

ALTERNATIVE BINDERS FOR CONCRETES WITH REDUCED CO₂ EMISSIONS

Ellis GARTNER, LCR

The Challenge: Can we develop low-CO₂ alternatives to Portland Cement, with global market potential?

- Current best available manufacturing technology for OPC is already very energy-efficient.
- OPC manufacturers are already attempting to use more and more local industrial by-products, but supplies are limited.
- CO₂ sequestration approaches are already being addressed by the energy industries, but they look very expensive to us!
- Therefore, the objective of this talk is to draw attention to the fact that some alternative approaches exist. Such approaches necessitate a good understanding of "cement science".

GLASS:

Approximate worldwide consumption of materials

(Global construction needs can never be met without concrete!)

CEMENT:	2740 Mt		
CONCRETE:	≈ 25000 Mt (≈ 10 km ³)		
GYPSUM PRODUCTS:	≈ 130 Mt		
TIMBER:	\approx 3200 Mt (\approx 4 km ³);		
[the Earth's sustainable limit is $\approx 2500 \text{ Mt}$]			
(of this, < 1000 Mt is used in construction and \approx 300Mt for paper and cardboard)			
STEEL:	1350 Mt		
(of this, ≈ 600 Mt is used in construction, about 500 Mt of it for concrete reinforcement)			
ALUMINUM:	32 Mt		
FIRED CLAY PRODUCTS:	\approx 400 Mt (bricks, tiles, ceramic articles, etc.)		
PLASTICS:	120 Mt		

≈ 100 Mt

Approximate Embodied Energies (data from Australia – ref. 2)

Embodied Energy: GJ/t

LAFARGE	Material
	Aggregate (s
	Cut stone (lo
	Asphalt pav
	Fiber comor

	Empouleu Energy. 00/1	0 J/III
Aggregate (sand, stone, gravel)	0.02-0.10	-
Cut stone (local)	0.8	1.9
Asphalt paving	3.4	7.1
Fiber-cement board	9.5	13.6
Concrete tiles, blocks, bricks, pavers	0.8-1.2	1.5-3.0
GRC boards	7.6	14.8
Average pre-cast concrete elements	2	5
Ready mix concrete, 17.5 MPa	1.0	2.4
Ready mix concrete, 40 MPa	1.6	3.9
Adobe blocks, (straw stabilized)	0.47	0.75
Rammed soil cement (e.g. blocks)	0.8	(≈2)
Ordinary fired clay bricks and tiles	2.5	5.2
Glazed clay bricks and tiles	7.2	14.8
Float glass and laminated glass	15.9-16.3	40-41
Plasterboard	6.1	5.9
High-density polyethylene	103	97
Expanded polystyrene board	117	2.3
Paper products	12-36	-
Softwood timber, rough-sawn, air-dried	0.3	0.17
" " " kiln-dried	1.6	0.88
MDF (medium-density fiberboard)	11.9	8.3
Steel (general)	32-35	250-275
Steel (recycled)	9-13	70-100
Aluminum (virgin) products	191-227	516-613
Aluminum (recycled) products	8-43	22-116
_		

GJ/m³

LAFARGE Selected Estimates of "Embodied CO₂":

Average CO₂ emission per unit of fossil fuel heating value = 100 kg/GJ

(Natural gas gives only 64 kg/GJ, fuel oils give over 80 kg/GJ, whereas coals and cokes typically give 100 - 120 kg/GJ)

Based on the average fuel value, but adding the raw-materials CO₂ emissions for cement manufacture, we calculate the following:

Un-reinforced concrete (in place): \approx 140-260 kg/t,or \approx 350-650 kg/m³Clay bricks and tiles: \approx 250-720 kg/t,or \approx 520-1480 kg/m³Typical processed wood products: \approx 800-1200 kg/t,or \approx 800-1500 kg/m³Mild steel:> 3000 kg/t,or \approx 25000 kg/m³Lightweight expanded polystyrene: \approx 230 kg/m³

Factors Influencing the "CO₂-Efficiency" of Concrete.

The CO₂ emissions associated with the manufacture of hardened concrete objects or structures can be broken down into the following major contributions:

- (A) CO_2 emissions associated with the raw materials (cement, aggregates, water, etc.)
- (B) CO_2 emissions associated with the energy used in concrete mixing.
- (C) CO_2 emissions associated with the delivery (of both the raw materials and the fresh concrete) and the placing and finishing of the concrete.

Here, I will only deal with (A). This is composed of:

LAFARGE

- 1 Aggregates, e.g.: gravel; crushed rock; sand; lightweight aggregates
- 2 Water (sometimes partly substituted by air voids or bubbles on a volume basis)
- 3 Binder (cementitious powders plus any fine fillers that are not counted as aggregate)
- 4 Chemical admixtures (usually water-soluble chemicals added to the mix water)

Here, I will only treat (3) and to some extent (4)

LAFARGE

The importance of raw materials choice *(examples using extremely simplified chemical equations!)*

Conventional portland cement manufacture:

The 'cement-sulfuric acid' process:

The Raw Materials must be Abundant!

- Current world cement production is now over 2.7Gt/year and still increasing. The main component is still always portland clinker.
 - This involves decarbonating about 3 Gt/yr. of limestone, containing about 1.3 Gt of "fossil" CO₂, (independent of combustion-derived CO₂)
 - Supplies of conventional clinker substitutes (granulated BF slag, fly ashes and natural pozzolans) are limited, especially from good quality sources.
- Alternative cements must be based on minerals available in quantities comparable to the demand and well-distributed worldwide, or at least readily available in many key locations.
 - Cements based on less abundant minerals are unlikely to be produced in quantities large enough to have much impact on global CO₂ emissions.
 - Due to the low cost of cement per tonne, transportation costs are a major factor in any economic analysis.

Proportions of the principal elements in the Earth's crust LAFARGE rest Magnesium Potassium-Note: Portland Clinker contains Ca, O, Si, Al and Fe Sodium In that order of concentration Calcium Iron Oxygen Aluminium Silicon Other elements abundant enough to be considered include H, C, S, N, CI & P

Pertinent Mineral Resources

Mineral	Resources and Distribution	Supply / Possible Demand for Cement Use
Limestone (calcite):	Very abundant and very widespread	Very high
Silica (& silica-rich clay)	Very abundant and very widespread	Very high
Gypsum, Anhydrite	Abundant and fairly widespread	Acceptable (due to
(& other sulfur sources)	(includes FGD gypsum from fuels)	increasing use of FGD)
Bauxites	Abundant but poorly distributed;	Acceptable only if very
(alumina sources)	impure grades much more common	impure grades can be used
Alumina-rich clays	Abundant but poorly distributed;	Acceptable only if very
(kaolinites)	impure grades much more common	impure grades can be used
"Natural Pozzolans"	Fairly abundant, but very variable and	Interesting only in certain
(reactive volcanic ashes)	very poorly distributed	locations
Magnesite	Much less abundant than calcite, and	Adequate for magnesia
(Magnesium carbonate)	very poorly distributed.	but not for cements.
Phosphate Rock:	Relatively uncommon and	Priority need for fertilizers,
(Calcium phosphate)	very poorly distributed	not for cements!
Iron Ore	Very abundant and fairly widespread	High
Coal	Very abundant and fairly widespread	Acceptable
Combustion residues	Fly ash (and also FGD gypsum)	Adequate for cements
Alkaline sodium	Relatively uncommon and	Can be manufactured from
compounds (e.g. trona)	very poorly distributed	salt if necessary

Clinker Manufacturing Issues

- The current best technology for clinker manufacture uses only

 3 GJ/t in kiln fuel energy, and there is little room for improvement
 on this, for good thermodynamic reasons.
- The gases that leave the stack are similar to those of most fossilfuel-burning power plants. Systems being developed for CO₂ capture, concentration and subterranean sequestration in the electric power industry could also be applied to cement plants.
 Some joint research is in progress but projected costs are high.
- Oxygen enrichment of combustion air could save some kiln fuel and facilitate CO₂ capture, but the energy used to generate the oxygen is high, so projected overall energy costs for capture are still high.

LAFARGE

Theoretical Enthalpy Balance for OPC Manufacture

Note: Assumes dry limestone and clay as kiln feed, and ignores any heat losses, either in combustion gases or by conduction, radiation, etc.; (based on Lea, 3rd Edn., p126)

Kiln section	Temperature range	Process	Enthalpy required,	<u>kJ/g (GJ/t) of clinker</u>
Preheater	20 – 900°C	heating raw f	eed to 900°C	+1.53
"	about 450°C	dehydration	of clays	+0.17
"	20 – 900°C	cooling CO ₂	cooling CO ₂ and H ₂ O	
Calciner	about 900°C	dissociation	of calcite	+1.99
"	about 900°C	reactions of	dehydrated clays	- 0.04
Rotary Kiln	900 –1400°C	heating feed	from 900 to 1400°C	+0.52
"	900 –1400°C	formation of	clinker phases	- 0.31
<u>Clinker coole</u>	er 1400 – 20°C	cooling of cli	nker to 20°C	<u>- 1.51</u>
		Net heat requ	iired:	+1.76

Raw Materials CO₂ per unit mass and volume for the major cement compounds of interest

Cement Compound	Raw Materials	$RMCO_2$ in g/g	RMCO ₂ in g/ml
M(magnesia, periclase)	magnesite	1.092	3.91
C (calcia, quicklime)	limestone	0.785	2.63
C_3S (alite)	limestone + quartz	0.578	1.80
β -C ₂ S (belite)	limestone + quartz	0.511	1.70
C_3A (tricalcium aluminate)	limestone + alumina	0.489	1.50
C_4AF (calcium aluminoferrite)	as above + iron oxide	0.362	1.29
NS (sodium metasilicate)	soda+quartz	0.361	-
CA (monocalcium aluminate)	limestone + bauxite	0.279	0.83
C_4A_3 \$ (calcium sulfoaluminate)	as above + anhydrite	0.216	0.56

Generic technical and scientific problems to be addressed for concretes made with new binders:

- 1. The prediction of concrete durability
- 2. The control of fresh concrete properties and early-age curing procedures
- 3. Variability of raw materials

LAFARGE

4. Concrete life cycle and recycling issues

The prediction of concrete durability

- Durability is probably the most problematic issue involved in the development of alternative binders, since there are few reliable and rapid durability tests that are not based on "chemical assumptions"!
- What can we do to minimize "autogenous cracking"?
- We must be very careful to distinguish between the durability of the concrete matrix and the durability of the final article. The majority of concrete durability issues seem to be related to the durability of reinforcing steel, not of the matrix itself. Can we decouple the two?
 - Should concrete essentially be considered to be an anti-corrosion paint for steel? If so, perhaps the matrix is currently too cheap!
 - Couldn't we work with the steel producers on alternative steels that would resist corrosion in matrices with pH <9, or with high chloride? This would remove many of the barriers to alternative binders.
 - Are there realistic alternatives to steel reinforcement?

The control of fresh concrete properties and early-age curing procedures

- The relationships between mix design and the rheological properties of fresh concrete are reasonably well understood for Portland cement-based binders, but less so for alternative systems with low or zero Portland clinker contents.
- Rheological properties of concern include both the "yield stress" and the "viscosity" as functions of time, temperature, shear rate, etc. A simple slump test is not sufficient to characterize fresh concrete properties for many applications.
- Setting times and rates of strength development at early ages can be critical for many applications, and alternative binders can be very different from Portland cements in this respect.
 - For example, high-volume fly ash concretes (HVFAC) usually set and gain strength very slowly compared to OPCs.

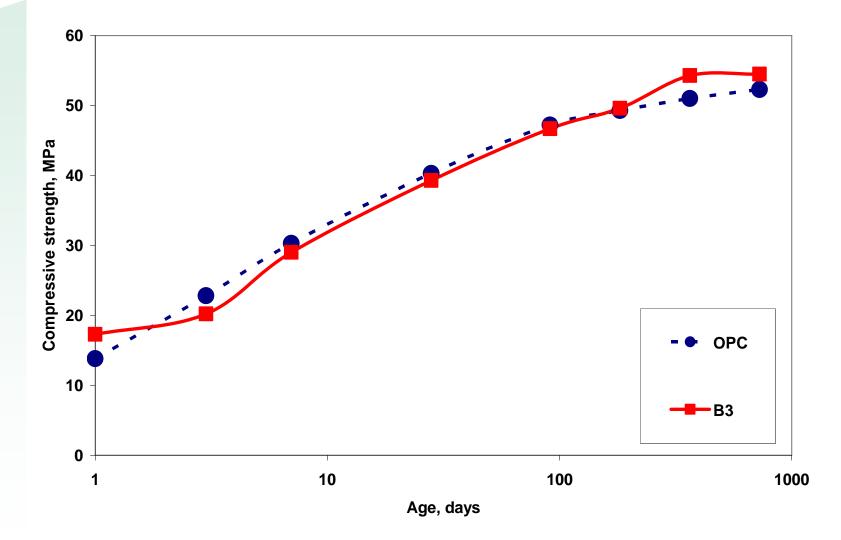
LAFARGE Variability of raw materials

- The responsibility for dealing with raw materials variability may rest more or less with the concrete maker, depending on "local tradition".
 - Should we allow concrete makers to take full responsibility for this? It could be the best way to optimise raw materials use, but are they technologically and scientifically equipped to do it?
 - The input of the academic community could be critical in this respect.
- With by-product SCMs (especially fly ashes), existing product standards for use in concrete are based on low substitution levels. But some alternative binders (e.g. HVFAC and "geopolymers") involve high substitution levels at which variations in by-product quality can have an enormous impact.
 - New standards will be needed.

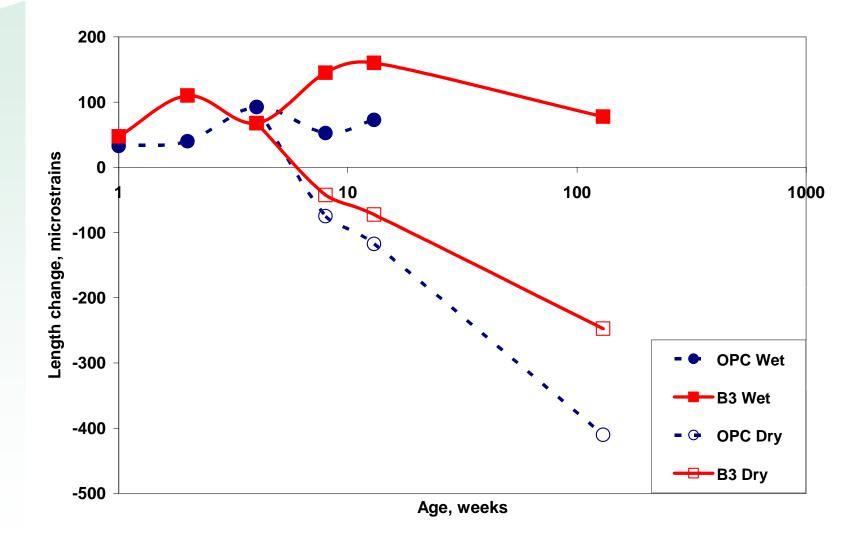
Concrete life cycle and recycling issues

- Recycling of as much as possible of old concrete as close as possible to its source is evidently desirable.
- Could alternative binder systems make recycling easier?
- The issue of CO₂ uptake by existing concrete structures is pertinent.
 - Steel corrosion protection requires low carbonation rates
 - Concrete recycling can help reduce life-time CO₂ emissions
- It would be advantageous for the concrete industry to choose binders on the basis of the final application, i.e. whether or not the concrete will be reinforced with steel, and, if it will be, then what type of exposure conditions it will be subject to.

What are the alternatives to OPC-based cements?


- Manufacture of clinkers based on calcium sulfoaluminate (CSA) plus belite and other phases, looks promising.
 - Such clinkers could be made in existing OPC plants.

- China has already developed norms for this type of 'TCS' cement.
- Raw materials costs are higher than for OPC in almost all locations, but perhaps not so high as to be uneconomic once projected CO₂ emissions costs (taxes) have been factored in.
- An oft-proposed alternative system is "pozzolans" activated by alkali hydroxides or silicates (usually called "geopolymers").
 - Unfortunately, the potential CO₂ savings vs. OPC have often been exaggerated by ignoring the large amounts of energy used to make the activators and sometimes also the pozzolans.
 - Raw materials supply will be a problem unless new manufacturing plants are added, both for the activators and the pozzolans.


Lafarge's novel Belite-CSA-Ferrite (BCSAF) cements:

- Lafarge has recently patented a class of cement clinkers based on belite, CSA and calcium aluminoferrites, these three phases usually being present in the clinker in that order of abundance.
- These BCSAF clinkers can be used to make cements in the usual way, by intergrinding with gypsum, anhydrite, and other SCMs.
- BCSAF cements are somewhat outside the range of the Chinese CSA (TCS) cements, and may be considered in some respects to be intermediate between them and PC-based cements.
- In their overall elemental composition, BCSAF cements can be close to high slag content PC-based cements; but they do not require a source of slag. This makes them potentially capable of production in much larger volumes than slag-based cements.
- Unlike PC-slag cements, BCSAF cements can have high early-age strengths due to the reactivity of the CSA (ye'elimite) phase.
- A pilot-scale test batch of a BCSAF cement was made by LCR and subsequently tested under by the BRE as part of a public project.

BRE concrete data at w/c = 0.55, 300kg/m³ for pilot batch of BCSAF (B3) compared to OPC (CEM I 42.5) (at 20°C).

Dimensional stability of B3 concrete (vs. OPC concrete, at 20°C, either in water or at 65% RH)

CONCLUSIONS

- To have the potential to significantly reduce global CO_2 emissions from cement manufacture 'Low CO_2 ' cements must:
 - Be able to produce concrete with appropriate physical and durability properties
 - Be based on locally-available raw materials (even if some materials are globally available, transportation energy costs can be high).
- Cements based on CSA plus belite, ferrites, and calcium sulfates are a promising option. They hydrate to form mainly ettringite, C-S-H & AFm phases.
- Preliminary concrete tests of this approach to this have shown promising strength and durability results, but much more work is needed to establish data for Codes and Standards etc.