McGill Quick Links

The three related species of trypanosomatids, Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major, cause serious human and animal diseases, with a very high incidence and mortality rate if untreated. There are no vaccines for these pathogens, the drugs are toxic with limited effectiveness, and drug resistance is emerging. The availability of the genome sequences of these organisms since 2005 has dramatically expanded our knowledge of their biology; however, a major obstacle has since been acknowledged: the majority of trypanosomatid genes are not found in any other organism, making it almost impossible to use homology-based methods for inferring their functions from their sequences. Our lab is focused on development of novel computational and experimental methods for functional and structural characterization of trypanosomatid genomes. We are also involved in development of high-throughput methods for identification of novel chemical inhibitors of essential trypanosomatid proteins, particularly the editing complex of T. brucei. Functional characterization of some of the key trypanosomatid proteins that are involved in RNA editing is also among the major research topics of our lab.

Positions are available for highly motivated post-doctoral fellows and students who are interested in master's and doctoral thesis to study molecular parasitology in a multidisciplinary environment. Send curriculum vitae, copy of transcripts, and brief statement of research interests to 'Reza Salavati',