIC Product Group may use or distribute what-
ever information you supply in any way it believes appropriate without inccurring any obligation to
you.

Possible topics for comments are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, institution, mailing address and date:

What is your occupation? ___

Number of latest Newsletter associated with this publication: _________________________________

Thank you for your cooperation.

MUSIC/SP User's Reference Guide (August 1995) .
 .
 .
Reader's Comment Form .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
fold and tape please do not staple fold and tape .
. .
 .
 .
 .
 Place .
 stamp .
 here .
 .
 .
 .
 .
 MUSIC Product Group .
 McGill Systems Inc. .
 550 Sherbrooke St. West .
 Suite 1650, West Tower .
 Montreal, Quebec H3A 1B9 .
 CANADA .
 .
 .
 .
 .
 .
 .
. .
fold and tape please do not staple fold and tape .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .

