

Well Cementing

Gary Funkhouser and Lewis Norman

Why do we cement wells

- Principle Functions of primary cementing
 - Restrict fluid movement between formations
 - Bond and support the casing
- Additional uses of cement
 - Protect the casing from corrosion
 - Prevent blowouts
 - Protect the casing from shock loads in drilling operations
 - Sealing off loss circulation or thief zones

Oil well cementing highlights

- 1883 Hardison/Stewart Pico, CA
- 1903 Steel casing cemented Lompoc Field, CA
- 1910 2-plug cementing method A.A. Perkins
- 1919 Erle P. Halliburton Burkburnett, TX
 1921 Erle P. Halliburton patents Jet Mixer
- 1940 Halliburton introduces bulk cement

Pumping Lead Cement & drop bottom plug

Pumping Lead Cement

Drop Top Plug & Start Displacing with Spacer

Displacing

© 2009 Halliburton. All Rights Reserved.

© 2009 Halliburton. All Rights Reserved.

© 2009 Halliburton. All Rights Reserved.

© 2009 Halliburton. All Rights Reserved.

© 2009 Halliburton. All Rights Reserved.

© 2009 Halliburton. All Rights Reserved.

Light Weight

Cement Additives

Defoamers

Gas Migra

Specific Materials for Optimum Cement Performance

<u>,08</u>5

© 2010 Halliburton. All Rights Reserved.

Expansion

etarders

Loss Circulation

Accelerator

Retarders

- Sodium and calcium lignosulfonates
- Oligosaccharides
- Tartaric acid
- AMPS copolymers
- Aminotri(methylphosphonic acid)

Fluid-Loss Control Additives

Prevent leak-off of water into rock Maintain key characteristics cement slurries (thickening time, rheology, and strength development) Avoid build-up of cement filter cake

- Cellulose derivatives
- Synthetic polymers
- Latex

Weighting Agents

Maintain well control with increased hydrostatic pressure (up to 21 lb/gal, occasionally higher)

- Hematite (Fe₂O₃)
 - Up to 100 lb/sk
- Hausmannite (Mn₃O₄)
 - Up to 100 lb/sk
- Ilmenite (iron-titanium oxide)
- Barite (BaSO₄)
 - Up to 135 lb/sk
- Sand

Often used in conjunction with other weighting agents

Supplementary Cementing Materials in the Oilfield

Fly ash (50:50 fly ash:cement typical) Silica fume (15% bwoc typical, 28% max) Low density slurry (>11 lb/gal) with little free water Silica flour (35-40% bwoc typical, 70% + max) Prevent strength retrogression >230 °F Pumice (up to 150% bwoc) Cement kiln dust Blast furnace slag Zeolite Metakaolin

 Lab Testing
 Compressive Strength, Fluid Loss, Thickening Time, Gel Strength
 Up to 600 °F and 40,000 psi

© 2010 Halliburton. All Rights Reserved.

37

CHANDLER

MODEL 8240

CONSISTOMETER

Conventional Cement

Cement is brittle

- Radial cracks formed
- Longitudinal communication occurred
- Cement bond failed creating a microannulus

Foam Cement

No radial cracks

- Only slight debonding
- Foamed cement deformed and absorbed the expansive energy without failure due to its elastic nature

Historical facts regarding EOR well cementing

•More than 35 years of EOR experiences

•More than 15,000 CO_2 EOR well in USA (9000 producing + 6000 injectors)

•Portland based formulations have been used in all the above wells

•Various 3rd party studies of CO₂-EOR operation in the USA have not detected any evidence of CO₂ leak in the drinking water

HALF "GREEN" CEMENTING UNIT

© 2009 Halliburton. All Rights Reserved.

Large Scale Stress Testing

Conventional Cement

5 1/2" pipe cemented inside 7 5/8" casing

 Inner pipe pressured in stages until cement failure was indicated at 4500 psi

© 2010 Halliburton. All Rights Reserved.

Cementing Equipment Evolution

© 2009 Halliburton. All Rights Reserved.

HALLIBURTON

