GURT 2004, Georgetown University March 27, 2004

Deriving Negative Polarity

Rajesh Bhatt and Bernhard Schwarz University of Texas at Austin rbhatt@mail.utexas.edu, schwarz@mail.utexas.edu

1 Outline

• A recharacterization of Lahiri (1998)'s analysis of Hindi NPIs is presented using *also* in place of *even*.

• It is shown that Lahiri (1998)'s analysis involves certain movements that are not independently attested.

• Further, the analysis fails to exclude NPIs from environments that are neither upward nor downward entailing.

2 Lahiri's Proposal

2.1 The Ingredients of Hindi NPIs

Hindi NPIs:

a weak predicate (*one*, *some*) and a particle *bhii* 'also/even'.

weak predicate, the particle: no NPI properties by themselves.

Together though, they can only appear in a Downward Entailing environment.

2.2 A Compositional Treatment

Lahiri's proposal goes beyond a characterization of the environments where NPIs may or may not occur.

The relevant restrictions are derived compositionally from the constituents of the NPI.

Failure of licensing = conventional implicatures that are incompatible with the assertion.

2.3 Some Details

Hindi NPIs = a weak predicate **one/some** (=WP) + *bhii* 'also/even'.

The predicate **one** is entailed by all of its contextual alternatives:

(1)
$$\forall (x) [\mathbf{two}(x) \to \mathbf{one}(x)],$$

$$\forall (x) [\mathbf{three}(x) \to \mathbf{one}(x)], \mathbf{etc.}$$

- (2) Implicatures of '*bhii*(*a*)':
 - a. Existential Implicature: $\exists p[C(p) \land \ p \land p \neq \ a]$
 - b. Scalar Implicature: $\forall p[[C(p) \land p \neq \hat{a}] \rightarrow \text{likelihood}(p) > \text{likelihood}(\hat{a})]$

a is the assertion and C is the set of focus-induced alternatives to a.

WP+bhii in an upward entailing environment:

(3) WP+bhii came.

Assertion: WP came.

Entailment: 'WP came' is entailed by all the propositions that result from substituting WP by alternative predicates.

Together with

 $\label{eq:posterior} \begin{array}{l} \text{if } p \to q \text{, then } \text{likelihood}(q) \geq \text{likelihood}(p) \text{,} \\ \text{we derive:} \end{array}$

For all alternatives to 'WP came', likelihood('WP came') ≥ likelihood(Alternative)

Implicature of bhii:

For all alternatives to 'WP came', likelihood('WP came') < likelihood(Alternative)

Clash between entailment and implicature \rightarrow Ungrammaticality

WP+bhii in a downward entailing environment:

(4) WP+*bhii* Neg came.

Assertion: \neg (WP came).

Entailment: 'WP came' is entailed by all the propositions that result from substituting WP by alternative predicates. Hence \neg (WP came) entails the negations of the alternative propositions.

Together with

 $\label{eq:posterior} \begin{array}{l} \text{if } p \to q \text{, then } \text{likelihood}(q) \geq \text{likelihood}(p) \text{,} \\ \text{we derive:} \end{array}$

For all alternatives to '¬(WP came)', likelihood('¬(WP came)') ≤ likelihood(Alternative)

Implicature of bhii:

For all alternatives to '¬(WP came)', likelihood('¬(WP came)') < likelihood(Alternative)

No clash between the entailment and the implicature.

3 also and even

Lahiri's proposal can be simplified by assigning *bhii* the same semantics as *also* (cf. Sundaresan and Arunachalam (2003)).

3.1 *bhii* as 'also'

In non-negative contexts, *bhii* does not seem to contribute an *even* meaning.

(5) Ram-bhii aa-yaa thaa Ram-BHII come-Pfv.MSg be.Pst.MSg'Ram also came.'

Stress on the associate of *bhii* seems to produce a reading that is close to that found with *even*.

(6) [RAM]-bhii aa-yaa thaa
Ram-BHII come-Pfv.MSg be.Pst.MSg
'Ram also came and this was in some way surprising.'

But this added meaning seems to be related to stress and is independent of *bhii*.

(7) [RAM] aa-yaa thaa
Ram come-Pfv.MSg be.Pst.MSg
'Ram came and this was in some way surprising.'

The universal quantification that is part of the semantics of *even* is not found with *bhii*. Instead it is found with *-tak*/ 'till'.

(8) Ram-tak aa-yaa thaa Ram-TAK come-Pfv.MSg be.Pst.MSg
'Even Ram came.'
(Ram's coming was less likely than anyone else's.)

3.2 bhii as 'also': syntax and semantics

- (9) $bhii_C(p)$
 - a. Assertion: p
 - b. Presupposition: $\exists q \ [q \in C \land q \neq p \land q]$
 - (C is the set of focus-alternatives of p)

bhii is a PPI:

- (10) John-*bhii* Neg came
 - a. LF1: Neg > *also*, Not Attested
 Neg(*bhii*([John]_F came))

Assertion: Neg(John came) Presupposition: Someone other than John came. b. LF2: *bhii* > Neg, Attested *bhii*(Neg([John]_F came))

> Assertion: Neg(John came) Presupposition: Someone other than John didn't come.

Movement of *bhii* is clause bound:

- (11) mujhe nahĩ: lagtaa ki $[[Ram]_F$ -bhii aa-egaa] I.Dat Neg seems that Ram-also come-will 'I don't think that Ram will also come.'
 - a. LF1: local movement of *also*, **Attested** Neg(I think that (also(Ram_F will come)))

Presupposition: I think that someone other than Ram will come.

b. LF2: non-local movement of *also*, **Not Attested** also(Neg(I think that (Ram_{*F*} will come)))

Presupposition: There is someone other than Ram s.t. I don't think he will come.

3.3 Deriving Negative Polarity with *also*

The bad case:

(12) *[one]-also man came.

LF: also $[[one]_F$ man came]

Assertion: one man came.

Presupposition: there is a number not equal to one s.t. that many people came.

Presupposition \rightarrow Assertion, **illformedness**

The good case:

(13) [one]-also man Neg came.

LF: also Neg[[[one]_{*F*} man came]]

Assertion: Neg(one man came) (i.e. No one came.).

Presupposition: there is a number not equal to one s.t. that many people did not came.

 $Presupposition \not\rightarrow Assertion, \textbf{no illformedness}$

Illformedness results from redundancy caused when the Presupposition entails the Assertion (cf. Barwise and Cooper (1981)).

The results of Lahiri's proposal, formulated with *even*, carry over to this reformulation with *also*.

But as we will see, the problems faced by the original proposal also carry over to this reformulation.

4 Problems of Scope

Lahiri adopts the scopal theory of *even* (cf. Karttunen and Peters (1979), Kay (1990), Wilkinson (1996), Guerzoni (2003)).

In order to derive the appropriate entailments, Lahiri proposes that *bhii* take scope over the DE-Operator. Well motivated for cases like (4):

- finite clause-bound like covert movement in Hindi

- forced by its PPI-nature

However, as Lahiri notes, NPIs in Hindi are also licensed across clauses.

- (14) a. restrictor of every: Every student [who read [[one]_F-bhii book]] passed.
 - b. complements of certain negated predicates:
 I don't think that [[[one]_F-bhii student] will come]
- (15) LFs needed by Lahiri for (14):
 - a. *bhii* [every student [who read [[one]_F book]] passed]
 - b. *bhii* [I don't think that [[[one]_F student] will come]]
- Lahiri needs covert movement of *bhii* out of finite clauses.
- But covert movement of *bhii* out of finite clause is otherwise unattested (cf. Rullmann (1997), Herburger (2003)):
 - (16) a. Every student [who read *Emma*-also] passed.

LF with long movement:

also [[every student [who read *Emma_F*]] passed]

Presupposition: There is a book other than *Emma* s.t. every student who read that book passed. (**unat-tested**)

b. I don't think that $[[John]_F$ -also came].

LF with long movement: also [I don't think that [John_F came]]

Presupposition: There is a person other than John s.t. I don't think that that person came. (**unat-tested**)

• The movement theory has to concede that long (potentially island escaping) movement of *bhii* takes place only when needed for semantic convergence.

• An alternative to the scopal theory : *bhii* is systematically ambiguous between an NPI and a PPI *even*, movement of *bhii* not needed. (cf. Rooth (1985), Herburger (2000), Herburger (2003)).

• But since it appeals to the ambiguity of *bhii* between an NPI and a PPI, it cannot be used to independently derive the Negative Polarity nature of Hindi NPIs, a point noted by Lahiri.

5 Neither Downward Nor Upward

 (17) NPI Generalization for Hindi: NPIs in Hindi are restricted to Downward Entailing environments. (see Lahiri (1998)).

But Lahiri's proposal does not actually capture (17).

• Lahiri's proposal (modulo problems with scope) explains why Hindi NPIs **can** appear in **DE environments**.

- (18) Downward Entailing environments:
 - a. with *bhii*_{even}: assertion and presupposition compatible
 - b. with *bhii*_{also}: presupposition does not entail assertion.

no violation \rightarrow NPI acceptable

• It also explains why Hindi NPIs **cannot** appear in **UE environments.**

- (19) Upward Entailing environments:
 - a. with $bhii_{even}$: assertion and presupposition incompatible
 - b. with *bhii*_{also}: presupposition entails assertion, redundant

violation \rightarrow NPI unacceptable

•. But it fails to exclude NPIs from environments that are neither DE nor UE.

NPI in non-UE non-DE environment:

- (20) Exactly two people read [one $_F$ -*bhii* book].
 - a. with *bhii*_{even}:
 - i. **Assertion**: Exactly two people read (at least one) book.
 - ii. Entailment: Alternative propositions do not entail and are also not entailed by 'Exactly two people read one book' because *exactly two* is neither upward nor downward entailing.
 - iii. Implicature of *bhii*:
 For all alternatives to 'Exactly two people saw WP', likelihood('Exactly two people saw WP')
 < likelihood(Alternative)

No clash between the entailment and the implicature.

- b. with *bhii*_{also}:
 - i. **Assertion**: Exactly two people read (at least) one book.
 - ii. **Presupposition**: There is a number other than one s.t. exactly two people read (at least) that many books.

Assertion and Presupposition are logically independent.

no violation predicts NPI acceptable

This prediction is not borne out.

(21) *țhiik paanc logõ-ne ek-bhii kitaab paṛhii exactly 5 people-Erg one-BHII book.f read-Pfv.f
*Exactly five people read any book.'

To conclude, we note that for the Lahirian analysis to be a successful compositional derivation of the NPI properties of WP+*bhii* sequences in Hindi, it needs to:

• motivate the exceptional and otherwise unattested movement of *bhii*

• explain why NPIs are not possible in environments that are non-UE and non-DE.

References

- Barwise, J., and R. Cooper (1981) "Generalized Quantifiers and Natural Language," *Linguistics and Philosophy* 4:2, 159–220.
- Guerzoni, E. (2003) *Why Even Ask*, Doctoral dissertation, Massachusetts Institute of Technology, Cambridge, Massachusetts.
- Herburger, E. (2000) *What counts: Focus and Quantification*, Linguistic Inquiry Monographs, MIT Press, Cambridge, Massachusetts.
- Herburger, E. (2003) "A note on Spanish *ni siquiera*, *even*, and the analysis of NPIs," *Probus* 15, 237–256.
- Karttunen, L., and S. Peters (1979) "Conventional Implicature," in C.-K. Oh and D. A. Dinneen, eds., *Presupposition*, Syntax and Semantics 11, Academic Press, Harcourt Brace Jovanovich, New York, 1–55.
- Kay, P. (1990) "Even," Linguistics and Philosophy 13:1, 59–111.
- Lahiri, U. (1998) "Focus and Negative Polarity in Hindi," *Natural Language Semantics* 6:1, 57–123.
- Rooth, M. E. (1985) Association with Focus, Doctoral dissertation, University of Massachusetts-Amherst, Amherst, Massachusetts. Distributed by GLSA.
- Rullmann, H. (1997) "Even, Polarity, and Scope," in M. Gibson, G. Wiebe, and G. Libben, eds., *Papers in experimental and theoretical linguistics*, *vol. 4*, Department of Linguistics, University of Alberta, Edmonton, 40–64.
- Sundaresan, S., and S. Arunachalam (2003) "Negation in Tamil and Issues of Scope and NPI-Licensing," handout of talk presented at SALA 23, UT Austin.
- Wilkinson, K. (1996) "The scope of even," Natural Language Semantics 4, 193–215.